Application of Natural Functional Additives for Improving Bioactivity and Structure of Biopolymer-Based Films for Food Packaging: A Review
Abstract
:1. Introduction
2. Biopolymers for Food Packaging
3. Methods to Make Biopolymer Films Bioactive
- –
- –
- –
- –
- –
- Encapsulation of bioactive compounds with the formation of micro- or nanoparticles. Subsequently, during the film production process, such particles are included in its composition by direct mixing with a film-forming biopolymer solution [44,54,55,56,57] or by spraying them onto a biopolymer film [43,58].
4. Plant Additives
4.1. Essential Oils
4.2. Emulsions
4.3. Extracts
4.4. Individual Compounds
4.5. Waste and By-Products
5. Microbial Biologically Active Substances
6. Animal Biologically Active Substances
6.1. Enzymes
6.2. Glycoproteins
6.3. Histones and Antimicrobial Peptides as Potential Agents for Inclusion into Biopolymer Matrices
7. Organic Nanoparticles
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, H.; Xu, H.; Julian McClements, D.; Chen, L.; Jiao, A.; Tian, Y.; Miao, M.; Jin, Z. Recent Advances in Intelligent Food Packaging Materials: Principles, Preparation and Applications. Food Chem. 2022, 375, 131738. [Google Scholar] [CrossRef] [PubMed]
- Guillard, V.; Gaucel, S.; Fornaciari, C.; Angellier-Coussy, H.; Buche, P.; Gontard, N. The Next Generation of Sustainable Food Packaging to Preserve Our Environment in a Circular Economy Context. Front. Nutr. 2018, 5, 121. [Google Scholar] [CrossRef] [PubMed]
- Raddadi, N.; Fava, F. Biodegradation of Oil-Based Plastics in the Environment: Existing Knowledge and Needs of Research and Innovation. Sci. Total Environ. 2019, 679, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, T.; Ghoshal, S.; Tufenkji, N.; Adamowski, J.F.; Bayen, S.; Chen, Q.; Demokritou, P.; Flury, M.; Hüffer, T.; Ivleva, N.P.; et al. Plastics Can Be Used More Sustainably in Agriculture. Commun. Earth Environ. 2023, 4, 332. [Google Scholar] [CrossRef]
- Thompson, R.C.; Moore, C.J.; vom Saal, F.S.; Swan, S.H. Plastics, the Environment and Human Health: Current Consensus and Future Trends. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2153–2166. [Google Scholar] [CrossRef] [PubMed]
- Sani, M.A.; Azizi-Lalabadi, M.; Tavassoli, M.; Mohammadi, K.; McClements, D.J. Recent Advances in the Development of Smart and Active Biodegradable Packaging Materials. Nanomaterials 2021, 11, 1331. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, S.; Yaqoob, M.; Aggarwal, P. An Overview of Biodegradable Packaging in Food Industry. Curr. Res. Food Sci. 2021, 4, 503–520. [Google Scholar] [CrossRef] [PubMed]
- Boz, Z.; Korhonen, V.; Koelsch Sand, C. Consumer Considerations for the Implementation of Sustainable Packaging: A Review. Sustainability 2020, 12, 2192. [Google Scholar] [CrossRef]
- Duarte, P.; Teixeira, M.; Costa e Silva, S. Healthy Eating as a Trend: Consumers’ Perceptions towards Products with Nutrition and Health Claims. Rev. Bus. Manag. 2021, 23, 405–421. [Google Scholar] [CrossRef]
- Petrescu, D.C.; Vermeir, I.; Petrescu-Mag, R.M. Consumer Understanding of Food Quality, Healthiness, and Environmental Impact: A Cross-National Perspective. Int. J. Environ. Res. Public. Health 2019, 17, 169. [Google Scholar] [CrossRef]
