Potential of Plantain Pseudostems (Musa AAB Simmonds) for Developing Biobased Composite Materials
Abstract
:1. Introduction
2. Materials
3. Experimental Procedure
3.1. Extraction of Lignocellulosic Fibers, Sap, and Starch from Plantain Pseudostems
3.1.1. Steam Explosion
3.1.2. Yarn Production from Lignocellulosic Fibers
3.2. Cellulose, Hemicellulose, and Lignin Content in Plantain Fibers
3.3. Physical, Thermal, and Mechanical Properties of Fibers, Starch, and Sap from Plantain Pseudostems
3.3.1. Fourier Transform Infrared Spectroscopy (FT-IR)
3.3.2. Scanning Electron Microscopy (SEM)
3.3.3. Thermogravimetric Analysis (TGA)
3.3.4. Differential Scanning Calorimetry (DSC)
3.3.5. Diameter and Linear Density of Fibers and Yarns
3.3.6. Tensile Mechanical Tests
4. Results and Discussions
4.1. Extraction of Lignocellulosic Fibers, Sap, and Starch from Plantain Pseudostems
4.2. Cellulose, Hemicellulose, and Lignin Content in Plantain Fibers
4.3. Fourier Transform Infrared Spectroscopy (FT-IR)
4.4. Scanning Electron Microscopy (SEM)
4.5. Diameter and Linear Density of Plantain Fibers and Yarns
4.6. Tensile Test
4.7. Thermal Properties of Fibers, Starch, and Sap from Plantain Pseudostems
4.7.1. Thermogravimetric Analysis (TGA)
4.7.2. Differential Scanning Calorimetry (DSC)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aziz, N.A.A.; Ho, L.H.; Azahari, B.; Bhat, R.; Cheng, L.H.; Ibrahim, M.N.M. Chemical and functional properties of the native banana (Musa acuminata × balbisiana Colla cv. Awak) pseudo-stem and pseudo-stem tender core flours. Food Chem. 2011, 128, 748–753. [Google Scholar] [CrossRef]
- Daza Serna, L.V.; Solarte Toro, J.C.; Serna Loaiza, S.; Chacón Perez, Y.; Cardona Alzate, C.A. Agricultural Waste Management Through Energy Producing Biorefineries: The Colombian Case. Waste Biomass Valoriz. 2016, 7, 789–798. [Google Scholar] [CrossRef]
- Gómez, J.A.; Nobre, C.; Teixeira, J.A.; Sánchez, Ó.J. Towards a biorefinery processing waste from plantain agro-industry: Assessment of the production of dairy cattle feed through process simulation. Biosyst. Eng. 2022, 217, 131–149. [Google Scholar] [CrossRef]
- Mora, S.L.; Cadavid, Y.; Cadena Ch, E.M.; Vélez, J.M.; Buitrago-Sierra, R.; Santa, J.F. Plantain fibers obtained from pseudostems residues for efficient color degradation of indigo carmine dye. Ind. Crop. Prod. 2018, 126, 302–308. [Google Scholar] [CrossRef]
- Gañán, P.; Zuluaga, R.; Restrepo, A.; Labidi, J.; Mondragon, I. Plantain fibre bundles isolated from Colombian agro-industrial residues. Bioresour. Technol. 2008, 99, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, A.B.; Ballesteros, I.; Ballesteros, M. The potential of agricultural banana waste for bioethanol production. Fuel 2018, 213, 176–185. [Google Scholar] [CrossRef]
- Parra-Ramírez, D.; Solarte-Toro, J.C.; Cardona-Alzate, C.A. Techno-Economic and Environmental Analysis of Biogas Production from Plantain Pseudostem Waste in Colombia. Waste Biomass Valoriz. 2019, 11, 3161–3171. [Google Scholar] [CrossRef]
- Moreira, M.I.D.; Zambrano, D.B.V.; Villafuerte, C.R.D. Evaluation of the physical properties of banana pseudostem for textile application. Vis. Sustain. 2023, 19, 343–368. [Google Scholar]
- Balakrishnan, S.; Wickramasinghe, G.L.D.; Wijayapala, U.G.S. Investigation on mechanical and chemical properties of mechanically extracted banana fibre in pseudostem layers: From Sri Lankan banana (Musa) cultivation waste. J. Eng. Fibers Fabr. 2021, 16, 1–10. [Google Scholar] [CrossRef]
