Biodegradable Polymer Electrospinning for Tendon Repairment
Abstract
:1. Introduction
2. Repair Process after Tendon Damage
3. Application of Biodegradable Polymers in Tendon Repair
3.1. Application of Natural Biodegradable Polymers in Tendon Repair
3.2. Limitations and Future Progress Related to the Use of Biodegradable Polymers in Tendon Repair
4. Functional Electrospinning Products of 3D Structures for Tendon Repair
4.1. Nanofiber Yarn
4.2. Electrospinning Tube
4.3. Electrospinning Nanofiber Membrane
4.4. Layered Electrospinning Scaffold
5. Electrospinning Composite Scaffold for Tendon Repair
5.1. Parameter Control and Temporary Storage Disadvantages of Electrospinning Materials
5.2. Scaffold Mixed with Biological Factors
5.3. Electrospinning Scaffold with Cells
5.4. Mixed Scaffold Mixed with Nanoparticles
5.5. Electrospun Nanofiber/Hydrogel Composite 3D Scaffold
5.6. Electrospinning Combined with Other Advanced Technologies
6. Advantages of Electrospinning 3D Structure in Tendon Repair at Different Stages
6.1. The Role of Electrospun 3D Structure in the Regulation of Inflammation
6.2. The Role of 3D Electrospun Structure in Tendon Proliferation
6.3. The Role of 3D Structure of Electrospinning in Hemostasis
7. Patents Related to Electrospinning of Biodegradable Polymers
8. Status and Commercialization of Clinical Trials of Biodegradable Polymer Electrospinning in Tendon Repair
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Glossary
2D | Two-dimensional |
3D | Three-dimensional |
ECM | Extracellular matrix |
CBD | Collagen-binding structural domain |
MSCs | Mesenchymal stem cells |
Col | Collagen |
PLA | Polylactic acid |
PCL | Polycaprolactone |
P3HB | Poly (3-hydroxybutyric acid) |
SF | Silk fibroin |
PU | Polyurethane |
DP | Degrapol® |
PDGF-BB | Platelet-derived growth factor BB |
HA | Hydroxyapatite |
PLLA | Polylactic acid |
PLGA | Poly-D-L-lactide-glycolide |
SLNM | Super-lubricated nanofibrous membranes |
PMPC | Poly (2-methacryloxyethyl phosphate choline) |
BFM | Bipolar fiber membrane |
SFM | Simple fiber membrane |
mPCL-nCol-bFGF | PCL microfibers/collagen bfgf |
bFGF | Basic fibroblast growth factor |
VEGFA | Vascular endothelial growth factor A |
ERK2 | Extracellular signal-regulated kinase 2 |
siRNA | Small interfering RNA |
Col III | Type III collagen |
PDA | 2,6-pyridyldicarboxylic aldehyde-polyvinimide |
GelMA | Methacrylic acid hydrogel |
ADSCs | Adipose derived stem cells |
MDCs | Muscle derived cells |
Ag NPs | Silver nanoparticles |
MMC | Mitomycin C |
ZnO NPs | Zinc oxide nanoparticles |
BMP-12 | Bone morphogenetic protein 12 |
PGS | Polyglycerol sebacate |
PDO | Polydioxanone |
CD68 | Cluster of Differentiation 68 |
Col I | Type I collagen |
Tnmd | Tenomodulin |
MOF | Metal-organic framework |
Him-MFM | Co-polymer (lactic acid/glycolic acid) electrospun fiber |
IL-33 | Interleukin-33 |
PXL01 | Lactoferrin peptide |
References
- Sharma, P.; Maffulli, N. Biology of tendon injury: Healing, modeling and remodeling. J. Musculoskelet. Neuronal. Interact. 2006, 6, 181–190. [Google Scholar]
- Sakabe, T.; Sakai, T. Musculoskeletal diseases—Tendon. British. Medical. Bulletin. 2011, 99, 211–225. [Google Scholar] [CrossRef] [Green Version]
- Coons, D.A.; Alan Barber, F. Tendon Graft Substitutes—Rotator Cuff Patches. Sports. Med. Arthrosc. Rev. 2006, 14, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Snedeker, J.G.; Foolen, J. Tendon injury and repair—A perspective on the basic mechanisms of tendon disease and future clinical therapy. Acta. Biomater. 2017, 63, 18–36. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, R.; Lakshminarayanan, R.; Madhaiyan, K.; Amutha Barathi, V.; Lim, K.H.; Ramakrishna, S. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: Applications in tissue regeneration, drug delivery and pharmaceuticals. Chem. Soc. Rev. 2015, 44, 790–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Xu, W.; Gu, J.; Yan, X.; Chen, Y.; Guo, M.; Zhou, G.; Tong, S.; Ge, M.; Liu, Y.; et al. MOF-based fibrous membranes adsorb PM efficiently and capture toxic gases selectively. Nanoscale 2019, 11, 17782–17790. [Google Scholar] [CrossRef]
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef]
- Reneker, D.H.; Yarin, A.L. Electrospinning jets and polymer nanofibers. Polymer 2008, 49, 2387–2425. [Google Scholar] [CrossRef] [Green Version]
- Xia, Q.; Zhang, N.; Li, J.; Wang, H.; Wang, C.; Zhang, Z.; Gu, J.g.; Wang, M.; Han, C.C.; Xu, S.; et al. Dual-Functional Esophageal Stent Coating Composed of Paclitaxel-Loaded Electrospun Membrane and Protective Film. J. Biomed. Nanotechnol. 2019, 15, 2108–2120. [Google Scholar] [CrossRef]
- Chen, Y.; Xue, Y.; Liu, W.; Li, S.; Wang, X.; Zhou, W.; Zhang, G.; Liu, K.; Zhang, H.; Zhao, Y.; et al. Untethered artificial muscles powered by wearable sweat-based energy generator. Nano Today 2023, 49, 101765. [Google Scholar] [CrossRef]
- Rinoldi, C.; Kijenska-Gawronska, E.; Khademhosseini, A.; Tamayol, A.; Swieszkowski, W. Fibrous Systems as Potential Solutions for Tendon and Ligament Repair, Healing, and Regeneration. Adv. Healthc. Mater. 2021, 10, e2001305. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Jun, Y.; Qin, J.; Lee, S.H. Electrospinning versus microfluidic spinning of functional fibers for biomedical applications. Biomaterials 2017, 114, 121–143. [Google Scholar] [CrossRef] [PubMed]
- Sensini, A.; Cristofolini, L. Biofabrication of Electrospun Scaffolds for the Regeneration of Tendons and Ligaments. Materials 2018, 11, 1963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, S.; Wang, C.; Mao, R.; Liang, X.; Wang, H.; Lin, Z.; Li, J.; Li, S.; Jiang, J.; Zhang, T.; et al. Surface structure change properties: Auto-soft bionic fibrous membrane in reducing postoperative adhesion. Bioact. Mater. 2022, 12, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, Z.; Gu, J.; Zhou, W.; Liang, X.; Zhou, G.; Han, C.C.; Xu, S.; Liu, Y. Mechanism of a long-term controlled drug release system based on simple blended electrospun fibers. J. Control. Release. 2020, 320, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Jin, G.R.; He, R.Y.; Sha, B.Y.; Li, W.F.; Qing, H.B.; Teng, R.; Xu, F. Electrospun three-dimensional aligned nanofibrous scaffolds for tissue engineering. Mater. Sci. Eng. C. Mater. Biol. Appl. 2018, 92, 995–1005. [Google Scholar] [CrossRef]
- Lutolf, M.P.; Hubbell, J.A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 2005, 23, 47–55. [Google Scholar] [CrossRef]
- Laranjeira, M.; Domingues, R.M.A.; Costa-Almeida, R.; Reis, R.L.; Gomes, M.E. 3D Mimicry of Native-Tissue-Fiber Architecture Guides Tendon-Derived Cells and Adipose Stem Cells into Artificial Tendon Constructs. Small 2017, 13, 1700689. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, F.; Wang, N.; Yue, G.; Wang, X.; Cai, B.; Hao, Y.; Li, Y.; Guo, F.; Zhang, Z.; et al. Bioinspired stretchable helical nanofiber yarn scaffold for locomotive tissue dynamic regeneration. Matter 2022, 5, 4480–4501. [Google Scholar] [CrossRef]