- Trajkovska Petkoska, A.; Daniloski, D.; D’Cunha, N.M.; Naumovski, N.; Broach, A.T. Edible Packaging: Sustainable Solutions and Novel Trends in Food Packaging. Food Res. Int. 2021, 140, 109981. [Google Scholar] [CrossRef] [PubMed]
- Gumienna, M.; Górna, B. Antimicrobial Food Packaging with Biodegradable Polymers and Bacteriocins. Molecules 2021, 26, 3735. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, S.A.; Khan, S.; Mehdizadeh, M.; Bahmid, N.A.; Adli, D.N.; Walker, T.R.; Perestrelo, R.; Câmara, J.S. Phytochemicals and Bioactive Constituents in Food Packaging—A Systematic Review. Heliyon 2023, 9, e21196. [Google Scholar] [CrossRef] [PubMed]
- Nieto, G.; Martínez-Zamora, L.; Peñalver, R.; Marín-Iniesta, F.; Taboada-Rodríguez, A.; López-Gómez, A.; Martínez-Hernández, G.B. Applications of Plant Bioactive Compounds as Replacers of Synthetic Additives in the Food Industry. Foods 2023, 13, 47. [Google Scholar] [CrossRef] [PubMed]
- Hamed, I.; Jakobsen, A.N.; Lerfall, J. Sustainable Edible Packaging Systems Based on Active Compounds from Food Processing Byproducts: A Review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 198–226. [Google Scholar] [CrossRef] [PubMed]
- Rashed, M.S. Ecological Sustainability of Biodegradable Materials for Food Healthy Storage. In Handbook of Biodegradable Materials; Springer International Publishing: Cham, Switzerland, 2023; pp. 1337–1368. [Google Scholar]
- Westlake, J.R.; Tran, M.W.; Jiang, Y.; Zhang, X.; Burrows, A.D.; Xie, M. Biodegradable Active Packaging with Controlled Release: Principles, Progress, and Prospects. ACS Food Sci. Technol. 2022, 2, 1166–1183. [Google Scholar] [CrossRef]
- Amin, U.; Khan, M.K.I.; Maan, A.A.; Nazir, A.; Riaz, S.; Khan, M.U.; Sultan, M.; Munekata, P.E.S.; Lorenzo, J.M. Biodegradable Active, Intelligent, and Smart Packaging Materials for Food Applications. Food Packag. Shelf Life 2022, 33, 100903. [Google Scholar] [CrossRef]
- Perera, K.Y.; Jaiswal, A.K.; Jaiswal, S. Biopolymer-Based Sustainable Food Packaging Materials: Challenges, Solutions, and Applications. Foods 2023, 12, 2422. [Google Scholar] [CrossRef]
- Imre, B.; Pukánszky, B. Compatibilization in Bio-Based and Biodegradable Polymer Blends. Eur. Polym. J. 2013, 49, 1215–1233. [Google Scholar] [CrossRef]
- Das, A.; Ringu, T.; Ghosh, S.; Pramanik, N. A Comprehensive Review on Recent Advances in Preparation, Physicochemical Characterization, and Bioengineering Applications of Biopolymers. Polym. Bull. 2023, 80, 7247–7312. [Google Scholar] [CrossRef]
- Fredi, G.; Dorigato, A. Compatibilization of Biopolymer Blends: A Review. Adv. Ind. Eng. Polym. Res. 2023. [Google Scholar] [CrossRef]
- Lisitsyn, A.; Semenova, A.; Nasonova, V.; Polishchuk, E.; Revutskaya, N.; Kozyrev, I.; Kotenkova, E. Approaches in Animal Proteins and Natural Polysaccharides Application for Food Packaging: Edible Film Production and Quality Estimation. Polymers 2021, 13, 1592. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, R.K.; Gaikwad, K.K. Natural Antimicrobial and Antioxidant Compounds for Active Food Packaging Applications. Biomass Convers. Biorefin 2024, 14, 4419–4440. [Google Scholar] [CrossRef]
- Baghi, F.; Gharsallaoui, A.; Dumas, E.; Ghnimi, S. Advancements in Biodegradable Active Films for Food Packaging: Effects of Nano/Microcapsule Incorporation. Foods 2022, 11, 760. [Google Scholar] [CrossRef] [PubMed]
