Preparation and Characterization of di- and Tricarboxylic Acids-Modified Arabinogalactan Plasticized Composite Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis of the Arabinogalactan Derivatives with the Polybasic Carboxylic Acids
2.3. Physicochemical Study
2.3.1. Gel Permeation Chromatography
2.3.2. Fourier-Transform Infrared Spectroscopy
2.3.3. X-ray Diffraction
2.3.4. Scanning Electron Microscopy
2.3.5. Thermogravimetry Analysis
2.3.6. Sorption Capacity Analysis
3. Results
3.1. Gel Permeation Chromatography
3.1.1. Thermal Drying of the Arabinogalactan Films
3.1.2. Freeze-Drying of the Arabinogalactan Films
3.2. Fourier-Transform Infrared Spectroscopy of the Arabinogalactan Films
3.3. X-ray Diffraction Analysis of the Arabinogalactan Films
3.4. Scanning Electron Microscopy of the Arabinogalactan Films
3.5. Thermogravimetry Analysis of the Arabinogalactan Films
3.6. Sorption Capacity of the Arabinogalactan Films
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, J.; Chen, Y.; Luan, F. Air pollution, water pollution, and robots: Is technology the panacea. J. Environ. Manag. 2023, 330, 117170. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Buschle-Diller, G. Pectin-blended anionic polysaccharide films for cationic contaminant sorption from water. Int. J. Biol. Macromol. 2017, 101, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 2001, 77, 247–255. [Google Scholar] [CrossRef]
- Khan, M.D.; Singh, A.; Khan, M.Z.; Tabraiz, S.; Sheikh, J. Current perspectives, recent advancements, and efficiencies of various dye-containing wastewater treatment technologies. J. Water Process Eng. 2023, 53, 103579. [Google Scholar] [CrossRef]
- Abbasi, A.; Khatoon, F.; Ikram, S. A review on remediation of dye adulterated system by ecologically innocuous “biopolymers/natural gums-based composites”. Int. J. Biol. Macromol. 2023, 231, 123240. [Google Scholar] [CrossRef] [PubMed]
- Sarode, S.; Upadhyay, P.; Khosa, M.A.; Mak, T.; Shakir, A.; Song, S.; Ullah, A. Overview of wastewater treatment methods with special focus on biopolymer chitin-chitosan. Int. J. Biol. Macromol. 2019, 121, 1086–1100. [Google Scholar] [CrossRef] [PubMed]
- Dutta, D.; Arya, S.; Kumar, S. Industrial wastewater treatment: Current trends, bottlenecks, and best practices. Chemosphere 2021, 285, 131245. [Google Scholar] [CrossRef]
- Carreira, A.R.F.; Veloso, T.; Macário, I.P.E.; Pereira, J.L.; Ventura, S.P.M.; Passos, H.; Coutinho, J.A.P. The role of biomass elemental composition and ion-exchange in metal sorption by algae. Chemosphere 2023, 314, 137675. [Google Scholar] [CrossRef]
- Subash, A.; Naebe, M.; Wang, X.; Kandasubramanian, B. Biopolymer—A sustainable and efficacious material system for effluent removal. J. Hazard. Mater. 2023, 443, 130168. [Google Scholar] [CrossRef]
- Nawaz, S.; Tabassum, A.; Muslim, S.; Nasreen, T.; Baradoke, A.; Kim, T.; Boczkaj, G.; Jesionowski, T.; Bilal, M. Effective assessment of biopolymer-based multifunctional sorbents for the remediation of environmentally hazardous contaminants from aqueous solutions. Chemosphere 2023, 329, 138552. [Google Scholar] [CrossRef]