- Danso, H. Properties of Plantain Pseudo-Stem Fibres, Plantain Bunch Fibres, and Rice Husk for Construction Application. Mater. Circ. Econ. 2021, 3, 15. [Google Scholar] [CrossRef]
- Cadavid, Y.; Cadena, E.M.; Velez, J.M.; Santa, J.F. Degradation of Dyes Using Plantain Fibers Modified with Nanoparticles. In Proceedings of the 2nd International Conference on Natural Fibers (ICNF), Azores, Portugal, 27–29 April 2016. [Google Scholar]
- Jayaprabha, J.S.; Brahmakumar, M.; Manilal, V.B. Banana pseudostem characterization and its fiber property evaluation on physical and bioextraction. J. Nat. Fibers 2011, 8, 149–160. [Google Scholar] [CrossRef]
- Jain, N.L.; Lal, G.; Subrahmanyan, V. A quick field method for the estimation of starch in banana pseudostem. J. Sci. Food Agric. 1956, 7, 61–65. [Google Scholar] [CrossRef]
- Mohd Ali, N.A.; Abdullah, N.; Jong, S.H.; Muhammad, N.; Tan, M.C. Effect of different banana pseudostem parts on their starch yield, morphology and thermal properties. IOP Conf. Ser. Earth Environ. Sci. 2021, 736, 012038. [Google Scholar] [CrossRef]
- Gupta, G.; Baranwal, M.; Saxena, S.; Reddy, M.S. Utilization of Banana Stem Juice as a Feedstock Material for Bioethanol Production. Clean Soil Air Water 2019, 47, 1900047. [Google Scholar] [CrossRef]
- Barahapurkar, S.; Purwar, R.; Baldua, R.K. Banana Pseudostem Sap as a Biomordant for Dyeing of Silk with Celosia Flower. Fibers Polym. 2020, 21, 2010–2017. [Google Scholar] [CrossRef]
- Gupta, G.; Baranwal, M.; Saxena, S.; Reddy, M.S. Utilization of banana waste as a resource material for biofuels and other value-added products. Biomass Convers. Biorefinery 2023, 13, 12717–12736. [Google Scholar] [CrossRef]
- Basak, S.; Samanta, K.K.; Chattopadhyay, S.K.; Pandit, P.; Maiti, S. Green fire retardant finishing and combined dyeing of proteinous wool fabric. Color. Technol. 2016, 132, 135–143. [Google Scholar] [CrossRef]
- Basak, S.; Saxena, S.; Chattopadhyay, S.K.; Narkar, R.; Mahangade, R. Banana pseudostem sap: A waste plant resource for making thermally stable cellulosic substrate. J. Ind. Text. 2016, 46, 1003–1023. [Google Scholar] [CrossRef]
- Mugume, R.B.; Karubanga, A.; Kyakula, M. Impact of Addition of Banana Fibres at Varying Fibre Length and Content on Mechanical and Microstructural Properties of Concrete. Adv. Civ. Eng. 2021, 2021, 9422352. [Google Scholar] [CrossRef]
- Kenned, J.J.; Sankaranarayanasamy, K.; Binoj, J.S.; Chelliah, S.K. Thermo-mechanical and morphological characterization of needle punched non-woven banana fiber reinforced polymer composites. Compos. Sci. Technol. 2020, 185, 107890. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Thi, B.T.N.; Phan, P.T.; Le, T.T.; Thi, Q.A.N.; Bach, L.G.; Nguyen, T.A.; Nguyen, N.H. Synthesis of microcrystalline cellulose from banana pseudo-stem for adsorption of organics from aqueous solution. Eng. Appl. Sci. Res. 2021, 48, 368–378. [Google Scholar]
- Zope, G.; Goswami, A.; Kulkarni, S. Isolation and Characterization of Cellulose Nanocrystals Produced by Acid Hydrolysis from Banana Pseudostem. BioNanoScience 2022, 12, 463–471. [Google Scholar] [CrossRef]
- Periyasamy, S.; Karthik, V.; Senthil Kumar, P.; Isabel, J.B.; Temesgen, T.; Hunegnaw, B.M.; Melese, B.B.; Mohamed, B.A.; Vo, D.V.N. Chemical, physical and biological methods to convert lignocellulosic waste into value-added products. A review. Environ. Chem. Lett. 2022, 20, 1129–1152. [Google Scholar] [CrossRef]