- Cook, J.L.; Purdam, C.R. Is tendon pathology a continuum? A pathology model to explain the clinical presentation of load-induced tendinopathy. Brit. J. Sport. Med. 2008, 43, 409–416. [Google Scholar] [CrossRef] [Green Version]
- Thomopoulos, S.; Parks, W.C.; Rifkin, D.B.; Derwin, K.A. Mechanisms of tendon injury and repair. J. Orthop. Res. 2015, 33, 832–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nichols, A.E.C.; Best, K.T.; Loiselle, A.E. The cellular basis of fibrotic tendon healing: Challenges and opportunities. Transl. Res. 2019, 209, 156–168. [Google Scholar] [CrossRef] [PubMed]
- Galatz, L.M.; Gerstenfeld, L.; Heber-Katz, E.; Rodeo, S.A. Tendon regeneration and scar formation: The concept of scarless healing. J. Orthop. Res. 2015, 33, 823–831. [Google Scholar] [CrossRef] [PubMed]
- Jo, C.H.; Kim, J.E.; Yoon, K.S.; Shin, S. Platelet-Rich Plasma Stimulates Cell Proliferation and Enhances Matrix Gene Expression and Synthesis in Tenocytes from Human Rotator Cuff Tendons with Degenerative Tears. Am. J. Sport. Med. 2012, 40, 1035–1045. [Google Scholar] [CrossRef]
- Kuo, S.M.; Chang, S.J.; Wang, H.-Y.; Tang, S.C.; Yang, S.-W. Evaluation of the ability of xanthan gum/gellan gum/hyaluronan hydrogel membranes to prevent the adhesion of postrepaired tendons. Carbohyd. Polym. 2014, 114, 230–237. [Google Scholar] [CrossRef]
- Filippi, M.; Born, G.; Chaaban, M.; Scherberich, A. Natural polymeric scaffolds in bone regeneration. Front. Bioeng. Biotechnol. 2020, 8, 474. [Google Scholar] [CrossRef]
- Liu, C.; Jiang, S.; Wu, Y.; Liu, L.; Su, S.; Liang, T.; He, R.; Guo, Z.; Zhang, Y.; Lin, Z.; et al. The Regenerative Role of Gelatin in PLLA Electrospun Membranes for the Treatment of Chronic Massive Rotator Cuff Injuries. Macromol. Biosci. 2022, 22, 2100281. [Google Scholar] [CrossRef]
- Liu, Q.; Zhu, Y.; Zhu, W.; Zhang, G.; Yang, Y.P.; Zhao, C. The role of MicroRNAs in tendon injury, repair, and related tissue engineering. Biomaterials 2021, 277, 121083. [Google Scholar] [CrossRef]
- Ruan, D.; Zhu, T.; Huang, J.; Le, H.; Hu, Y.; Zheng, Z.; Tang, C.; Chen, Y.; Ran, J.; Chen, X.; et al. Knitted Silk-Collagen Scaffold Incorporated with Ligament Stem/Progenitor Cells Sheet for Anterior Cruciate Ligament Reconstruction and Osteoarthritis Prevention. ACS. Biomater. Sci. Eng. 2019, 5, 5412–5421. [Google Scholar] [CrossRef]
- George, A.; Shah, P.A.; Shrivastav, P.S. Natural biodegradable polymers based nano-formulations for drug delivery: A review. Int. J. Pharmaceut. 2019, 561, 244–264. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, M.-F.; Liu, R.-C.; Shen, W.-L.; Yin, Z.; Chen, X. Physical Microenvironment-Based Inducible Scaffold for Stem Cell Differentiation and Tendon Regeneration. Tissue. Eng. Part. B. Re. 2018, 24, 443–453. [Google Scholar] [CrossRef]
- Tu, T.; Shen, Y.; Wang, X.; Zhang, W.; Zhou, G.; Zhang, Y.; Wang, W.; Liu, W. Tendon ECM modified bioactive electrospun fibers promote MSC tenogenic differentiation and tendon regeneration. Appl. Mater. Today. 2020, 18, 100495. [Google Scholar] [CrossRef]
- Micheli, L.; Parisio, C.; Lucarini, E.; Carrino, D.; Ciampi, C.; Toti, A.; Ferrara, V.; Pacini, A.; Ghelardini, C.; Di Cesare Mannelli, L. Restorative and pain-relieving effects of fibroin in preclinical models of tendinopathy. Biomed. Pharmacother. 2022, 148, 112693. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, R.; Lake, S.P.; Zellers, J.A. Effect of diabetes on tendon structure and function: Not limited to collagen crosslinking. J. Diabetes. Sci. Technol. 2023, 17, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Mou, C.; Shi, Q.; Chen, B.; Hou, X.; Zhang, W.; Li, X.; Zhuang, Y.; Shi, J.; Chen, Y.; et al. Controlled release of collagen-binding SDF-1α from the collagen scaffold promoted tendon regeneration in a rat Achilles tendon defect model. Biomaterials 2018, 162, 22–33. [Google Scholar] [CrossRef]
- Xue, Y.; Kim, H.-J.; Lee, J.; Liu, Y.; Hoffman, T.; Chen, Y.; Zhou, X.; Sun, W.; Zhang, S.; Cho, H.-J.; et al. Co-Electrospun Silk Fibroin and Gelatin Methacryloyl Sheet Seeded with Mesenchymal Stem Cells for Tendon Regeneration. Small 2022, 18, 2107714. [Google Scholar] [CrossRef]
- Teuschl, A.; Heimel, P.; Nürnberger, S.; van Griensven, M.; Redl, H.; Nau, T. A Novel Silk Fiber–Based Scaffold for Regeneration of the Anterior Cruciate Ligament. Am. J. Sport. Med. 2016, 44, 1547–1557. [Google Scholar] [CrossRef]
- Bhattarai, D.P.; Aguilar, L.E.; Park, C.H.; Kim, C.S. A Review on Properties of Natural and Synthetic Based Electrospun Fibrous Materials for Bone Tissue Engineering. Membranes 2018, 8, 62. [Google Scholar] [CrossRef] [Green Version]
- Aldana, A.A.; Abraham, G.A. Current advances in electrospun gelatin-based scaffolds for tissue engineering applications. Int. J. Pharmaceut. 2017, 523, 441–453. [Google Scholar] [CrossRef] [Green Version]
- Francois, E.; Dorcemus, D.; Nukavarapu, S. Biomaterials and scaffolds for musculoskeletal tissue engineering. In Interfaces Regenerative Engineering of Musculoskeletal Tissues and Interfaces; Nukavarapu, S., Freeman, J., Laurencin, C., Eds.; Woodhead Publishing: Cambridge, UK, 2015; ISBN 9781782423010. [Google Scholar]
- Xie, X.; Chen, Y.; Wang, X.; Xu, X.; Shen, Y.; Khan, A.u.R.; Aldalbahi, A.; Fetz, A.E.; Bowlin, G.L.; El-Newehy, M.; et al. Electrospinning nanofiber scaffolds for soft and hard tissue regeneration. J. Mater. Sci. Technol. 2020, 59, 243–261. [Google Scholar] [CrossRef]
- Chen, M.; Jiang, R.; Deng, N.; Zhao, X.; Li, X.; Guo, C. Natural polymer-based scaffolds for soft tissue repair. Front. Bioeng. Biotech. 2022, 10, 1280. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Qian, Y.; Jin, Y.; Wang, S.; Li, J.; Yuan, W.E.; Fan, C. Biomimetic multilayer polycaprolactone/sodium alginate hydrogel scaffolds loaded with melatonin facilitate tendon regeneration. Carbohydr. Polym. 2022, 277, 118865. [Google Scholar] [CrossRef] [PubMed]
- Teo, W.-E.; Inai, R.; Ramakrishna, S. Technological advances in electrospinning of nanofibers. Sci. Technol. Adv. Mat. 2019, 12, 013002. [Google Scholar] [CrossRef] [Green Version]
- Si, Y.; Shi, S.; Hu, J. Applications of electrospinning in human health: From detection, protection, regulation to reconstruction. Nano Today 2023, 48, 101723. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, F.; Akkus, O.; King, M.W. A collagen/PLA hybrid scaffold supports tendon-derived cell growth for tendon repair and regeneration. J. Biomed. Mater. Res. B. 2022, 110, 2624–2635. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, Z.; Xiang, L.; Zhao, Z.; Cui, W. Functional biomaterials for tendon/ligament repair and regeneration. Regen. Biomater. 2022, 9, rbac062. [Google Scholar] [CrossRef]