- Chacha, J.S.; Ofoedu, C.E.; Xiao, K. Essential Oil-based Active Polymer-based Packaging System: A Review of Its Effect on the Antimicrobial, Antioxidant, and Sensory Properties of Beef and Chicken Meat. J. Food Process Preserv. 2022, 46, e16933. [Google Scholar] [CrossRef]
- Pawłowska, A.; Stepczyńska, M. Natural Biocidal Compounds of Plant Origin as Biodegradable Materials Modifiers. J. Polym. Environ. 2022, 30, 1683–1708. [Google Scholar] [CrossRef]
- Asgher, M.; Qamar, S.A.; Bilal, M.; Iqbal, H.M.N. Bio-Based Active Food Packaging Materials: Sustainable Alternative to Conventional Petrochemical-Based Packaging Materials. Food Res. Int. 2020, 137, 109625. [Google Scholar] [CrossRef] [PubMed]
- Vasile, C.; Baican, M. Progresses in Food Packaging, Food Quality, and Safety—Controlled-Release Antioxidant and/or Antimicrobial Packaging. Molecules 2021, 26, 1263. [Google Scholar] [CrossRef] [PubMed]
- González-López, M.E.; Calva-Estrada, S.d.J.; Gradilla-Hernández, M.S.; Barajas-Álvarez, P. Current Trends in Biopolymers for Food Packaging: A Review. Front. Sustain. Food Syst. 2023, 7, 1225371. [Google Scholar] [CrossRef]
- Jakobek, L. Food Packaging Materials with Polyphenols as Active Compounds. Meso 2019, 21, 469–474. [Google Scholar] [CrossRef]
- Popović, S.Z.; Lazić, V.L.; Hromiš, N.M.; Šuput, D.Z.; Bulut, S.N. Biopolymer Packaging Materials for Food Shelf-Life Prolongation. In Biopolymers for Food Design; Elsevier: Amsterdam, The Netherlands, 2018; pp. 223–277. [Google Scholar]
- García-Guzmán, L.; Cabrera-Barjas, G.; Soria-Hernández, C.G.; Castaño, J.; Guadarrama-Lezama, A.Y.; Rodríguez Llamazares, S. Progress in Starch-Based Materials for Food Packaging Applications. Polysaccharides 2022, 3, 136–177. [Google Scholar] [CrossRef]
- Agarwal, S. Major Factors Affecting the Characteristics of Starch Based Biopolymer Films. Eur. Polym. J. 2021, 160, 110788. [Google Scholar] [CrossRef]
- Di Caprio, F.; Chelucci, R.; Francolini, I.; Altimari, P.; Pagnanelli, F. Extraction of Microalgal Starch and Pigments by Using Different Cell Disruption Methods and Aqueous Two-phase System. J. Chem. Technol. Biotechnol. 2022, 97, 67–78. [Google Scholar] [CrossRef]
- Kumari, S.V.G.; Pakshirajan, K.; Pugazhenthi, G. Recent Advances and Future Prospects of Cellulose, Starch, Chitosan, Polylactic Acid and Polyhydroxyalkanoates for Sustainable Food Packaging Applications. Int. J. Biol. Macromol. 2022, 221, 163–182. [Google Scholar] [CrossRef]
- Alfano, S.; Lorini, L.; Majone, M.; Sciubba, F.; Valentino, F.; Martinelli, A. Ethylic Esters as Green Solvents for the Extraction of Intracellular Polyhydroxyalkanoates Produced by Mixed Microbial Culture. Polymers 2021, 13, 2789. [Google Scholar] [CrossRef]
- Nogueira, G.F.; Soares, C.T.; Cavasini, R.; Fakhouri, F.M.; de Oliveira, R.A. Bioactive Films of Arrowroot Starch and Blackberry Pulp: Physical, Mechanical and Barrier Properties and Stability to PH and Sterilization. Food Chem. 2019, 275, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Riaz, A.; Lagnika, C.; Luo, H.; Dai, Z.; Nie, M.; Hashim, M.M.; Liu, C.; Song, J.; Li, D. Chitosan-Based Biodegradable Active Food Packaging Film Containing Chinese Chive (Allium tuberosum) Root Extract for Food Application. Int. J. Biol. Macromol. 2020, 150, 595–604. [Google Scholar] [CrossRef]
