Evaluating the Effects of Metallic Waste on the Structural and Gamma-Ray Shielding Properties of Epoxy Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabricating the Resin with Heavy Metallic Waste
2.2. Gamma-Ray Shielding Capacity Examination
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, V.P.; Badiger, N.M.; Chanthima, N.; Kaewkhao, J. Evaluation of gamma-ray exposure buildup factors and neutron shielding for bismuth borosilicate glasses. Radiat. Phys. Chem. 2014, 98, 14–21. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Kang, I.-A.; Doh, G.-H.; Yoon, H.-G.; Park, B.-D.; Wu, Q. Thermal and Mechanical Properties of Wood Flour/Talc-filled Polylactic Acid Composites: Effect of Filler Content and Coupling Treatment. J. Thermoplast. Compos. Mater. 2008, 21, 209–223. [Google Scholar] [CrossRef]
- Al-Saleh, W.M.; Dahi, M.R.; Sayyed, M.I.; Almutairi, H.M.; Saleh, I.H.; Elsafi, M. Comprehensive study of the radiation shielding feature of polyester polymers impregnated with iron filings. e-Polymers 2023, 23, 20230096. [Google Scholar] [CrossRef]
- Chandrika, B.; Manjunatha, H.C.S.; Sridhar, K.; Ambika, M.; Seenappa, L.; Manjunatha, S.; Munirathnam, R.; Lourduraj, A.C. Synthesis, physical, optical and radiation shielding properties of Barium-Bismuth Oxide Borate-A novel nanomaterial. Nucl. Eng. Technol. 2023, 55, 1783–1790. [Google Scholar] [CrossRef]
- Sayyed, M.I. Radiation Shielding Performance of Amorphous Silicates in the System SiO2-Na2O–RO (R = Cd, Pb or Zn). Silicon 2023, 16, 203–213. [Google Scholar] [CrossRef]
- Sallam, O.I.; Madbouly, A.M.; Elalaily, N.A.; Ezz-Eldin, F.M. Physical properties and radiation shielding parameters of bismuth borate glasses doped transition metals. J. Alloys Compd. 2020, 843, 156056. [Google Scholar] [CrossRef]
- Sayyed, M.I. Investigation of Radiation Shielding Features of Lithium Cadmium Silicate Glasses. Silicon 2023, 15, 7717–7723. [Google Scholar] [CrossRef]
- Sayyed, M.I.; Lakshminarayana, G.; Kityk, I.V.; Mahdi, M.A. Evaluation of shielding parameters for heavy metal fluoride based tellurite-rich glasses for gamma ray shielding applications. Radiat. Phys. Chem. 2017, 139, 33–39. [Google Scholar] [CrossRef]
- Sayyed, M.I.; Lakshminarayana, G.; Mahdi, M.A. Evaluation of Radiation Shielding Parameters for Optical Materials. Chalcogenide Lett. 2017, 14, 43–47. [Google Scholar]
- Sayyed, M.I.; El-Mesady, I.A.; Abouhaswa, A.S.; Askin, A.; Rammah, Y.S. Comprehensive study on the structural, optical, physical and gamma photon shielding features of B2O3-Bi2O3-PbO-TiO2 glasses using WinXCOM and Geant4 code. J. Mol. Struct. 2019, 1197, 656–665. [Google Scholar] [CrossRef]