- Ko, M.-S.; Jeon, Y.-J.; Kim, K.-W. Novel application of xanthan gum-based biopolymer for heavy metal immobilization in soil. J. Environ. Chem. Eng. 2022, 10, 108240. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Ranjbari, S.; Tanhaei, B.; Ayati, A.; Orooji, Y.; Alizadeh, M.; Karimi, F.; Salmanpour, S.; Rouhi, J.; Sillanpää, M.; et al. Novel 1-butyl-3-methylimidazolium bromide impregnated chitosan hydrogel beads nanostructure as an efficient nanobio-adsorbent for cationic dye removal: Kinetic study. Environ. Res. 2021, 195, 110809. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, N.S.; Zaini, M.A.A.; Arsad, A. Evaluation of dyes removal by beta-cyclodextrin adsorbent. Mater. Proc. 2021, 39, 907–910. [Google Scholar] [CrossRef]
- Gebresas, G.A.; Marossy, T.S.K. A comparative study of carboxylic acids on the cross-linking potential of corn starch films. J. Mol. Struct. 2023, 1277, 134886. [Google Scholar] [CrossRef]
- Mali, K.K.; Ghorpade, V.S.; Dias, R.J.; Dhawale, S.C. Synthesis and characterization of citric acid crosslinked carboxymethyl tamarind gum-polyvinyl alcohol hydrogel films. Int. J. Biol. Macromol. 2023, 236, 123969. [Google Scholar] [CrossRef] [PubMed]
- Miura, D.; Sekine, Y.; Nankawa, T.; Sugita, T.; Oba, Y.; Hiroi, K.; Ohzawa, T. Microscopic structural changes during the freeze cross-linking reaction in carboxymethyl cellulose nanofiber hydrogels. Carbohydr. Polym. Technol. Appl. 2022, 4, 100251. [Google Scholar] [CrossRef]
- Borovkova, V.S.; Malyar, Y.N.; Sudakova, I.G.; Chudina, A.I.; Zimonin, D.V.; Skripnikov, A.M.; Miroshnikova, A.V.; Ionin, V.A.; Kazachenko, A.S.; Sychev, V.V.; et al. Composition and Structure of Aspen (Pópulus trémula) Hemicelluloses Obtained by Oxidative Delignification. Polymers 2022, 14, 4521. [Google Scholar] [CrossRef]
- Medvedeva, E.N.; Babkin, V.A.; Ostroukhova, L.A. Arabinogalactan of larch—Properties and prospects of use (review). Chem. Plant Raw Mater. 2003, 1, 27–37. [Google Scholar]
- Sato, K.; Hara, K.; Yoshimi, Y.; Kitazawa, K.; Ito, H.; Tsumuraya, Y.; Kotake, T. Yariv reactivity of type II arabinogalactan from larch wood. Carbohydr. Res. 2018, 467, 8–13. [Google Scholar] [CrossRef]
- Kuznetsov, B.N.; Vasilyeva, N.Y.; Levdansky, A.V.; Karacharov, A.A.; Krylov, A.S.; Mazurova, E.V.; Bondarenko, G.N.; Levdansky, V.A.; Kazachenko, A.S. The Raman Spectroscopy, XRD, SEM, and AFM Study of Arabinogalactan Sulfates Obtained Using Sulfamic Acid. Russ. J. Bioorg. Chem. 2017, 43, 722–726. [Google Scholar] [CrossRef]
- Lucyszyn, N.; Ono, L.; Lubambo, A.F.; Woehl, M.A.; Sens, C.V.; de Souza, C.F.; Sierakowski, M.R. Physicochemical and in vitro biocompatibility of films combining reconstituted bacterial cellulose with arabinogalactan and xyloglucan. Carbohydr. Polym. 2016, 151, 889–898. [Google Scholar] [CrossRef]
- Hamed, M.; Coelho, E.; Bastos, R.; Evtuguin, D.V.; Ferreira, S.S.; Lima, T.; Vilanova, M.; Sila, A.; Coimbra, M.A.; Bougatef, A. Isolation and identification of an arabinogalactan extracted from pistachio external hull: Assessment of immunostimulatory activity. Food Chem. 2022, 373, 131416. [Google Scholar] [CrossRef] [PubMed]
- Rakhmanberdyeva, R.K.; Shashkov, A.S.; Bobakulov, K.M.; Azizov, D.Z.; Malikova, M.K.; Ogay, D.K. The structure and prebiotic activity of arabinogalactan from Ferula Kuhistanica. Carbohydr. Res. 2021, 505, 108342. [Google Scholar] [CrossRef] [PubMed]