- Mahcene, Z.; Khelil, A.; Hasni, S.; Akman, P.K.; Bozkurt, F.; Birech, K.; Goudjil, M.B.; Tornuk, F. Development and Characterization of Sodium Alginate Based Active Edible Films Incorporated with Essential Oils of Some Medicinal Plants. Int. J. Biol. Macromol. 2020, 145, 124–132. [Google Scholar] [CrossRef]
- Wu, H.; Lei, Y.; Zhu, R.; Zhao, M.; Lu, J.; Xiao, D.; Jiao, C.; Zhang, Z.; Shen, G.; Li, S. Preparation and Characterization of Bioactive Edible Packaging Films Based on Pomelo Peel Flours Incorporating Tea Polyphenol. Food Hydrocoll. 2019, 90, 41–49. [Google Scholar] [CrossRef]
- Piri-Gharaghie, T.; Beiranvand, S.; Riahi, A.; Shirin, N.J.; Badmasti, F.; Mirzaie, A.; Elahianfar, Y.; Ghahari, S.; Ghahari, S.; Pasban, K.; et al. Fabrication and Characterization of Thymol-Loaded Chitosan Nanogels: Improved Antibacterial and Anti-Biofilm Activities with Negligible Cytotoxicity. Chem. Biodivers. 2022, 19, e202100426. [Google Scholar] [CrossRef]
- Ferreira Nogueira, G.; Matta Fakhouri, F.; de Oliveira, R.A. Incorporation of Spray Dried and Freeze Dried Blackberry Particles in Edible Films: Morphology, Stability to PH, Sterilization and Biodegradation. Food Packag. Shelf Life 2019, 20, 100313. [Google Scholar] [CrossRef]
- Zarandona, I.; Barba, C.; Guerrero, P.; de la Caba, K.; Maté, J. Development of Chitosan Films Containing β-Cyclodextrin Inclusion Complex for Controlled Release of Bioactives. Food Hydrocoll. 2020, 104, 105720. [Google Scholar] [CrossRef]
- Nogueira, G.F.; de Oliveira, R.A.; Velasco, J.I.; Fakhouri, F.M. Methods of Incorporating Plant-Derived Bioactive Compounds into Films Made with Agro-Based Polymers for Application as Food Packaging: A Brief Review. Polymers 2020, 12, 2518. [Google Scholar] [CrossRef] [PubMed]
- Lombo Vidal, O.; Tsukui, A.; Garrett, R.; Miguez Rocha-Leão, M.H.; Piler Carvalho, C.W.; Pereira Freitas, S.; Moraes de Rezende, C.; Simões Larraz Ferreira, M. Production of Bioactive Films of Carboxymethyl Cellulose Enriched with Green Coffee Oil and Its Residues. Int. J. Biol. Macromol. 2020, 146, 730–738. [Google Scholar] [CrossRef] [PubMed]
- Malherbi, N.M.; Schmitz, A.C.; Grando, R.C.; Bilck, A.P.; Yamashita, F.; Tormen, L.; Fakhouri, F.M.; Velasco, J.I.; Bertan, L.C. Corn Starch and Gelatin-Based Films Added with Guabiroba Pulp for Application in Food Packaging. Food Packag. Shelf Life 2019, 19, 140–146. [Google Scholar] [CrossRef]
- Sturabotti, E.; Moldoveanu, V.G.; Camilli, A.; Martinelli, A.; Simonetti, G.; Valletta, A.; Serangeli, I.; Giustini, A.; Miranda, E.; Migneco, L.M.; et al. Thymol-Functionalized Hyaluronic Acid as Promising Preservative Biomaterial for the Inhibition of Candida albicans Biofilm Formation. ACS Macro Lett. 2023, 12, 1079–1084. [Google Scholar] [CrossRef] [PubMed]
- Vasile, C.; Baican, M. Lignins as Promising Renewable Biopolymers and Bioactive Compounds for High-Performance Materials. Polymers 2023, 15, 3177. [Google Scholar] [CrossRef]
- Qurat-ul-Ain; Zia, K.M.; Zia, F.; Ali, M.; Rehman, S.; Zuber, M. Lipid Functionalized Biopolymers: A Review. Int. J. Biol. Macromol. 2016, 93, 1057–1068. [Google Scholar] [CrossRef]
- Mallamaci, G.; Brugnoli, B.; Mariano, A.; d’Abusco, A.S.; Piozzi, A.; Di Lisio, V.; Sturabotti, E.; Alfano, S.; Francolini, I. Surface Modification of Polyester Films with Polyfunctional Amines: Effect on Bacterial Biofilm Formation. Surf. Interfaces 2023, 39, 102924. [Google Scholar] [CrossRef]