- Mahmoud, K.; Alqahtani, M.S.; Tashlykov, O.; Semenishchev, V.; Hanfi, M. The influence of heavy metallic wastes on the physical properties and gamma-ray shielding performance of ordinary concrete: Experimental evaluations. Radiat. Phys. Chem. 2023, 206, 110793. [Google Scholar] [CrossRef]
- Yılmaz, S.N.; Güngör, A.; Özdemir, T. The investigations of mechanical, thermal and rheological properties of polydimethylsiloxane/bismuth (III) oxide composite for X/Gamma ray shielding. Radiat. Phys. Chem. 2020, 170, 108649. [Google Scholar] [CrossRef]
- Bhattacharya, M. Polymer Nanocomposites—A Comparison between Carbon Nanotubes, Graphene, and Clay as Nanofillers. Materials 2016, 9, 262. [Google Scholar] [CrossRef] [PubMed]
- Turner, T.A.; Pickering, S.J.; Warrior, N.A. Development of recycled carbon fibre moulding compounds—Preparation of waste composites. Compos. B Eng. 2011, 42, 517–525. [Google Scholar] [CrossRef]
- Dong, M.; Xue, X.; Kumar, A.; Yang, H.; Sayyed, M.; Liu, S.; Bu, E. A novel method of utilization of hot dip galvanizing slag using the heat waste from itself for protection from radiation. J. Hazard. Mater. 2018, 344, 602–614. [Google Scholar] [CrossRef]
- Adeosun, S.O.; Lawal, G.I.; Balogun, S.A.; Akpan, E.I. Review of Green Polymer Nanocomposites. J. Miner. Mater. Charact. Eng. 2012, 11, 385–416. [Google Scholar] [CrossRef]
- Abdelaziem, A.; Mohamed, A.M.; Yousry, Y.M.; Borayek, R.; Razeen, A.S.; Zhang, N.; Chen, S.; Zhang, L.; Lin, K.; Liu, Z. Effect of Poling on the Dielectric Properties of Synthesized β-Poly (Vinylidene Fluoride) Foam. J. Appl. Phys. 2023, 133, 124101. [Google Scholar] [CrossRef]
- El-Mallawany, R.; Sayyed, M.I.; Dong, M.G.; Rammah, Y.S. Simulation of radiation shielding properties of glasses contain PbO. Radiat. Phys. Chem. 2018, 151, 239–252. [Google Scholar] [CrossRef]
- Zadegan, S.; Hosainalipour, M.; Rezaie, H.R.; Ghassai, H.; Shokrgozar, M.A. Synthesis and biocompatibility evaluation of cellulose/hydroxyapatite nanocomposite scaffold in 1-n-allyl-3-methylimidazolium chloride. Mater. Sci. Eng. C 2011, 31, 954–961. [Google Scholar] [CrossRef]
- Kaushik, A.; Singh, M.; Verma, G. Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr. Polym. 2010, 82, 337–345. [Google Scholar] [CrossRef]
- Abouhaswa, A.S.; Kavaz, E. A novel B2O3-Na2O-BaO-HgO glass system: Synthesis, physical, optical and nuclear shielding features. Ceram. Int. 2020, 46, 16166–16177. [Google Scholar] [CrossRef]
- X-5 Monte Carlo Team. MCNP—A General Monte Carlo N-Particle Transport Code, Version 5; La-Ur-03-1987 II; Los Alamos National Laboratory: Los Alamos, NM, USA, 2003. [Google Scholar]
- Abouhaswa, A.; Sayyed, M.I.; Altowyan, A.S.; Al-Hadeethi, Y.; Mahmoud, K.A. Synthesis, structural, optical and radiation shielding features of tungsten trioxides doped borate glasses using Monte Carlo simulation and phy-X program. J. Non Cryst. Solids 2020, 543, 120134. [Google Scholar] [CrossRef]