- Yin, Z.; Chen, X.; Chen, J.L.; Shen, W.L.; Hieu Nguyen, T.M.; Gao, L.; Ouyang, H.W. The regulation of tendon stem cell differentiation by the alignment of nanofibers. Biomaterials 2010, 31, 2163–2175. [Google Scholar] [CrossRef]
- Xie, J.; Li, X.; Lipner, J.; Manning, C.N.; Schwartz, A.G.; Thomopoulos, S.; Xia, Y. “Aligned-to-random” nanofiber scaffolds for mimicking the structure of the tendon-to-bone insertion site. Nanoscale 2010, 2, 923–926. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Si, Y.; Yu, J.; Ding, B. Electrospun porous engineered nanofiber materials: A versatile medium for energy and environmental applications. Chem. Eng. J. 2023, 456, 140989. [Google Scholar] [CrossRef]
- Liu, C.; Wang, S.; Wang, N.; Yu, J.; Liu, Y.T.; Ding, B. From 1D Nanofibers to 3D Nanofibrous Aerogels: A Marvellous Evolution of Electrospun SiO(2) Nanofibers for Emerging Applications. Nanomicro. Lett. 2022, 14, 194. [Google Scholar] [CrossRef]
- Liu, W.; Lipner, J.; Moran, C.H.; Feng, L.; Li, X.; Thomopoulos, S.; Xia, Y. Generation of electrospun nanofibers with controllable degrees of crimping through a simple, plasticizer-based treatment. Adv. Mater. 2015, 27, 2583–2588. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhai, H.; Sun, Y.; Wu, S.; Chen, S. Developing high strength poly(L-lactic acid) nanofiber yarns for biomedical textile materials: A comparative study of novel nanofiber yarns and traditional microfiber yarns. Mater. Lett. 2021, 300, 130229. [Google Scholar] [CrossRef]
- Li, Y.; Guo, F.; Hao, Y.; Gupta, S.K.; Hu, J.; Wang, Y.; Wang, N.; Zhao, Y.; Guo, M. Helical nanofiber yarn enabling highly stretchable engineered microtissue. Proc. Natl. Acad. Sci. USA 2019, 116, 9245–9250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naghashzargar, E.; Farè, S.; Catto, V.; Bertoldi, S.; Semnani, D.; Karbasi, S.; Tanzi, M.C. Nano/Micro Hybrid Scaffold of PCL or P3HB Nanofibers Combined with Silk Fibroin for Tendon and Ligament Tissue Engineering. J. Appl. Biomater. Func. 2015, 13, 156–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surrao, D.C.; Hayami, J.W.S.; Waldman, S.D.; Amsden, B.G. Self-Crimping, Biodegradable, Electrospun Polymer Microfibers. Biomacromolecules 2010, 11, 3624–3629. [Google Scholar] [CrossRef]
- Wu, S.; Liu, J.; Cai, J.; Zhao, J.; Duan, B.; Chen, S. Combining electrospinning with hot drawing process to fabricate high performance poly (L-lactic acid) nanofiber yarns for advanced nanostructured bio-textiles. Biofabrication 2021, 13, 045018. [Google Scholar] [CrossRef]
- Liu, J.; Li, T.; Zhang, H.; Zhao, W.; Qu, L.; Chen, S.; Wu, S. Electrospun strong, bioactive, and bioabsorbable silk fibroin/poly (L-lactic-acid) nanoyarns for constructing advanced nanotextile tissue scaffolds. Mater. Today. Bio. 2022, 14, 100243. [Google Scholar] [CrossRef]
- Buschmann, J.; Calcagni, M.; Bürgisser, G.M.; Bonavoglia, E.; Neuenschwander, P.; Milleret, V.; Giovanoli, P. Synthesis, characterization and histomorphometric analysis of cellular response to a new elastic DegraPol® polymer for rabbit Achilles tendon rupture repair. J. Tissue. Eng. Regen. M. 2012, 9, 584–594. [Google Scholar] [CrossRef]
- Meier Bürgisser, G.; Calcagni, M.; Müller, A.; Bonavoglia, E.; Fessel, G.; Snedeker, J.G.; Giovanoli, P.; Buschmann, J. Prevention of Peritendinous Adhesions Using an Electrospun DegraPol Polymer Tube: A Histological, Ultrasonographic, and Biomechanical Study in Rabbits. Biomed. Res. Int. 2014, 2014, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bürgisser, G.M.; Evrova, O.; Heuberger, D.M.; Wolint, P.; Rieber, J.; Miescher, I.; Schüpbach, R.A.; Giovanoli, P.; Calcagni, M.; Buschmann, J. Electrospun tube reduces adhesion in rabbit Achilles tendon 12 weeks post-surgery without PAR-2 overexpression. Sci. Rep. 2021, 11, 23293. [Google Scholar] [CrossRef]
- Evrova, O.; Burgisser, G.M.; Ebnother, C.; Adathala, A.; Calcagni, M.; Bachmann, E.; Snedeker, J.G.; Scalera, C.; Giovanoli, P.; Vogel, V.; et al. Elastic and surgeon friendly electrospun tubes delivering PDGF-BB positively impact tendon rupture healing in a rabbit Achilles tendon model. Biomaterials 2020, 232, 119722. [Google Scholar] [CrossRef]
- Pien, N.; Van de Maele, Y.; Parmentier, L.; Meeremans, M.; Mignon, A.; De Schauwer, C.; Peeters, I.; De Wilde, L.; Martens, A.; Mantovani, D.; et al. Design of an electrospun tubular construct combining a mechanical and biological approach to improve tendon repair. J. Mater. Sci. Mater. M 2022, 33, 51. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Shi, X.; Li, X.; Wang, J.; Wang, Y.; Luo, Y. Oriented collagen fiber membranes formed through counter-rotating extrusion and their application in tendon regeneration. Biomaterials 2019, 207, 61–75. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Sang, X.; Tian, Z.; Jiang, S.; Li, C.; Guo, Q.; Wang, C.; Hu, P.; Liu, Y. Electrospun hydroxyapatite loaded L-polylactic acid aligned nanofibrous membrane patch for rotator cuff repair. Int. J. Biol. Macromol. 2022, 217, 180–187. [Google Scholar] [CrossRef]
- Weng, C.J.; Wu, Y.C.; Hsu, M.Y.; Chang, F.P.; Liu, S.J. Electrospun, Resorbable, Drug-Eluting, Nanofibrous Membranes Promote Healing of Allograft Tendons. Membranes 2022, 12, 529. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-H.; Chen, S.-H.; Shalumon, K.T.; Chen, J.-P. Prevention of peritendinous adhesions with electrospun polyethylene glycol/polycaprolactone nanofibrous membranes. Colloid. Surface. B. 2015, 133, 221–230. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.H.; Zhai, W.J.; Zhang, Z.N.; Liu, Y.H.; Cheng, S.J.; Zhang, H.Y. In-situ growth of robust superlubricated nano-skin on electrospun nanofibers for post-operative adhesion prevention. Nat. Commun. 2022, 13, 12. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, L.; Wen, S.; Zhou, S.; Wang, Z.; Deng, L.; Mao, H.-Q.; Cui, W.; Zhang, H. Ice-Inspired Superlubricated Electrospun Nanofibrous Membrane for Preventing Tissue Adhesion. Nano. Letters. 2020, 20, 6420–6428. [Google Scholar] [CrossRef]
- Xie, J.; MacEwan, M.R.; Liu, W.; Jesuraj, N.; Li, X.; Hunter, D.; Xia, Y. Nerve Guidance Conduits Based on Double-Layered Scaffolds of Electrospun Nanofibers for Repairing the Peripheral Nervous System. ACS. Appl. Mater. Inter. 2014, 6, 9472–9480. [Google Scholar] [CrossRef]
- Pal, P.; Dadhich, P.; Srivas, P.K.; Das, B.; Maulik, D.; Dhara, S. Bilayered nanofibrous 3D hierarchy as skin rudiment by emulsion electrospinning for burn wound management. Biomater. Sci. 2017, 5, 1786–1799. [Google Scholar] [CrossRef]