- Bilal, M.; Iqbal, H.M.N. Naturally-Derived Biopolymers: Potential Platforms for Enzyme Immobilization. Int. J. Biol. Macromol. 2019, 130, 462–482. [Google Scholar] [CrossRef]
- Benucci, I.; Liburdi, K.; Cacciotti, I.; Lombardelli, C.; Zappino, M.; Nanni, F.; Esti, M. Chitosan/Clay Nanocomposite Films as Supports for Enzyme Immobilization: An Innovative Green Approach for Winemaking Applications. Food Hydrocoll. 2018, 74, 124–131. [Google Scholar] [CrossRef]
- Chen, H.; Li, L.; Ma, Y.; Mcdonald, T.P.; Wang, Y. Development of Active Packaging Film Containing Bioactive Components Encapsulated in β-Cyclodextrin and Its Application. Food Hydrocoll. 2019, 90, 360–366. [Google Scholar] [CrossRef]
- Almasi, H.; Azizi, S.; Amjadi, S. Development and Characterization of Pectin Films Activated by Nanoemulsion and Pickering Emulsion Stabilized Marjoram (Origanum majorana L.) Essential Oil. Food Hydrocoll. 2020, 99, 105338. [Google Scholar] [CrossRef]
- Li, X.; Yang, X.; Deng, H.; Guo, Y.; Xue, J. Gelatin Films Incorporated with Thymol Nanoemulsions: Physical Properties and Antimicrobial Activities. Int. J. Biol. Macromol. 2020, 150, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei-Mohkam, A.; Garavand, F.; Dehnad, D.; Keramat, J.; Nasirpour, A. Physical, Mechanical, Thermal and Structural Characteristics of Nanoencapsulated Vitamin E Loaded Carboxymethyl Cellulose Films. Prog. Org. Coat. 2020, 138, 105383. [Google Scholar] [CrossRef]
- Nogueira, G.F.; Fakhouri, F.M.; Velasco, J.I.; de Oliveira, R.A. Active Edible Films Based on Arrowroot Starch with Microparticles of Blackberry Pulp Obtained by Freeze-Drying for Food Packaging. Polymers 2019, 11, 1382. [Google Scholar] [CrossRef]
- Silva-Weiss, A.; Ihl, M.; Sobral, P.J.A.; Gómez-Guillén, M.C.; Bifani, V. Natural Additives in Bioactive Edible Films and Coatings: Functionality and Applications in Foods. Food Eng. Rev. 2013, 5, 200–216. [Google Scholar] [CrossRef]
- Gómez-Estaca, J.; López-de-Dicastillo, C.; Hernández-Muñoz, P.; Catalá, R.; Gavara, R. Advances in Antioxidant Active Food Packaging. Trends Food Sci. Technol. 2014, 35, 42–51. [Google Scholar] [CrossRef]
- Mir, S.A.; Dar, B.N.; Wani, A.A.; Shah, M.A. Effect of Plant Extracts on the Techno-Functional Properties of Biodegradable Packaging Films. Trends Food Sci. Technol. 2018, 80, 141–154. [Google Scholar] [CrossRef]
- Domínguez, R.; Barba, F.J.; Gómez, B.; Putnik, P.; Bursać Kovačević, D.; Pateiro, M.; Santos, E.M.; Lorenzo, J.M. Active Packaging Films with Natural Antioxidants to Be Used in Meat Industry: A Review. Food Res. Int. 2018, 113, 93–101. [Google Scholar] [CrossRef]
- Kalemba, D.; Kunicka, A. Antibacterial and Antifungal Properties of Essential Oils. Curr. Med. Chem. 2003, 10, 813–829. [Google Scholar] [CrossRef]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions with Food Matrix Components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro-Santos, R.; Andrade, M.; de Melo, N.R.; Sanches-Silva, A. Use of Essential Oils in Active Food Packaging: Recent Advances and Future Trends. Trends Food Sci. Technol. 2017, 61, 132–140. [Google Scholar] [CrossRef]
- Rehman, A.; Jafari, S.M.; Aadil, R.M.; Assadpour, E.; Randhawa, M.A.; Mahmood, S. Development of Active Food Packaging via Incorporation of Biopolymeric Nanocarriers Containing Essential Oils. Trends Food Sci. Technol. 2020, 101, 106–121. [Google Scholar] [CrossRef]