- Mathew, N.S.; Negi, P.S. Traditional uses, phytochemistry and pharmacology of wild banana (Musa acuminata Colla): A review. J. Ethnopharmacol. 2017, 196, 124–140. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, K.; Aradhya, S.M. Potential nutraceutical food beverage with antioxidant properties from banana plant bio-waste (pseudostem and rhizome). Food Funct. 2011, 2, 603–610. [Google Scholar] [CrossRef]
- Müssig, J. Industrial Applications of Natural Fibres: Structure, Properties and Technical Applications; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Subagyo, A.; Chafidz, A. Banana Pseudo-Stem Fiber: Preparation, Characteristics, and Applications. In Banana Nutrition—Function and Processing Kinetics, 1st ed.; Jideani, A., Anyasi, T., Eds.; IntechOpen: London, UK, 2020; pp. 1–19. [Google Scholar]
- Agbor, V.B.; Cicek, N.; Sparling, R.; Berlin, A.; Levin, D.B. Biomass pretreatment: Fundamentals toward application. Biotechnol. Adv. 2011, 29, 675–685. [Google Scholar] [CrossRef] [PubMed]
- Technical Association for the Pulp and Paper Industries. Acid-Insoluble Lignin in Wood and Pulp; TAPPI Test Method T 222 om-88; TAPPI Press: Atlanta, GA, USA, 1998; 3p. [Google Scholar]
- Technical Association for the Pulp and Paper Industries. Ash in Wood and Pulp; TAPPI Test Method T 211 om-85; TAPPI Press: Atlanta, GA, USA, 1998; 2p. [Google Scholar]
- Rodríguez, L. Elaboración de un Material Biocompuesto a Partir de la Fibra de Plátano. Master’s Thesis, Universidad Nacional de Colombia, Manizales, Colombia, 2014. [Google Scholar]
- Technical Association for the Pulp and Paper Industries. Alpha-, Beta- and Gamma-Cellulose in Pulp; TAPPI Test Method T 203cm-99; TAPPI Press: Atlanta, GA, USA, 2009. [Google Scholar]
- Faradilla, R.H.F.; Lee, G.; Roberts, J.; Martens, P.; Stenzel, M.; Arcot, J. Effect of glycerol, nanoclay and graphene oxide on physicochemical properties of biodegradable nanocellulose plastic sourced from banana pseudo-stem. Cellulose 2018, 25, 399–416. [Google Scholar] [CrossRef]
- Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y.Y.; Holtzapple, M.; Ladisch, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 2005, 96, 673–686. [Google Scholar] [CrossRef]
- ASTM D1577-07; Standard Test Methods for Linear Density of Textile Fibers. ASTM: West Conshohocken, PA, USA, 2007.
- ASTM D3822-14; Standard Test Method for Tensile Properties of Single Textile Fibers. ASTM: West Conshohocken, PA, USA, 2014.
- Akpabio, U.D.; Udiong, D.S.; Akpakpan, A.E. The physicochemical characteristics of plantain (Musa paradisiaca) and banana (Musa sapientum) pseudostem wastes. Adv. Nat. Appl. Sci. 2012, 6, 167–172. [Google Scholar]
- Shantha, H.S.; Siddappa, G.S. Physicochemical Nature of Banana Pseudostem Starch. J. Food Sci. 1970, 35, 72–74. [Google Scholar] [CrossRef]
- Subrahmanyan, V.; Lal, G.; Bhatia, D.S.; Jain, N.L.; Bains, G.S.; Srinath, K.V.; Anandaswamy, B.; Krishna, B.H.; Lakshminarayana, S.K. Studies on banana pseudostem starch: Production, yield, physico-chemical properties and uses. J. Sci. Food Agric. 1957, 8, 253–261. [Google Scholar] [CrossRef]
- Adeniyi, A.G.; Ighalo, J.O.; Onifade, D.V. Banana and plantain fiber-reinforced polymer composites. J. Polym. Eng. 2019, 39, 597–611. [Google Scholar] [CrossRef]
- Cadena-Ch, E.M.; Vélez, R.J.M.; Santa, J.F.; Otálvaro, G.V. Natural Fibers from Plantain Pseudostem (Musa paradisiaca) for Use in Fiber-Reinforced Composites. J. Nat. Fibers 2017, 14, 678–690. [Google Scholar] [CrossRef]