- Kilic, G.; Ilik, E.; Mahmoud, K.A.; El-Agawany, F.I.; Alomairy, S.; Rammah, Y.S. The role of B2O3 on the structural, thermal, and radiation protection efficacy of vanadium phosphate glasses. Appl. Phys. A Mater. Sci. Process 2021, 127, 265. [Google Scholar] [CrossRef]
- Albarzan, B.; Hanfi, M.Y.; Almuqrin, A.H.; Sayyed, M.I.; Alsafi, H.M.; Mahmoud, K.A. The Influence of Titanium Dioxide on Silicate-Based Glasses: An Evaluation of the Mechanical and Radiation Shielding Properties. Materials 2021, 14, 3414. [Google Scholar] [CrossRef] [PubMed]
- Rammah, Y.S.; Al-Buriahi, M.S.; El-Agawany, F.I.; AbouDeif, Y.M. Investigation of mechanical features and gamma-ray shielding efficiency of ternary TeO2-based glass systems containing Li2O, Na2O, K2O, or ZnO. Ceram. Int. 2020, 46, 27561–27569. [Google Scholar] [CrossRef]
- Arunkumar, S.; Naseer, K.; Ameen, M.Y.; Mahmoud, K.; Sayyed, M.; Marimuthu, K.; Silvia, D.J.; Divina, R.; Alqahtani, M.S.; Yousef, E.S. Physical, structural, optical, and radiation screening studies on Dysprosium ions doped Niobium Bariumtelluroborate glasses. Radiat. Phys. Chem. 2023, 204, 110669. [Google Scholar] [CrossRef]
- Mahmoud, K.A.; Lacomme, E.; Sayyed, M.I.; Özpolat, Ö.F.; Tashlykov, O.L. Investigation of the gamma ray shielding properties for polyvinyl chloride reinforced with chalcocite and hematite minerals. Heliyon 2020, 6, e03560. [Google Scholar] [CrossRef] [PubMed]
- Şakar, E.; Özpolat, Ö.F.; Alım, B.; Sayyed, M.I.; Kurudirek, M. Phy-X/PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 2020, 166, 108496. [Google Scholar] [CrossRef]
- Mahmoud, K.; Tashlykov, O.; Kropachev, Y.; Samburov, A.; Zakharova, P.; Abu El-Soad, A. A close look for the γ-ray attenuation capacity and equivalent dose rate form composites based epoxy resin: An experimental study. Radiat. Phys. Chem. 2023, 212, 111063. [Google Scholar] [CrossRef]
- Akman, F.; Kaçal, M.R.; Almousa, N.; Sayyed, M.I.; Polat, H. Gamma-ray attenuation parameters for polymer composites reinforced with BaTiO3 and CaWO4 compounds. Progress Nucl. Energy 2020, 121, 103257. [Google Scholar] [CrossRef]
- Aldhuhaibat, M.J.R.; Amana, M.S.; Jubier, N.J.; Salim, A.A. Improved gamma radiation shielding traits of epoxy composites: Evaluation of mass attenuation coefficient, effective atomic and electron number. Radiat. Phys. Chem. 2021, 179, 109183. [Google Scholar] [CrossRef]
- Atta, E.R.; Zakaria, K.M.; Madbouly, A.M. Study on polymer clay layered nanocomposites as shielding materials for ionizing radiation. Int. J. Recent. Sci. Res. 2018, 6, 4263–4269. [Google Scholar]