- Reverchon, E.; Senatore, F. Isolation of Rosemary Oil: Comparison between Hydrodistillation and Supercritical CO2 Extraction. Flavour. Fragr. J. 1992, 7, 227–230. [Google Scholar] [CrossRef]
- Okoh, O.O.; Sadimenko, A.P.; Afolayan, A.J. Comparative Evaluation of the Antibacterial Activities of the Essential Oils of Rosmarinus officinalis L. Obtained by Hydrodistillation and Solvent Free Microwave Extraction Methods. Food Chem. 2010, 120, 308–312. [Google Scholar] [CrossRef]
- Vian, M.A.; Fernandez, X.; Visinoni, F.; Chemat, F. Microwave Hydrodiffusion and Gravity, a New Technique for Extraction of Essential Oils. J. Chromatogr. A 2008, 1190, 14–17. [Google Scholar] [CrossRef]
- Zhang, J.; Wen, C.; Zhang, H.; Duan, Y.; Ma, H. Recent Advances in the Extraction of Bioactive Compounds with Subcritical Water: A Review. Trends Food Sci. Technol. 2020, 95, 183–195. [Google Scholar] [CrossRef]
- Khajeh, M.; Yamini, Y.; Bahramifar, N.; Sefidkon, F.; Reza Pirmoradei, M. Comparison of Essential Oils Compositions of Ferula Assa-Foetida Obtained by Supercritical Carbon Dioxide Extraction and Hydrodistillation Methods. Food Chem. 2005, 91, 639–644. [Google Scholar] [CrossRef]
- Gavahian, M.; Farahnaky, A.; Farhoosh, R.; Javidnia, K.; Shahidi, F. Extraction of Essential Oils from Mentha Piperita Using Advanced Techniques: Microwave versus Ohmic Assisted Hydrodistillation. Food Bioprod. Process. 2015, 94, 50–58. [Google Scholar] [CrossRef]
- Wei, Z.F.; Zhao, R.N.; Dong, L.J.; Zhao, X.Y.; Su, J.X.; Zhao, M.; Li, L.; Bian, Y.J.; Zhang, L.J. Dual-Cooled Solvent-Free Microwave Extraction of Salvia officinalis L. Essential Oil and Evaluation of Its Antimicrobial Activity. Ind. Crops Prod. 2018, 120, 71–76. [Google Scholar] [CrossRef]
- Wei, M.C.; Xiao, J.; Yang, Y.C. Extraction of α-Humulene-Enriched Oil from Clove Using Ultrasound-Assisted Supercritical Carbon Dioxide Extraction and Studies of Its Fictitious Solubility. Food Chem. 2016, 210, 172–181. [Google Scholar] [CrossRef]
- Wang, Y.; Li, R.; Jiang, Z.T.; Tan, J.; Tang, S.H.; Li, T.T.; Liang, L.L.; He, H.J.; Liu, Y.M.; Li, J.T.; et al. Green and Solvent-Free Simultaneous Ultrasonic-Microwave Assisted Extraction of Essential Oil from White and Black Peppers. Ind. Crops Prod. 2018, 114, 164–172. [Google Scholar] [CrossRef]
- Gavahian, M.; Farahnaky, A.; Javidnia, K.; Majzoobi, M. Comparison of Ohmic-Assisted Hydrodistillation with Traditional Hydrodistillation for the Extraction of Essential Oils from Thymus vulgaris L. Innov. Food Sci. Emerg. Technol. 2012, 14, 85–91. [Google Scholar] [CrossRef]
- Gavahian, M.; Chu, Y.-H.; Lorenzo, J.M.; Mousavi Khaneghah, A.; Barba, F.J. Essential Oils as Natural Preservatives for Bakery Products: Understanding the Mechanisms of Action, Recent Findings, and Applications. Crit. Rev. Food Sci. Nutr. 2020, 60, 310–321. [Google Scholar] [CrossRef] [PubMed]
- Yousuf, B.; Wu, S.; Siddiqui, M.W. Incorporating Essential Oils or Compounds Derived Thereof into Edible Coatings: Effect on Quality and Shelf Life of Fresh/Fresh-Cut Produce. Trends Food Sci. Technol. 2021, 108, 245–257. [Google Scholar] [CrossRef]
- Dorman, H.J.D.; Deans, S.G. Antimicrobial Agents from Plants: Antibacterial Activity of Plant Volatile Oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Salgado, P.R.; López-Caballero, M.E.; Gómez-Guillén, M.C.; Mauri, A.N.; Montero, M.P. Sunflower Protein Films Incorporated with Clove Essential Oil Have Potential Application for the Preservation of Fish Patties. Food Hydrocoll. 2013, 33, 74–84. [Google Scholar] [CrossRef]