- Mohanty, A.K.; Misra, M.; Drzal, L.T. Natural Fibers, Biopolymers, and Biocomposites; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Mohit, H.; Arul Mozhi Selvan, V. A comprehensive review on surface modification, structure interface and bonding mechanism of plant cellulose fiber reinforced polymer based composites. Compos. Interfaces 2018, 25, 629–667. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Fangueiro, R.; Shivankar, V. Variability of Tensile Properties of Fibers from Pseudostem of Banana Plant. Text. Res. J. 2009, 79, 387–393. [Google Scholar] [CrossRef]
- Sango, T.; Cheumani Yona, A.M.; Duchatel, L.; Marin, A.; Kor Ndikontar, M.; Joly, N.; Lefebvre, J.-M. Step–wise multi–scale deconstruction of banana pseudo–stem (Musa acuminata) biomass and morpho–mechanical characterization of extracted long fibres for sustainable applications. Ind. Crop. Prod. 2018, 122, 657–668. [Google Scholar] [CrossRef]
- Venegas, R.; Torres, A.; Rueda, A.M.; Morales, M.A.; Arias, M.J.; Porras, A. Development and Characterization of Plantain (Musa paradisiaca) Flour-Based Biopolymer Films Reinforced with Plantain Fibers. Polymers 2022, 14, 748. [Google Scholar] [CrossRef]
- Cardona Alzate, C.A.; Moncada Botero, J.; Aristizábal Marulanda, V. Biorefineries: Design and Analysis; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2019. [Google Scholar]
- Vishnu Vardhini, K.J.; Murugan, R.; Surjit, R. Effect of alkali and enzymatic treatments of banana fibre on properties of banana/polypropylene composites. J. Ind. Text. 2018, 47, 1849–1864. [Google Scholar] [CrossRef]
- Mohapatra, D.; Mishra, S.; Meda, V. Plantains and their postharvest uses: An overview. Stewart Postharvest Rev. 2009, 5, 1–11. [Google Scholar]
- Basak, S.; Samanta, K.K.; Chattopadhyay, S.K.; Saxena, S.; Narkar, R. Banana pseudostem sap and boric acid—A new green intumescent for making self-extinguishing cotton fabric. Indian J. Fibre Text. Res. 2018, 43, 36–43. [Google Scholar]
- Chai, S.Y.; Abbasiliasi, S.; Lee, C.K.; Ibrahim, T.A.T.; Kadkhodaei, S.; Mohamed, M.S.; Hashim, R.; Tan, J.S. Extraction of fresh banana waste juice as non-cellulosic and non-food renewable feedstock for direct lipase production. Renew. Energy 2018, 126, 431–436. [Google Scholar] [CrossRef]
- Islam, M.S.; Islam, M.M. Sustainable reinforcers for polymer composites. In Advances in Sustainable Polymer Composites; Woodhead Publishing: Thorston, UK, 2021; pp. 59–88. [Google Scholar]
- Mondal, A.; Banerjee, S.; Bose, S.; Das, P.P.; Sandberg, E.N.; Atanasov, A.G.; Bishayee, A. Cancer Preventive and Therapeutic Potential of Banana and Its Bioactive Constituents: A Systematic, Comprehensive, and Mechanistic Review. Front. Oncol. 2021, 11, 697143. [Google Scholar] [CrossRef] [PubMed]
- Basak, S.; Samanta, K.K.; Saxena, S.; Chattopadhyay, S.K.; Narkar, R.; Mahangade, R.; Hadge, G.B. Flame resistant cellulosic substrate using banana pseudostem sap. Pol. J. Chem. Technol. 2015, 17, 123–133. [Google Scholar] [CrossRef]
- Gonultas, O.; Üniversitesi, B.T.; Balaban Ucar, M. Chemical Composition of Some Commercial Tannins Produced in Turkey. In Proceedings of the 55th International Convention of Society of Wood Science and Technology, Beijing, China, 27–31 August 2012; pp. 1–9. [Google Scholar]
- Boonterm, M.; Sunyadeth, S.; Dedpakdee, S.; Athichalinthorn, P.; Patcharaphun, S.; Mungkung, R.; Techapiesancharoenkij, R. Characterization and comparison of cellulose fiber extraction from rice straw by chemical treatment and thermal steam explosion. J. Clean. Prod. 2016, 134 Pt B, 592–599. [Google Scholar] [CrossRef]