- Li, X.; Cheng, R.; Sun, Z.; Su, W.; Pan, G.; Zhao, S.; Zhao, J.; Cui, W. Flexible bipolar nanofibrous membranes for improving gradient microstructure in tendon-to-bone healing. Acta Biomater. 2017, 61, 204–216. [Google Scholar] [CrossRef] [PubMed]
- Jin, G.; Shin, M.; Kim, S.-H.; Lee, H.; Jang, J.-H. SpONGE: Spontaneous Organization of Numerous-Layer Generation by Electrospray. Angew. Chem. Int. Edit. 2015, 54, 7587–7591. [Google Scholar] [CrossRef]
- Si, Y.; Wang, X.; Dou, L.; Yu, J.; Ding, B. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci. Adv. 2018, 4, eaas8925. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Xie, J.; Lipner, J.; Yuan, X.; Thomopoulos, S.; Xia, Y. Nanofiber scaffolds with gradations in mineral content for mimicking the tendon-to-bone insertion site. Nano. Lett. 2009, 9, 2763–2768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.H.; Shen, S.J.; Hsu, Y.H.; Chou, Y.C.; Yu, P.C.; Liu, S.J. Tri-Layered Doxycycline-, Collagen- and Bupivacaine-Loaded Poly(lactic-co-glycolic acid) Nanofibrous Scaffolds for Tendon Rupture Repair. Polymers 2022, 14, 16. [Google Scholar] [CrossRef] [PubMed]
- Jayasree, A.; Kottappally Thankappan, S.; Ramachandran, R.; Sundaram, M.N.; Chen, C.H.; Mony, U.; Chen, J.P.; Jayakumar, R. Bioengineered Braided Micro-Nano (Multiscale) Fibrous Scaffolds for Tendon Reconstruction. ACS. Biomater. Sci. Eng. 2019, 5, 1476–1486. [Google Scholar] [CrossRef]
- Sankar, D.; Mony, U.; Rangasamy, J. Combinatorial effect of plasma treatment, fiber alignment and fiber scale of poly (ε-caprolactone)/collagen multiscale fibers in inducing tenogenesis in non-tenogenic media. Mat. Sci. Eng. C. Mater. 2021, 127, 112206. [Google Scholar] [CrossRef]
- Liu, C.; Tian, S.; Bai, J.; Yu, K.; Liu, L.; Liu, G.; Dong, R.; Tian, D. Regulation of ERK1/2 and SMAD2/3 Pathways by Using Multi-Layered Electrospun PCL-Amnion Nanofibrous Membranes for the Prevention of Post-Surgical Tendon Adhesion. Int. J. Nanomedicine. 2020, 15, 927–942. [Google Scholar] [CrossRef] [Green Version]
- Orr, S.B.; Chainani, A.; Hippensteel, K.J.; Kishan, A.; Gilchrist, C.; Garrigues, N.W.; Ruch, D.S.; Guilak, F.; Little, D. Aligned multilayered electrospun scaffolds for rotator cuff tendon tissue engineering. Acta. Biomater. 2015, 24, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Rothrauff, B.B.; Lauro, B.B.; Yang, G.; Debski, R.E.; Musahl, V.; Tuan, R.S. Braided and Stacked Electrospun Nanofibrous Scaffolds for Tendon and Ligament Tissue Engineering. Tissue. Eng. Part A 2017, 23, 378–389. [Google Scholar] [CrossRef] [Green Version]
- Nowotny, J.; Aibibu, D.; Farack, J.; Nimtschke, U.; Hild, M.; Gelinsky, M.; Kasten, P.; Cherif, C. Novel fiber-based pure chitosan scaffold for tendon augmentation: Biomechanical and cell biological evaluation. J. Biomater. Sci.-Polym. Ed. 2016, 27, 917–936. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Ding, M.; Shi, C.; Qiao, Y.; Wang, P.; Qiao, R.; Wang, X.; Zhong, J. Resorbable polymer electrospun nanofibers: History, shapes and application for tissue engineering. Chinese. Chem. Lett. 2020, 31, 617–625. [Google Scholar] [CrossRef]
- Lee, J.; Jang, J.; Oh, H.; Jeong, Y.H.; Cho, D.-W. Fabrication of a three-dimensional nanofibrous scaffold with lattice pores using direct-write electrospinning. Mater. Lett. 2013, 93, 397–400. [Google Scholar] [CrossRef]
- Zhang, C.; Yuan, X.; Wu, L.; Han, Y.; Sheng, J. Study on morphology of electrospun poly (vinyl alcohol) mats. Eur. Polym. J. 2005, 41, 423–432. [Google Scholar] [CrossRef]
- Yarin, A.L.; Zussman, E. Upward needleless electrospinning of nanofibers. Polymer 2004, 45, 2977–2980. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Xia, Y.; Yang, H. Magnetic-field-assisted electrospinning of aligned straight and wavy polymeric nanofibers. Adv. Mat. 2010, 22, 2454–2457. [Google Scholar] [CrossRef] [Green Version]
- Petrik, S.; Maly, M. Production nozzle-less electrospinning nanofiber technology. MRS. Online. Proceedings. Libr. OPL 2009, 1240, 1240-WW03. [Google Scholar] [CrossRef] [Green Version]
- Montero, R.B.; Vial, X.; Nguyen, D.T.; Farhand, S.; Reardon, M.; Pham, S.M.; Tsechpenakis, G.; Andreopoulos, F.M. bFGF-containing electrospun gelatin scaffolds with controlled nano-architectural features for directed angiogenesis. Acta. Biomater. 2012, 8, 1778–1791. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Qin, M.; Hu, C.; Wu, F.; Cui, W.; Jin, T.; Fan, C. Tendon healing and anti-adhesion properties of electrospun fibrous membranes containing bFGF loaded nanoparticles. Biomaterials 2013, 34, 4690–4701. [Google Scholar] [CrossRef]
- Zhao, S.; Zhao, J.; Dong, S.; Huangfu, X.; Li, B.; Yang, H.; Zhao, J.; Cui, W. Biological augmentation of rotator cuff repair using bFGF-loaded electrospun poly(lactide-co-glycolide) fibrous membranes. Int. J. Nanomed. 2014, 9, 2373–2385. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.L.; Yang, Q.Q.; Zhang, L.; Tang, J.B. Nanoparticle-coated sutures providing sustained growth factor delivery to improve the healing strength of injured tendons. Acta. Biomater. 2021, 124, 301–314. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wu, F.; Gu, S.; Wu, T.; Chen, S.; Chen, S.; Wang, C.; Huang, G.; Jin, T.; Cui, W.; et al. Gene Silencing via PDA/ERK2-siRNA-Mediated Electrospun Fibers for Peritendinous Antiadhesion. Adv. Sci. 2018, 6, 1801217. [Google Scholar] [CrossRef] [PubMed]
- Deng, D.; Wang, W.; Wang, B.; Zhang, P.; Zhou, G.; Zhang, W.J.; Cao, Y.; Liu, W. Repair of Achilles tendon defect with autologous ASCs engineered tendon in a rabbit model. Biomaterials 2014, 35, 8801–8809. [Google Scholar] [CrossRef] [PubMed]
- Chirieleison, S.M.; Feduska, J.M.; Schugar, R.C.; Askew, Y.; Deasy, B.M. Human Muscle-Derived Cell Populations Isolated by Differential Adhesion Rates: Phenotype and Contribution to Skeletal Muscle Regeneration in Mdx/SCID Mice. Tissue. Eng. Part A 2012, 18, 232–241. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Wang, B.; Zhang, W.J.; Zhou, G.; Cao, Y.; Liu, W. In vivo tendon engineering with skeletal muscle derived cells in a mouse model. Biomaterials 2012, 33, 6086–6097. [Google Scholar] [CrossRef]
- Rinoldi, C.; Kijeńska, E.; Chlanda, A.; Choinska, E.; Khenoussi, N.; Tamayol, A.; Khademhosseini, A.; Swieszkowski, W. Nanobead-on-string composites for tendon tissue engineering. J. Mater. Chem. B 2018, 6, 3116–3127. [Google Scholar] [CrossRef]
- Wu, G.; Deng, X.; Song, J.; Chen, F. Enhanced biological properties of biomimetic apatite fabricated polycaprolactone/chitosan nanofibrous bio-composite for tendon and ligament regeneration. J. Photochem. Photobiol. B 2018, 178, 27–32. [Google Scholar] [CrossRef]