- Bagheri, K.; Razavi, S.M.; Ahmadi, S.J.; Kosari, M.; Abolghasemi, H. Thermal resistance, tensile properties, and gamma radiation shielding performance of unsaturated polyester/nanoclay/PbO composites. Radiat. Phys. Chem. 2018, 146, 5–10. [Google Scholar] [CrossRef]
- Nasehi, F.; Ismail, M. Evaluation of X and gamma-rays attenuation parameters for polyacrylamide and ZnO composites as ligh. J. Nucl. Med. Radiat. Ther. 2019, 10, 1000404. [Google Scholar]
- Hou, Y.; Li, M.; Gu, Y.; Yang, Z.; Li, R.; Zhang, Z. Gamma Ray Shielding Property of Tungsten Powder Modified Continuous Basalt Fiber Reinforced Epoxy Matrix Composites. Polym. Compos. 2018, 39, E2106–E2115. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; El-Khatib, A.M.; Badawi, M.S.; Rashad, A.R.; El-Sharkawy, R.M.; Thabet, A.A. Recycled high-density polyethylene plastics added with lead oxide nanoparticles as sustainable radiation shielding materials. J. Clean. Prod. 2018, 176, 276–287. [Google Scholar] [CrossRef]
- Sharma, A.; Sayyed, M.; Agar, O.; Kacal, M.R.; Polat, H.; Akman, F. Photon-shielding performance of bismuth oxychloride-filled polyester concretes. Mater. Chem. Phys. 2020, 241, 122330. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; El-Khatib, A.M.; Badawi, M.S.; Rashad, A.R.; El-Sharkawy, R.M.; Thabet, A.A. Fabrication, characterization and gamma rays shielding properties of nano and micro lead oxide-dispersed-high density polyethylene composites. Radiat. Phys. Chem. 2018, 145, 160–173. [Google Scholar] [CrossRef]
Elemental Abundance | ||||
---|---|---|---|---|
E-MW0 | E-MW10 | E-MW20 | E-MW40 | |
H | 0.0697 | 0.0627 | 0.0557 | 0.0418 |
C | 0.4401 | 0.3961 | 0.3521 | 0.2641 |
N | 0.0023 | 0.0021 | 0.0018 | 0.0014 |
O | 0.3632 | 0.3728 | 0.3823 | 0.4015 |
Na | 0.0234 | 0.0211 | 0.0187 | 0.0140 |
Mg | 0.0000 | 0.0028 | 0.0055 | 0.0111 |
Al | 0.0000 | 0.0048 | 0.0097 | 0.0193 |
Si | 0.0000 | 0.0176 | 0.0353 | 0.0706 |
S | 0.0000 | 0.0004 | 0.0007 | 0.0014 |
Cl | 0.0848 | 0.0763 | 0.0678 | 0.0509 |
K | 0.0149 | 0.0139 | 0.0129 | 0.0109 |
Ca | 0.0000 | 0.0126 | 0.0252 | 0.0504 |
Mn | 0.0000 | 0.0006 | 0.0012 | 0.0023 |
Ti | 0.0000 | 0.0004 | 0.0009 | 0.0017 |
Cr | 0.0000 | 0.0141 | 0.0282 | 0.0564 |
Fe | 0.0017 | 0.0015 | 0.0014 | 0.0010 |
Co | 0.0000 | 0.0003 | 0.0006 | 0.0012 |
Ni | 0.0697 | 0.0627 | 0.0557 | 0.0418 |
Density (g/cm3) | 1.134 ± 0.0238 | 1.217 ± 0.0268 | 1.326 ± 0.0318 | 1.56 ± 0.0374 |
Energy (keV) | Linear Attenuation Coefficient (cm−1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
E-MW0 | E-MW10 | E-MW20 | E-MW40 | |||||||||
MCNP-5 | EXP | Diff (%) | MCNP-5 | EXP | Diff (%) | MCNP-5 | EXP | Diff (%) | MCNP-5 | EXP | Diff (%) | |
15 | 3.600 | 5.472 | 7.560 | 12.811 | ||||||||
20 | 1.657 | 2.489 | 3.419 | 5.753 | ||||||||
33 | 0.536 | 0.740 | 0.971 | 1.544 | ||||||||
40 | 0.391 | 0.513 | 0.652 | 0.993 | ||||||||