- Pang, T.; Wang, L.; Kong, F.; Yang, W.; Chen, H. Steam explosion pretreatment: Dramatic reduction in energy consumption for wheat bran grinding. J. Cereal Sci. 2024, 117, 103893. [Google Scholar] [CrossRef]
- Chen, X.; Yu, J.; Zhang, Z.; Lu, C. Study on structure and thermal stability properties of cellulose fibers from rice straw. Carbohydr. Polym. 2011, 85, 245–250. [Google Scholar] [CrossRef]
- Pereira-Marques, F.; Lima-Soares, A.K.; Lomonaco, D.; Alexandre e Silva, L.M.; Tédde-Santaella, S.; De Freitas-Rosa, M.; Carrhá Leitão, R. Steam explosion pretreatment improves acetic acid organosolv delignification of oil palm mesocarp fibers and sugarcane bagasse. Int. J. Biol. Macromol. 2021, 175, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Zhang, J.; Zhang, W.; Yuan, S.; Chen, H.; Wu, A. Effect of bamboo unit morphology on the preparation of bamboo fibers by steam explosion. Ind. Crop. Prod. 2023, 202, 117066. [Google Scholar] [CrossRef]
- Giraldo Toro, A.; Gibert, O.; Ricci, J.; Dufour, D.; Mestres, C.; Bohuon, P. Digestibility prediction of cooked plantain flour as a function of water content and temperature. Carbohydr. Polym. 2015, 118, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Shittu, R.; Lasekan, O.; Karim, R.; Sulaiman, R. Plantain-starch: Microstructural, physicochemical, and morphological characteristics of two cultivars grown in Malaysia. Starch/Starke 2016, 68, 1187–1195. [Google Scholar] [CrossRef]
- Deepa, B.; Abraham, E.; Cherian, B.M.; Bismarck, A.; Blaker, J.J.; Pothan, L.A.; Leao, A.L.; De Souza, S.F.; Kottaisamy, M. Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour. Technol. 2011, 102, 1988–1997. [Google Scholar] [CrossRef] [PubMed]
- Abraham, E.; Deepa, B.; Pothan, L.A.; Jacob, M.; Thomas, S.; Cvelbar, U.; Anandjiwala, R. Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach. Carbohydr. Polym. 2011, 86, 1468–1475. [Google Scholar] [CrossRef]
- Ferreira-Villadiego, J.; García-Echeverri, J.; Vidal, M.V.; Pasqualino, J.; Meza-Castellar, P.; Lambis-Miranda, H.A. Chemical modification and characterization of starch derived from plantain (Musa paradisiaca) peel waste, as a source of biodegradable material. Chem. Eng. Trans. 2018, 65, 763–768. [Google Scholar]
- Lecorre, D.; Bras, J.; Dufresne, A. Influence of native starch’s properties on starch nanocrystals thermal properties. Carbohydr. Polym. 2012, 87, 658–666. [Google Scholar] [CrossRef] [PubMed]
- Carrier, M.; Loppinet-Serani, A.; Denux, D.; Lasnier, J.M.; Ham-Pichavant, F.; Cansell, F.; Aymonier, C. Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy 2011, 35, 298–307. [Google Scholar] [CrossRef]
- Gaugler, M.; Grigsby, W.J. Thermal degradation of condensed tannins from radiata pine bark. J. Wood Chem. Technol. 2009, 29, 305–321. [Google Scholar] [CrossRef]
- Gullón, B.; Gullón, P.; Lú-Chau, T.A.; Moreira, M.T.; Lema, J.M.; Eibes, G. Optimization of solvent extraction of antioxidants from Eucalyptus globulus leaves by response surface methodology: Characterization and assessment of their bioactive properties. Ind. Crop. Prod. 2017, 108, 649–659. [Google Scholar] [CrossRef]
- Pathak, P.D.; Mandavgane, S.A.; Kulkarni, B.D. Fruit peel waste: Characterization and its potential uses. Curr. Sci. 2017, 113, 444–454. [Google Scholar] [CrossRef]
- Basak, S.; Samanta, K.K.; Chattopadhyay, S.K.; Narkar, R. Thermally stable cellulosic paper made using banana pseudostem sap, a wasted by-product. Cellulose 2015, 22, 2767–2776. [Google Scholar] [CrossRef]