- Kazachenko, A.S.; Malyar, Y.N.; Kazachenko, A.S. Synthesis of Galactomannan Sulfate-Citrate. Mater. Sci. Forum 2022, 1049, 218–223. [Google Scholar]
- Golachowski, A.; Drożdż, W.; Golachowska, M.; Kapelko-Żeberska, M.; Raszewski, B. Production and Properties of Starch Citrates—Current Research. Foods 2020, 9, 1311. [Google Scholar] [CrossRef]
- Păcurariu, C.; Paşka, O.; Ianoş, R.; Muntean, S.G. Effective removal of methylene blue from aqueous solution using a new magnetic iron oxide nanosorbent prepared by combustion synthesis. Clean Technol. Environ. Policy 2016, 18, 705–715. [Google Scholar] [CrossRef]
- Singh, M.A.; Shukla, S.P.; Mohan, D.; Singh, N.B.; Bhargava, D.S.; Shukla, R.; Pandey, G.; Yadav, V.P.; Kisku, G.C.; Bezama, A. Adsorptive capacity of sawdust for the adsorption of MB dye and designing of two-stage batch adsorber. Cogent Environ. Sci. 2015, 1, 1075856. [Google Scholar]
- Duarte, G.A.; Bezerra, M.C.; Bettini, S.H.P.; Lucas, A.A. Real-time monitoring of the starch cross-linking with citric acid by chemorheological analysis. Carbohydr. Polym. 2023, 311, 120733. [Google Scholar] [CrossRef]
- Hussain, M.A.; Rana, A.I.; Haseeb, M.T.; Muhammad, G.; Kiran, L. Citric acid cross-linked glucuronoxylans: A pH-sensitive polysaccharide material for responsive swelling-deswelling vs. various biomimetic stimuli and zero-order drug release. J. Drug Deliv. Sci. Technol. 2020, 55, 101470. [Google Scholar] [CrossRef]
- Reddy, N.; Yang, Y. Citric acid cross-linking of starch films. Food Chem. 2010, 118, 702–711. [Google Scholar] [CrossRef]
- Autissier, A.; Le Visage, C.; Pouzet, C.; Chaubet, F.; Letourneur, D. Fabrication of porous polysaccharide-based scaffolds using a combined freeze-drying/cross-linking process. Acta Biomater. 2010, 6, 3640–3648. [Google Scholar] [CrossRef] [PubMed]
- Levdansky, A.V.; Vasilyeva, N.Y.; Kondrasenko, A.A.; Levdansky, V.A.; Malyar, Y.N.; Kazachenko, A.S.; Kuznetsov, B.N. Sulfation of arabinogalactan with sulfamic acid under homogeneous conditions in dimethylsulfoxide medium. Wood Sci. Technol. 2021, 55, 1725–1744. [Google Scholar] [CrossRef] [PubMed]
- Kazachenko, A.S.; Vasilieva, N.Y.; Malyar, Y.N.; Karacharov, A.A.; Kondrasenko, A.A.; Levdanskiy, A.V.; Borovkova, V.S.; Miroshnikova, A.V.; Issaoui, N.; Kazachenko, A.S.; et al. Sulfation of arabinogalactan with ammonium sulfamate. Biomass Convers. Biorefinery 2022. [Google Scholar] [CrossRef]
- Gebresas, G.A.; Szabó, T.; Marossy, K. Effects of acidity, number of hydroxyl group, and carbon chain length of carboxylic acids on starch cross-linking. Curr. Res. Green Sustain. Chem. 2023, 6, 100354. [Google Scholar] [CrossRef]
- Beaugeard, V.; Muller, J.; Graillot, A.; Ding, X.; Robin, J.-J.; Monge, S. Acidic polymeric sorbents for the removal of metallic pollution in water: A review. React. Funct. Polym. 2020, 152, 104599. [Google Scholar] [CrossRef]
- Shestak, Y. Theory of Thermal Analysis; Mir: Moscow, Russia, 1987; p. 455. [Google Scholar]
- Osovskaya, I.I. Chitin-glucane complexes. In The Physicochemical Properties and Molecular Characteristics; SPbGTURP: St. Petersburg, Russia, 2010; p. 52. [Google Scholar]