- Chen, S.; Wang, G.; Wu, T.; Zhao, X.; Liu, S.; Li, G.; Cui, W.; Fan, C. Silver Nanoparticles/Ibuprofen-Loaded Poly(l-lactide) Fibrous Membrane: Anti-Infection and Anti-Adhesion Effects. Int. J. Mol. Sci. 2014, 15, 14014–14025. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.H.; Chen, S.H.; Shalumon, K.T.; Chen, J.P. Dual functional core-sheath electrospun hyaluronic acid/polycaprolactone nanofibrous membranes embedded with silver nanoparticles for prevention of peritendinous adhesion. Acta. Biomater. 2015, 26, 225–235. [Google Scholar] [CrossRef]
- Shalumon, K.T.; Sheu, C.; Chen, C.-H.; Chen, S.-H.; Jose, G.; Kuo, C.-Y.; Chen, J.-P. Multi-functional electrospun antibacterial core-shell nanofibrous membranes for prolonged prevention of post-surgical tendon adhesion and inflammation. Acta. Biomater. 2018, 72, 121–136. [Google Scholar] [CrossRef]
- Zhao, X.; Jiang, S.; Liu, S.; Chen, S.; Lin, Z.Y.; Pan, G.; He, F.; Li, F.; Fan, C.; Cui, W. Optimization of intrinsic and extrinsic tendon healing through controllable water-soluble mitomycin-C release from electrospun fibers by mediating adhesion-related gene expression. Biomaterials 2015, 61, 61–74. [Google Scholar] [CrossRef]
- He, X.; Huang, Z.; Liu, W.; Liu, Y.; Qian, H.; Lei, T.; Hua, L.; Hu, Y.; Zhang, Y.; Lei, P. Electrospun polycaprolactone/hydroxyapatite/ZnO films as potential biomaterials for application in bone-tendon interface repair. Colloid. Surface. B. 2021, 204, 111825. [Google Scholar] [CrossRef] [PubMed]
- Rinoldi, C.; Fallahi, A.; Yazdi, I.K.; Campos Paras, J.; Kijeńska-Gawrońska, E.; Trujillo-de Santiago, G.; Tuoheti, A.; Demarchi, D.; Annabi, N.; Khademhosseini, A.; et al. Mechanical and Biochemical Stimulation of 3D Multilayered Scaffolds for Tendon Tissue Engineering. ACS. Biomater. Sci. Eng. 2019, 5, 2953–2964. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Wang, W.; Liang, J.; Li, Y.; Lu, M.; Cui, W.; Fan, C.; Deng, L.; Li, Y.; Wang, F.; et al. MMP-2 Responsive Unidirectional Hydrogel-Electrospun Patch Loading TGF-β1 siRNA Polyplexes for Peritendinous Anti-Adhesion. Adv. Funct. Mater. 2020, 31, 2008364. [Google Scholar] [CrossRef]
- Cai, C.; Zhang, X.; Li, Y.; Liu, X.; Wang, S.; Lu, M.; Yan, X.; Deng, L.; Liu, S.; Wang, F.; et al. Self-Healing Hydrogel Embodied with Macrophage-Regulation and Responsive-Gene-Silencing Properties for Synergistic Prevention of Peritendinous Adhesion. Adv. Mater. 2022, 34, e2106564. [Google Scholar] [CrossRef]
- Kim, G.; Son, J.; Park, S.; Kim, W. Hybrid Process for Fabricating 3D Hierarchical Scaffolds Combining Rapid Prototyping and Electrospinning. Macromol. Rapid. Comm. 2008, 29, 1577–1581. [Google Scholar] [CrossRef]
- Touré, A.B.R.; Mele, E.; Christie, J.K. Multi-layer Scaffolds of Poly(caprolactone), Poly(glycerol sebacate) and Bioactive Glasses Manufactured by Combined 3D Printing and Electrospinning. Nanomaterials 2020, 10, 626. [Google Scholar] [CrossRef] [Green Version]
- Guner, M.B.; Dalgic, A.D.; Tezcaner, A.; Yilanci, S.; Keskin, D. A dual-phase scaffold produced by rotary jet spinning and electrospinning for tendon tissue engineering. Biomed. Mater. 2020, 15, 065014. [Google Scholar] [CrossRef]
- Wang, C.; Xu, Y.; Xia, J.; Zhou, Z.; Fang, Y.; Zhang, L.; Sun, W. Multi-scale hierarchical scaffolds with aligned micro-fibers for promoting cell alignment. Biomed. Mater. 2021, 16, 045047. [Google Scholar] [CrossRef]
- Hakimi, O.; Mouthuy, P.A.; Zargar, N.; Lostis, E.; Morrey, M.; Carr, A. A layered electrospun and woven surgical scaffold to enhance endogenous tendon repair. Acta. Biomater. 2015, 26, 124–135. [Google Scholar] [CrossRef]
- Guo, M.; Bi, S.; Liu, J.; Xu, W.; Zhou, G.; Liu, Y.; Chen, C. C60(OH)n-loaded nanofibrous membranes protect HaCaT cells from ROS-associated damage. Chinese. Chem. Lett. 2017, 28, 1889–1892. [Google Scholar] [CrossRef]
- Schoenenberger, A.D.; Foolen, J.; Moor, P.; Silvan, U.; Snedeker, J.G. Substrate fiber alignment mediates tendon cell response to inflammatory signaling. Acta. Biomater. 2018, 71, 306–317. [Google Scholar] [CrossRef] [PubMed]
- Schoenenberger, A.D.; Tempfer, H.; Lehner, C.; Egloff, J.; Mauracher, M.; Bird, A.; Widmer, J.; Maniura-Weber, K.; Fucentese, S.F.; Traweger, A.; et al. Macromechanics and polycaprolactone fiber organization drive macrophage polarization and regulate inflammatory activation of tendon in vitro and in vivo. Biomaterials 2020, 249, 120034. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Xu, Q.; Li, C.; Huang, J.; Zhang, Y.; Wu, D.; Wang, Z. Engineering 3D Aligned Nanofibers for Regulation of Cell Growth Behavior. Macromol. Mater. Eng. 2017, 302, 1600448. [Google Scholar] [CrossRef]
- Loiselle, A.E.; Bragdon, G.A.; Jacobson, J.A.; Hasslund, S.; Cortes, Z.E.; Schwarz, E.M.; Mitten, D.J.; Awad, H.A.; O’Keefe, R.J. Remodeling of murine intrasynovial tendon adhesions following injury: MMP and neotendon gene expression. J. Orthop. Res. 2009, 27, 833–840. [Google Scholar] [CrossRef] [Green Version]
- Lin, D.; Alberton, P.; Caceres, M.D.; Volkmer, E.; Schieker, M.; Docheva, D. Tenomodulin is essential for prevention of adipocyte accumulation and fibrovascular scar formation during early tendon healing. Cell Death Dis. 2017, 8, e3116. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Deng, B.; Zhang, B.; Luo, Q.; Song, G. Stretch-Induced Tenomodulin Expression Promotes Tenocyte Migration via F-Actin and Chromatin Remodeling. Int. J. Mol. Sci. 2021, 22, 4928. [Google Scholar] [CrossRef]
- Yang, R.; Zheng, Y.; Zhang, Y.; Li, G.; Xu, Y.; Zhang, Y.; Xu, Y.; Zhuang, C.; Yu, P.; Deng, L.; et al. Bipolar Metal Flexible Electrospun Fibrous Membrane Based on Metal-Organic Framework for Gradient Healing of Tendon-to-Bone Interface Regeneration. Adv. Healthc. Mater. 2022, 11, e2200072. [Google Scholar] [CrossRef]
- Olvera, D.; Schipani, R.; Sathy, B.N.; Kelly, D.J. Electrospinning of highly porous yet mechanically functional microfibrillar scaffolds at the human scale for ligament and tendon tissue engineering. Biomed. Mater. 2019, 14, 035016. [Google Scholar] [CrossRef]
- Sakabe, T.; Sakai, K.; Maeda, T.; Sunaga, A.; Furuta, N.; Schweitzer, R.; Sasaki, T.; Sakai, T. Transcription factor scleraxis vitally contributes to progenitor lineage direction in wound healing of adult tendon in mice. J. Bio. Chem. 2018, 293, 5766–5780. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Xiang, L.; Lin, F.; Tang, Y.; Deng, L.; Cui, W. A Biomaterial-Based Hedging Immune Strategy for Scarless Tendon Healing. Adv. Mater. 2022, 34, e2200789. [Google Scholar] [CrossRef] [PubMed]
- Wynn, T.A.; Ramalingam, T.R. Mechanisms of fibrosis: Therapeutic translation for fibrotic disease. Nat. Med. 2012, 18, 1028–1040. [Google Scholar] [CrossRef] [Green Version]