- Basak, S.; Samanta, K.K.; Chattopadhyay, S.K.; Narkar, R. Self-extinguishable ligno-cellulosic fabric using banana pseudostem sap. Curr. Sci. 2015, 108, 372–383. [Google Scholar]
- Shao, S.; Jin, Z.; Wen, G.; Iiyama, K. Thermo characteristics of steam-exploded bamboo (Phyllostachys pubescens) lignin. Wood Sci. Technol. 2009, 43, 643–652. [Google Scholar] [CrossRef]
- Ibrahim, M.; Agblevor, F.; El-Zawawy, W. Isolation and characterization of cellulose and lignin from steam-exploded lignocellulosic biomass. BioResources 2010, 5, 397–418. [Google Scholar] [CrossRef]
- Poletto, M. Assessment of the thermal behavior of lignins from softwood and hardwood species. Maderas Cienc. Tecnol. 2017, 19, 63–74. [Google Scholar] [CrossRef]
- Kong, L.; Zhao, Z.; He, Z.; Yi, S. Effects of steaming treatment on crystallinity and glass transition temperature of Eucalyptuses grandis × E. urophylla. Results Phys. 2017, 7, 914–919. [Google Scholar] [CrossRef]
- Kabir, M.M.; Wang, H.; Lau, K.T.; Cardona, F. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Compos. Part B Eng. 2012, 43, 2883–2892. [Google Scholar] [CrossRef]
- Morán, J.I.; Alvarez, V.A.; Cyras, V.P.; Vázquez, A. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 2008, 15, 149–159. [Google Scholar] [CrossRef]
Pseudostem By-Products (%) | |||
---|---|---|---|
Stocking | Core | ||
80.85 ± 0.71 | 19.14 ± 0.70 | ||
Lignocellulosic fibers | Sap | Lignocellulosic fibers | Starch |
2.20 ± 0.16 1 | 2.12 ± 0.46 1 | 6.39 ± 0.53 2 | 12.81 ± 0.47 2 |
By-Product | Component | Holocellulose (%) | Cellulose (%) | Hemicellulose (%) | Lignin (%) | Ashes (%) |
---|---|---|---|---|---|---|
sheaths | Native fiber | 68.64 | 54.72 ± 2.60 | 13.92 ± 2.50 | 27.68 ± 5.1 | 1.84 ± 0.01 |
Steam-exploded fiber | 69.30 | 54.66 ± 0.48 | 14.64 ± 5.90 | 26.78 ± 3.9 | 1.96 ± 0.03 | |
Alkalized fiber | - | - | - | 16.76 ± 3.5 | - | |
Core | Native fiber | 77.36 | - | - | 9.02 ± 2.5 | 17.62 ± 0.14 |
Propiedades Físicas y Mecánicas | Native Fiber | Steam-Exploded Fiber | Native Yarn | Steam-Exploded Yarn |
---|---|---|---|---|
Diameter (µm) | 293.20 ± 47.57 | 168.58 ± 36.13 | 1465.36 ± 195.40 | 1840.51 ± 239.92 |
σ (MPa) | 232.40 ± 88.86 | 246.00 ± 66.93 | - | - |
E (GPa) | 9.35 ± 3.50 | 6.47 ± 2.41 | - | - |
ε (%) | 3.99 ± 3.54 | 11.70 ± 7.30 | - | - |
Linear density (Tex) | 1.73 ± 0.58 | 1.27 ± 0.41 | 4.18 ± 1.96 | 4.25 ± 1.12 |
Toughness (N/Tex) | 8.42 ± 2.33 | 4.25 ± 1.54 | 11.82 ± 3.51 | 9.56 ± 2.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castañeda-Niño, J.P.; Mina Hernandez, J.H.; Solanilla Duque, J.F. Potential of Plantain Pseudostems (Musa AAB Simmonds) for Developing Biobased Composite Materials. Polymers 2024, 16, 1357. https://doi.org/10.3390/polym16101357
Castañeda-Niño JP, Mina Hernandez JH, Solanilla Duque JF. Potential of Plantain Pseudostems (Musa AAB Simmonds) for Developing Biobased Composite Materials. Polymers. 2024; 16(10):1357. https://doi.org/10.3390/polym16101357
Chicago/Turabian StyleCastañeda-Niño, Juan Pablo, Jose Herminsul Mina Hernandez, and Jose Fernando Solanilla Duque. 2024. "Potential of Plantain Pseudostems (Musa AAB Simmonds) for Developing Biobased Composite Materials" Polymers 16, no. 10: 1357. https://doi.org/10.3390/polym16101357
APA StyleCastañeda-Niño, J. P., Mina Hernandez, J. H., & Solanilla Duque, J. F. (2024). Potential of Plantain Pseudostems (Musa AAB Simmonds) for Developing Biobased Composite Materials. Polymers, 16(10), 1357. https://doi.org/10.3390/polym16101357