59 | 0.256 | 0.273 | 6.492 | 0.304 | 0.295 | −2.809 | 0.359 | 0.368 | 2.521 | 0.491 | 0.511 | 3.973 |
70 | 0.228 | 0.261 | 0.301 | 0.394 | ||||||||
80 | 0.211 | 0.193 | −8.348 | 0.236 | 0.201 | −14.917 | 0.268 | 0.236 | −11.795 | 0.340 | 0.286 | −15.813 |
100 | 0.192 | 0.211 | 0.234 | 0.288 | ||||||||
122 | 0.178 | 0.193 | 0.212 | 0.255 | ||||||||
244 | 0.139 | 0.149 | 0.162 | 0.189 | ||||||||
344 | 0.122 | 0.131 | 0.141 | 0.165 | ||||||||
511 | 0.104 | 0.111 | 0.120 | 0.140 | ||||||||
662 | 0.093 | 0.092 | −1.174 | 0.099 | 0.094 | −5.239 | 0.107 | 0.097 | −9.649 | 0.125 | 0.111 | −10.898 |
Materials | µm (cm2/g) at 662 keV |
---|---|
E-MW0 (Present work) | 0.082 |
E-MW10 (Present work) | 0.082 |
E-MW20 (Present work) | 0.081 |
E-MW40 (Present work) | 0.08 |
E@PbO | 0.07298 |
E@CuO | 0.06778 |
E@Halloysite | 0.06554 |
E@Bi2O3 | 0.07218 |
E@Basalt | 0.06033 |
SBR-TiO2 | 0.0258 |
SBR-Fe2O3 | 0.0262 |
SBR-ZnO | 0.0284 |
SBRMoO | 0.0304 |
Polyster-Bi2O3 (10%) | 0.0798 |
Polyster-Bi2O3 (15%) | 0.0851 |
Polyster-Bi2O3 (20%) | 0.0848 |
HDP | 0.079 |
HDP-nano PbO (50%) | 0.114 |
Polyster-PbI2 (10%) | 0.082 |
Polyster-PbI2 (20%) | 0.0849 |
Polyacrylamide-ZnO (5%) | 0.082 |
Polyacrylamide-ZnO (10%) | 0.081 |
Polyacrylamide-ZnO (15%) | 0.081 |
Polyacrylamide-ZnO (20%) | 0.08 |
UP-nanoclay | 0.074 |
UP-nanoclay-PbO (10%) | 0.078 |
UP-nanoclay-PbO (20%) | 0.083 |
UP-nanoclay-PbO (30%) | 0.084 |
Per hydro-polysilaxane | 0.081 |
Poly dimethyl silaxane | 0.082 |
Methylsilses quioxane | 0.08 |
Silalkalyene polymer | 0.081 |
Pure Epoxy | 0.0832 |
Epoxy/Al2O3 (6%) | 0.0824 |
Epoxy/Al2O3 (15%) | 0.0827 |
Epoxy/Fe2O3 (6%) | 0.0827 |
Epoxy/Fe2O3 (15%) | 0.0814 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alanazi, S.; Hanfi, M.; Marashdeh, M.W.; Aljaafreh, M.J.; Mahmoud, K.A. Evaluating the Effects of Metallic Waste on the Structural and Gamma-Ray Shielding Properties of Epoxy Composites. Polymers 2024, 16, 1415. https://doi.org/10.3390/polym16101415
Alanazi S, Hanfi M, Marashdeh MW, Aljaafreh MJ, Mahmoud KA. Evaluating the Effects of Metallic Waste on the Structural and Gamma-Ray Shielding Properties of Epoxy Composites. Polymers. 2024; 16(10):1415. https://doi.org/10.3390/polym16101415
Chicago/Turabian StyleAlanazi, Sitah, Mohammad Hanfi, Mohammad W. Marashdeh, Mamduh J. Aljaafreh, and Karem A. Mahmoud. 2024. "Evaluating the Effects of Metallic Waste on the Structural and Gamma-Ray Shielding Properties of Epoxy Composites" Polymers 16, no. 10: 1415. https://doi.org/10.3390/polym16101415
APA StyleAlanazi, S., Hanfi, M., Marashdeh, M. W., Aljaafreh, M. J., & Mahmoud, K. A. (2024). Evaluating the Effects of Metallic Waste on the Structural and Gamma-Ray Shielding Properties of Epoxy Composites. Polymers, 16(10), 1415. https://doi.org/10.3390/polym16101415