- Baldwin, M.J.; Mimpen, J.Y.; Cribbs, A.P.; Stace, E.; Philpott, M.; Dakin, S.G.; Carr, A.J.; Snelling, S.J. Electrospun Scaffold Micro-Architecture Induces an Activated Transcriptional Phenotype within Tendon Fibroblasts. Front. Bioeng. Biotech. 2021, 9, 795748. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.Y.; Liu, S.; Cui, W.G. Simulated Tendinous Sheath Film and Preparation Method Thereof. CN-103071185-A, 1 May 2013. [Google Scholar]
- Laurencin, C.; Ko, F.; Cooper, J.; Lu, H.; Attawia, M. Ligament and Tendon Replacement Constructs and Methods for Production and Use Thereof. US-2015190222-A1, 9 July 2015. [Google Scholar]
- Rizk, S.; Martin, D.P.; Bernasconi, M.; Williams, S.F. Soft Suture Anchor. CA-2917427-C, 18 June 2019. [Google Scholar]
- Lu, H.H.; Antrobus, R.M.; Childs, H.R. Fiber-Based Scaffolds for Tendon Cell Migration and Regeneration. WO-2021077042-A1, 22 April 2021. [Google Scholar]
- Ouyang, H.; Goh, C.H.J.; Toh, S.L.; Tay, T.E. Tissue Construct and Method Thereof. WO-2006110110-A1, 19 October 2006. [Google Scholar]
- Hunter, W.L.; Gravett, D.M.; Toleikis, P.M.; Maiti, A.; Signore, P.E.; Liggins, R.T.; Guan, D. Medical Implants and Fibrosis-Inducing Agents. WO-2005065079-A2, 21 July 2005. [Google Scholar]
- Downes, S.; Bosworth, L.A. Tissue Repair Scaffold. US-9770529-B2, 26 September 2017. [Google Scholar]
- Binette, F.; Hwang, J.; Zimmerman, M.; Melican, M.C. Biocompatible Scaffold for Ligament or Tendon Repair. US-8637066-B2, 28 January 2014. [Google Scholar]
- Cartmell, S.; Bosworth, L.; Wong, J.; McGrouther, D.A. Tissue Repair Scaffold and Device. US-2022176014-A1, 9 June 2022. [Google Scholar]
- Francis, M.; Kemper, N.; Wriggers, H. Biopolymer Compositions, Scaffolds and Devices. US-2020338232-A1, 14 September 2021. [Google Scholar]
- Han, B. Functional Scaffold for Tissue Repair and Regeneration. US-2017182080-A1, 29 June 2017. [Google Scholar]
- Laurencin, C.T.; Yu, X.; Valmikinathan, C.M.; Wang, J. Synergetic Functionalized Spiral-In-Tubular Bone Scaffolds. US-2010310623-A1, 9 December 2010. [Google Scholar]
- Hakimi, O.; Mouthuy, P.-A.; Baboldashti, N.Z.; Carr, A. Scaffold. US-11517646-B2, 6 December 2022. [Google Scholar]
- Gravett, D.; Acampora, K.B.; Saini, P. Functionalized and Crosslinked Polymers. US-11440976-B2, 13 September 2022. [Google Scholar]
- Buschmann, J.; Evrova, O.; Vogel, V. Device for Repair Surgery of Cylindrical Organs, Particularly Ruptured Tendons, Comprising a Therapeutic Agent for Stimulating Regrowth, and Method of Producing Such Device. US-10653819-B2, 19 May 2020. [Google Scholar]
- Lu, H.H.; Spalazzi, J.; Moffat, K.L.; Levine, W.N. Biomimmetic Nanofiber Scaffold for Soft Tissue and Soft Tissue-To-Bone Repair, Augmentation and Replacement. US-10265155-B2, 23 April 2019. [Google Scholar]
- Leonard, A. A Device for the Repair of Ruptured Tendons Comprises One or Two Needles and 60–80 cm of a Supple Thread in a Resilient Biodegradable Polymer, Preferably Polylactic Acid or Polyglycolic Acid. FR2867380-A1, 16 March 2007. [Google Scholar]
- Buschmann, J. A Device for Repair Surgery of Cylindrical Organs, Particularly Ruptured Tendons. EP-2747796-B1, 26 December 2018. [Google Scholar]
- Ahmet, H.; Mao, H.Q. Biological Tissue Connection and Repair Devices. US-9539009-B2, 10 January 2017. [Google Scholar]
- Katsuro, T.; Hiroyuki, T.; Katsuhiko, K.; Junsuke, N.; Keigo, H.; Kunio, M. Promoter for Regeneration of Tendon-Bone Junction Tissue or Ligament-Bone Junction Tissue. EP-2351574-B1, 24 August 2016. [Google Scholar]
- Lu, H.H.; Jeffrey, S. Fully Synthetic Implantable Multi-Phased Scaffold. EP-2155112-A1, 1 March 2017. [Google Scholar]
- Zhang, N.Z.; Xu, S.S.; Han, Z.C. Tissue Repair Sleeve. CN-210433516-U, 1 May 2020. [Google Scholar]
- Zhang, N.Z.; Xu, S.S.; Han, Z.C. A Kind of Tissue Repair Casing and Its Preparation Method and Application. CN-109758197-A, 17 May 2019. [Google Scholar]
- Sengan, M.Z.; Wittac, G.R.; Cleveland, B.; Balti, S.; Diab, T.; Parisu, W.R.; Tice, R.A. Tissue Enhancement Scaffold for Use with Soft Tissue Fixation Repair Systems and Methods. CN-114601516-A, 10 June 2022. [Google Scholar]
- Whitaker, G.R.; Segon, M.Z.; Cleveland, B.; Cranson, C.; Theis, R.A. Tissue-Reinforcing Scaffold for Use in Soft Tissue Fixation Repair. CN-112107340-A, 22 December 2020. [Google Scholar]
- Zhao, P.; Gu, H.B.; He, Y.; Fu, J.Z. A Kind of Preparation Method of Multiple Dimensioned Three Dimensional Biological Tissue Engineering Bracket. CN-106039417-B, 29 January 2019. [Google Scholar]
- Mathis, B. For Ligament or the Method for Tendon Repair. CN-104254351-B, 1 December 2017. [Google Scholar]
- Weiss, A.S.; Aghaei-Ghareh-Bolagh, B. Tissue Engineering Scaffolds. CA-3165939-A1, 12 August 2021. [Google Scholar]
- Francis, M.P.; Maghdouri-white, Y.; Wriggers, H.; Nardos, S.; Petrova, S.; Seth, P.; Thayer, N. Biopolymer Scaffold Implants and Methods for Their Production. CA-3079958-A1, 2 May 2019. [Google Scholar]
- Tamim, D.; Hester, D.L.; Sengun, M.Z. Systems and Methods for Using Structured Tissue Augmentation Constructs in Soft Tissue Fixation Repair. AU-2022202795-A1, 17 November 2022. [Google Scholar]
- Park, Y.H.; Kim, W.; Choi, J.W.; Kim, H.J. Absorbable versus nonabsorbable sutures for the Krackow suture repair of acute Achilles tendon rupture: A prospective randomized controlled trial. Bone. Joint. J. 2022, 104-B, 938–945. [Google Scholar] [CrossRef] [PubMed]
- Wiig, M.E.; Dahlin, L.B.; Fridén, J.; Hagberg, L.; Larsen, S.E.; Wiklund, K.; Mahlapuu, M. PXL01 in Sodium Hyaluronate for Improvement of Hand Recovery after Flexor Tendon Repair Surgery: Randomized Controlled Trial. PLoS ONE 2014, 9, e110735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mentzel, M.; Hoss, H.; Keppler, P.; Ebinger, T.; Kinzl, L.; Wachter, N.J. The Effectiveness of ADCON-T/N, a New Anti-Adhesion Barrier Gel, in Fresh Divisions of the Flexor Tendons in Zone II. J. Hand. Surg. 2000, 25, 590–592. [Google Scholar] [CrossRef]
- Liew, S.H.; Potokar, T.; Bantick, G.L.; Morgan, I.; Ford, C.; Murison, M.S.C. The use of ADCON-T/N after repair of zone II flexor tendons. Chirurgie. De La Main. 2001, 20, 384–387. [Google Scholar] [CrossRef]
- de Freitas Dutra Junior, E.; Hidd, S.; Amaral, M.M.; Filho, A.; Assis, L.; Ferreira, R.S., Jr.; Barraviera, B.; Martignago, C.C.S.; Figueredo-Silva, J.; de Oliveira, R.A.; et al. Treatment of partial injury of the calcaneus tendon with heterologous fibrin biopolymer and/or photobiomodulation in rats. Lasers. Med. Sci. 2022, 37, 971–981. [Google Scholar] [CrossRef]
- Liu, C.; Bai, J.; Yu, K.; Liu, G.; Tian, S.; Tian, D. Biological Amnion Prevents Flexor Tendon Adhesion in Zone II: A Controlled, Multicentre Clinical Trial. Biomed Res. Int. 2019, 2019, 2354325. [Google Scholar] [CrossRef] [Green Version]