- Gu, J.; Liu, B.; Zhang, Q.S.; Chen, D.Y.; Zhou, J.B. Pyrolysis characteristics study of camellia shell and its three main components. China For. Prod. Ind. 2015, 42, 9–13. [Google Scholar]
- Lobo, R.E.; Gómez, M.I.; de Valdez, G.F.; Torino, M.I. Physicochemical and antioxidant properties of a gastroprotective exopolysaccharide produced by Streptococcus thermophilus CRL1190. Food Hydrocoll. 2019, 96, 625–633. [Google Scholar] [CrossRef]
- Ndiaye, B.; Bustos, G.; Calvar, S.; Vecino, X.; Cruz, J.M.; Moldes, A.B.; Pérez-Cid, B. Selective Adsorption Capacity of Grape Marc Hydrogel for Adsorption of Binary Mixtures of Dyes. Water Air Soil Pollut. 2020, 231, 1. [Google Scholar] [CrossRef]
- El-Bery, H.M.; Saleh, M.; El-Gendy, R.A.; Saleh, M.R.; Thabet, S.M. High adsorption capacity of phenol and methylene blue using activated carbon derived from lignocellulosic agriculture wastes. Sci. Rep. 2022, 12, 5499. [Google Scholar] [CrossRef]
Sample | Mn, g/mol | Mw, g/mol | PDI |
---|---|---|---|
Initial AG | 9101 | 11,580 | 1.27 |
AG/AA | 8758 | 11,619 | 1.33 |
AG/CA | ‒ | ‒ | ‒ |
AG/OA | 8484 | 10,567 | 1.25 |
AG/SA | 15,344 | 33,346 | 2.17 |
Samples | Mn, g/mol | Mw, g/mol | PDI |
---|---|---|---|
Initial AG | 9101 | 11,580 | 1.27 |
AG/AA | 8219 | 10,138 | 1.23 |
AG/CA | 8547 | 10,381 | 1.22 |
AG/OA | 8279 | 10,266 | 1.24 |
AG/SA | 8209 | 10,222 | 1.25 |
Sample | Drying Method | Residue at 700 °C, % | |||
---|---|---|---|---|---|
AG | ‒ | 19.89 | |||
AG/AA | Thermal drying | 37.26 | |||
AG/CA | 36.12 | ||||
AG/OA | 34.60 | ||||
AG/SA | 37.38 | ||||
AG/AA | Freeze-drying | 34.14 | |||
AG/CA | 33.56 | ||||
AG/OA | 32.29 | ||||
AG/SA | 37.68 |
Sample | Concentration, g/L | Sorption Efficiency (H), % | |
---|---|---|---|
Control | 0.00625 | ‒ | |
AG/AA | Thermal drying | 0.003307 | 70.64 |
AG/CA | 0.003438 | 67.49 | |
AG/OA | 0.005099 | 27.63 | |
AG/SA | 0.003399 | 68.43 | |
AG/AA | Freeze-drying | 0.004028 | 53.33 |
AG/CA | 0.004805 | 34.68 | |
AG/OA | 0.004380 | 44.88 | |
AG/SA | 0.002812 | 82.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malyar, Y.N.; Borovkova, V.S.; Kazachenko, A.S.; Fetisova, O.Y.; Skripnikov, A.M.; Sychev, V.V.; Taran, O.P. Preparation and Characterization of di- and Tricarboxylic Acids-Modified Arabinogalactan Plasticized Composite Films. Polymers 2023, 15, 1999. https://doi.org/10.3390/polym15091999
Malyar YN, Borovkova VS, Kazachenko AS, Fetisova OY, Skripnikov AM, Sychev VV, Taran OP. Preparation and Characterization of di- and Tricarboxylic Acids-Modified Arabinogalactan Plasticized Composite Films. Polymers. 2023; 15(9):1999. https://doi.org/10.3390/polym15091999
Chicago/Turabian StyleMalyar, Yuriy N., Valentina S. Borovkova, Alexander S. Kazachenko, Olga Yu. Fetisova, Andrey M. Skripnikov, Valentin V. Sychev, and Oxana P. Taran. 2023. "Preparation and Characterization of di- and Tricarboxylic Acids-Modified Arabinogalactan Plasticized Composite Films" Polymers 15, no. 9: 1999. https://doi.org/10.3390/polym15091999
APA StyleMalyar, Y. N., Borovkova, V. S., Kazachenko, A. S., Fetisova, O. Y., Skripnikov, A. M., Sychev, V. V., & Taran, O. P. (2023). Preparation and Characterization of di- and Tricarboxylic Acids-Modified Arabinogalactan Plasticized Composite Films. Polymers, 15(9), 1999. https://doi.org/10.3390/polym15091999