- Kocaoglu, B.; Ulku, T.K.; Gereli, A.; Karahan, M.; Turkmen, M. Evaluation of Absorbable and Nonabsorbable Sutures for Repair of Achilles Tendon Rupture with a Suture-Guiding Device. Foot. Ankle. Int. 2015, 36, 691–695. [Google Scholar] [CrossRef]
- Adolfsson, L.; SÖDerberg, G.; Larsson, M.; Karlander, L.E. The Effects of a Shortened Postoperative Mobilization Programme after Flexor Tendon Repair in Zone 2. J. Hand. Surg. 1996, 21, 67–71. [Google Scholar] [CrossRef]
- Ozgenel, G.Y.; Etöz, A. Effects of repetitive injections of hyaluronic acid on peritendinous a dhesions after flexor tendon repair: A preliminary randomized, placebo -controlled clinical trial. Ulus. Travma. Acil. Cer. 2012, 18, 11–17. [Google Scholar] [CrossRef]
- Barber, F.A.; Hrnack, S.A.; Snyder, S.J.; Hapa, O. Rotator Cuff Repair Healing Influenced by Platelet-Rich Plasma Construct Augmentation. Arthroscopy 2011, 27, 1029–1035. [Google Scholar] [CrossRef]
- Liem, M.D.; Zegel, H.G.; Balduini, F.C.; Turner, M.L.; Becker, J.M.; Caballero-Saez, A. Repair of Achilles tendon ruptures with a polylactic acid implant: Assessment with MR imaging. Am. J. Roentgenol. 1991, 156, 769–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parsons, J.R.; Weiss, A.B.; Schenk, R.S.; Alexander, H.; Pavlisko, F. Long-Term Follow-up of Achilles Tendon Repair with an Absorbable Polymer Carbon Fiber Composite. Foot. Ankle. 1989, 9, 179–184. [Google Scholar] [CrossRef]
- Liu, W.; Thomopoulos, S.; Xia, Y. Electrospun Nanofibers for Regenerative Medicine. Adv. Healthc. Mater. 2012, 1, 10–25. [Google Scholar] [CrossRef]
- Tyler, B.; Gullotti, D.; Mangraviti, A.; Utsuki, T.; Brem, H. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv. Drug. Deliv. Rev. 2016, 107, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Lawrence, J.G.; Bhaduri, S.B. Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: A review. Acta. Biomater. 2012, 8, 1999–2016. [Google Scholar] [CrossRef]
- Kuang, H.; Wang, Y.; Shi, Y.; Yao, W.; He, X.; Liu, X.; Mo, X.; Lu, S.; Zhang, P. Construction and performance evaluation of Hep/silk-PLCL composite nanofiber small-caliber artificial blood vessel graft. Biomaterials 2020, 259, 120288. [Google Scholar] [CrossRef]
- Maghdouri-White, Y.; Sori, N.; Petrova, S.; Wriggers, H.; Kemper, N.; Dasgupta, A.; Coughenour, K.; Polk, S.; Thayer, N.; Mario, R.D.V.M.; et al. Biomanufacturing organized collagen-based microfibers as a Tissue ENgineered Device (TEND) for tendon regeneration. Biomed. Mater. 2021, 16, 025025. [Google Scholar] [CrossRef]
- GTR® Medical Collagen Repair Membrane. Available online: https://www.gtrbio.cn (accessed on 3 March 2023).
- TenoMend® Collagen Tendon Wrap. Available online: https://www.exac.com (accessed on 3 March 2023).
- BioBlanket® Mesh. Available online: https://www.tregistry.com (accessed on 3 March 2023).
- BioBrace® Implant. Available online: https://biorez.com, (accessed on 3 March 2023).
- CuffPatch® Rotator Cuff Repair Patch. Available online: https://www.orthopaediclist.com (accessed on 3 March 2023).
- OrthADAPT® Bioimplant. Available online: https://pegasusbio.com (accessed on 3 March 2023).
- OrthoWrap® Bioresorbable Sheet. Available online: https://mastbio.com (accessed on 3 March 2023).
- TenoGlide® Biointegrated Implant. Available online: https://www.integranerve.com (accessed on 3 March 2023).
- Han, S.S.; Nie, K.X.; Li, J.C.; Sun, Q.Q.; Wang, X.F.; Li, X.M.; Li, Q. 3D Electrospun Nanofiber-Based Scaffolds: From Preparations and Properties to Tissue Regeneration Applications. Stem. Cells. Int. 2021, 2021, 22. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Chen, X.; Chen, H.; Liu, X.; Li, J.; Luo, J.; He, A.; Han, C.C.; Liu, Y.; Xu, S. Molecular Interaction, Chain Conformation, and Rheological Modification during Electrospinning of Hyaluronic Acid Aqueous Solution. Membranes 2020, 10, 217. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Zhang, Y.; Wang, C.; Xia, Q.; Saif Ur Rahman, M.; Chen, H.; Han, C.; Liu, Y.; Xu, S. Mechanisms Affecting Physical Aging and Swelling by Blending an Amphiphilic Component. Int. J. Mol. Sci. 2022, 23, 2185. [Google Scholar] [CrossRef] [PubMed]
Patent Name | First Inventor | Publication | Patent ID | Ref. |
---|---|---|---|---|
Fiber-based scaffolds for tendon cell migration and regeneration | H. H. Lu | 2021 | WO-2021077042-A1 | [128] |
Tissue construct and method thereof | H. W. Ouyang | 2006 | WO-2006110110-A1 | [129] |
Medical implants and fibrosis-inducing agents | W. L. Hunter | 2005 | WO-2005065079-A2 | [130] |
Tissue repair scaffold | S. Downes | 2017 | US-9770529-B2 | [131] |
Biocompatible scaffold for ligament or tendon repair | F. Binnette | 2014 | US-8637066-B2 | [132] |
Tissue repair scaffold and device | S. Cartmell | 2022 | US-2022176014-A1 | [133] |
Biopolymer compositions, scaffolds, and devices | M. Francis | 2020 | US-2020338232-A1 | [134] |
Functional scaffold for tissue repair and regeneration | B. Han | 2017 | US-2017182080-A1 | [135] |
Ligament and tendon replacement constructs and methods for production and use thereof | C. T. Laurencin | 2015 | US-2015190222-A1 | [126] |
Synergetic functionalized spiral-in-tubular bone scaffolds | C. T. Laurencin | 2010 | US-2010310623-A1 | [136] |
Scaffold | O. Hakimi | 2022 | US-11517646-B2 | [137] |
Functionalized and crosslinked polymers | D. Gravett | 2022 | US-11440976-B2 | [138] |
Device for repair surgery of cylindrical organs, particularly ruptured tendons, comprising a therapeutic agent for stimulating regrowth, and method of producing such device | J. Buschmann | 2020 | US-10653819-B2 | [139] |
Biomimmetic nanofiber scaffold for soft tissue and soft tissue-to-bone repair, augmentation and replacement | H. H. Lu | 2019 | US-10265155-B2 | [140] |
A device for the repair of ruptured tendons comprising one or two needles and 60–80 cm of a supple thread in a resilient biodegradable polymer, preferably polylactic acid or polyglycolic acid | A. Leonard | 2005 | FR-2867380-A1 | [141] |
A device for repair surgery of cylindrical organs, particularly ruptured tendons | J. Buschmann | 2018 | EP-2747796-B1 | [142] |
Biological tissue connection and repair devices | A. Hoke | 2020 | US-9539009-B2 | [143] |
Promoter for regeneration of tendon-bone junction tissue or ligament-bone junction tissue | K. Tomita | 2016 | EP-2351574-B1 | [144] |
Fully synthetic implantable multiphased scaffold | H. H. Lu | 2010 | EP-2155112-A1 | [145] |
Tissue repair sleeve | N. Z. Zhang | 2020 | CN-210433516-U | [146] |
A kind of tissue repair casing and its preparation method and application | N. Z. Zhang | 2019 | CN-109758197-A | [147] |
Tissue-enhancement scaffold for use with soft tissue fixation repair systems and methods | M· Z· Morine | 2022 | CN-114601516-A | [148] |
Tissue-reinforcing scaffold for use in soft tissue fixation repair | G. R. Whittaker | 2020 | CN-112107340-A | [149] |
A kind of preparation method of multiple-dimensioned three-dimensional biological-tissue-engineering bracket | P. Zhao | 2019 | CN-106039417-B | [150] |
For ligament or the method for tendon repair | B. Mathis | 2017 | CN-104254351-B | [151] |
Simulated tendinous sheath film and preparation method thereof | C. Y. Fan | 2013 | CN-103071185-A | [125] |
Tissue engineering scaffolds | A. S. Weiss | 2021 | CA-3165939-A1 | [152] |
Biopolymer scaffold implants and methods for their production | M. P. Francis | 2019 | CA-3079958-A1 | [153] |
Soft suture anchors | S. Rizk | 2019 | CA-2917427-C | [127] |
Systems and methods for using structured tissue augmentation constructs in soft tissue fixation repair | T. Diab | 2022 | AU-2022202795-A1 | [154] |
Biodegradable Polymer Type | Study Type | Year | Cases (n) | Follow-Up | Clinical Manifestation | Ref. |
---|---|---|---|---|---|---|
Heterologous fibrin biopolymer (HFB) | Randomized Controlled | 2022 | 84 | 21 days | HFB alone can effectively reduce the volume of edema and promote tendon repair. | [159] |
Polylactic acid ester suture | Randomized Controlled | 2022 | 37 | 12 months | Absorbable suture can be considered for repair of acute Achilles tendon rupture. | [155] |
Bioamniotic membranes | Randomized Controlled | 2019 | 89 | 12 months | Freeze-dried amniotic membrane transplantation was applied to promote healing of the flexor tendon in zone II and prevent adhesion. | [160] |
Absorbable braided polyglactin suture | Randomized Controlled | 2015 | 48 | 44 months | Absorbable suture repair is applicable to rupture of Achilles tendon. | [161] |
PXL01 in sodium hyaluronate | Prospective, Randomised, Double-blinded | 2014 | 138 | 12 months | Treatment with PXL01 in sodium hyaluronate improves hand recovery after flexor tendon repair surgery. | [156] |
Rich fibrin matrix | Prospective, Randomized | 2012 | 79 | 12 weeks | Platelet-rich fibrin matrix had no significant effect on tendon healing, tendon vessels, hand muscle strength or clinical evaluation scale. | [162] |
HA | Randomized Controlled | 2012 | 22 | 3 months | After repeated injection of HA for three months, the clinical outcome may be improved due to the reduction of adhesion in primary tendon repair. | [163] |
Platelet-rich plasma fibrin matrix (PRPFM) | Randomized Controlled | 2011 | 40 | 31 months | There was no significant difference in the repair effect of shoulder sleeve between PRPFM enhancement group and platelet-rich plasma (PRP) structure enhancement group. | [164] |
ADCON-T/N | Randomised, Double-blinded | 2001 | 59 | 6 months | Area II of ADCON-T/N treatment group is helpful for tendon repair and better interphalangeal movement of proximal end. | [158] |
ADCON-T/N | Prospective randomized | 2000 | 30 | 12 weeks | ADCON-T/N alone cannot improve postoperative adhesion of flexor tendon in zone II. | [157] |
PLA | Randomized Controlled | 1991 | 10 | 35 months | PLA promotes healing of tendon. | [165] |
Absorbable polymer carbon fiber | Randomized Controlled | 1989 | 71 | 4 years | Absorbable carbon fiber polymer can reduce infection, reduce the incidence of complications, and promote tendon healing. | [166] |
Product | Company | Application | Composition | Regulatory Approval | Company Website | Ref. |
---|---|---|---|---|---|---|
BioBlanket® | Kensey Nash, Inc. | BioBlanket® is indicated for use duing rotator cuff repair surgery. | It is comprised of a single-layer porous, cross-linked collagen patch seperated from Bovine dermis. | FDA | https://www.tregistry.com, accessed on 3 March 2023. | [174] |
BioBrace® | BIOREZ, Inc | BioBrace® implant is an innovative bioinductive scaffold that is intended to reinforce soft tissue where weakness exists, and promote soft tissue healing | Consists of a type 1 collagen matrix and bioresorbable PLLA microfilaments. | FDA | https://biorez.com, accessed on 3 March 2023. | [175] |
CuffPatch® | Arthrex, Inc. | CuffPatch® is designed for rotator cuff repair, to support and accelerate healing of the tendons. | It is designed of Porcine small intestinal submucosa. | FDA | https://www.arthrex.com, accessed on 3 March 2023. | [176] |
GTR® | GTR BioTech.Co., Ltd. | For guiding the regeneration of ruptured or damaged tendons. | It is made of collagen separated from bovine tendon tissue. | NMPA | https://www.gtrbio.cn, accessed on 3 March 2023. | [172] |
OrthADAPT™ | Pegasus Biologic, Inc | OrthADAPT™ Bioimplant is used for the repair, reinforcement and augmentation of soft tissues including tendons and ligaments. | It is a highly organized Type I collagen scaffold. | FDA | https://pegasusbio.com, accessed on 3 March 2023. | [177] |
OrthoWrap® | MAST Biosurgery, Inc. | OrthoWrap® Bioresorbable Sheet can be utilized for the management and protection of tendon injuries where there has been no substantial loss of tendon tissue. | It is a sheet made from an amorphous bioresorbable copolymer 70:30 Poly(L-lactide-co-D,L-lactide), commonly referred to as PLA. | FDA | https://mastbio.com, accessed on 3 March 2023. | [178] |
TAPESTRY® | Embody, Inc. | TAPESTRY® Biointegrated Implant is used as a protective layer between the tendon and surrounding tissues. | It is composed of collagen and poly(D,L-lactide). | FDA | https://embody-inc.com, accessed on 3 March 2023 | [171] |
TenoGlide® | Integra LifeSciences, Inc | TenoGlide® Tendon protection sheet is used for tendon injury without substantial tissue loss, which can provide biocompatibility and sliding surface to protect tendon during healing. | It has cross-linked, highly purified type I collagen and glycosaminoglycan (GAG) porous matrix. | FDA | https://www.integranerve.com, accessed on 3 March 2023 | [179] |
TenoMed™ | Exactech, Inc. | TenoMend™ Collagen Tendon Wrap is placed at the injured tendon to provide a protected environment and a sliding surface of the sheath for tendon healing. | It is an absorbable type I collagen matrix. | FDA | https://www.exac.com, accessed on 3 March 2023 | [173] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Xue, Y.; Ren, Y.; Li, X.; Liu, Y. Biodegradable Polymer Electrospinning for Tendon Repairment. Polymers 2023, 15, 1566. https://doi.org/10.3390/polym15061566
Zhang Y, Xue Y, Ren Y, Li X, Liu Y. Biodegradable Polymer Electrospinning for Tendon Repairment. Polymers. 2023; 15(6):1566. https://doi.org/10.3390/polym15061566
Chicago/Turabian StyleZhang, Yiming, Yueguang Xue, Yan Ren, Xin Li, and Ying Liu. 2023. "Biodegradable Polymer Electrospinning for Tendon Repairment" Polymers 15, no. 6: 1566. https://doi.org/10.3390/polym15061566
APA StyleZhang, Y., Xue, Y., Ren, Y., Li, X., & Liu, Y. (2023). Biodegradable Polymer Electrospinning for Tendon Repairment. Polymers, 15(6), 1566. https://doi.org/10.3390/polym15061566