- Kujur, A.; Kiran, S.; Dubey, N.K.; Prakash, B. Microencapsulation of Gaultheria Procumbens Essential Oil Using Chitosan-Cinnamic Acid Microgel: Improvement of Antimicrobial Activity, Stability and Mode of Action. LWT-Food Sci. Technol. 2017, 86, 132–138. [Google Scholar] [CrossRef]
- Atarés, L.; Chiralt, A. Essential Oils as Additives in Biodegradable Films and Coatings for Active Food Packaging. Trends Food Sci. Technol. 2016, 48, 51–62. [Google Scholar] [CrossRef]
- Akrami, F.; Rodríguez-Lafuente, A.; Bentayeb, K.; Pezo, D.; Ghalebi, S.R.; Nerín, C. Antioxidant and Antimicrobial Active Paper Based on Zataria (Zataria multiflora) and Two Cumin Cultivars (Cuminum cyminum). LWT-Food Sci. Technol. 2015, 60, 929–933. [Google Scholar] [CrossRef]
- Mastelić, J.; Jerković, I.; Blažević, I.; Poljak-Blaži, M.; Borović, S.; Ivančić-Baće, I.; Smrěcki, V.; Žarković, N.; Brčić-Kostic, K.; Vikić-Topić, D.; et al. Comparative Study on the Antioxidant and Biological Activities of Carvacrol, Thymol, and Eugenol Derivatives. J. Agric. Food Chem. 2008, 56, 3989–3996. [Google Scholar] [CrossRef]
- Camo, J.; Lorés, A.; Djenane, D.; Beltrán, J.A.; Roncalés, P. Display Life of Beef Packaged with an Antioxidant Active Film as a Function of the Concentration of Oregano Extract. Meat Sci. 2011, 88, 174–178. [Google Scholar] [CrossRef] [PubMed]
- López, P.; Sánchez, C.; Batlle, R.; Nerín, C. Development of Flexible Antimicrobial Films Using Essential Oils as Active Agents. J. Agric. Food Chem. 2007, 55, 8814–8824. [Google Scholar] [CrossRef] [PubMed]
- Tongnuanchan, P.; Benjakul, S. Essential Oils: Extraction, Bioactivities, and Their Uses for Food Preservation. J. Food Sci. 2014, 79, R1231–R1249. [Google Scholar] [CrossRef]
- Sharma, S.; Barkauskaite, S.; Jaiswal, A.K.; Jaiswal, S. Essential Oils as Additives in Active Food Packaging. Food Chem. 2021, 343, 128403. [Google Scholar] [CrossRef]
- Blanco-Padilla, A.; Soto, K.M.; Hernández Iturriaga, M.; Mendoza, S. Food Antimicrobials Nanocarriers. Sci. World J. 2014, 2014, 837215. [Google Scholar] [CrossRef] [PubMed]
- Krogsgård Nielsen, C.; Kjems, J.; Mygind, T.; Snabe, T.; Schwarz, K.; Serfert, Y.; Meyer, R.L. Antimicrobial Effect of Emulsion-Encapsulated Isoeugenol against Biofilms of Food Pathogens and Spoilage Bacteria. Int. J. Food Microbiol. 2017, 242, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Turek, C.; Stintzing, F.C. Stability of Essential Oils: A Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- Zanetti, M.; Carniel, T.K.; Dalcanton, F.; dos Anjos, R.S.; Gracher Riella, H.; de Araújo, P.H.H.; de Oliveira, D.; Antônio Fiori, M. Use of Encapsulated Natural Compounds as Antimicrobial Additives in Food Packaging: A Brief Review. Trends Food Sci. Technol. 2018, 81, 51–60. [Google Scholar] [CrossRef]
- Noori, S.; Zeynali, F.; Almasi, H. Antimicrobial and Antioxidant Efficiency of Nanoemulsion-Based Edible Coating Containing Ginger (Zingiber officinale) Essential Oil and Its Effect on Safety and Quality Attributes of Chicken Breast Fillets. Food Control 2018, 84, 312–320. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, Y.; Critzer, F.; Davidson, P.M.; Zivanovic, S.; Zhong, Q. Physical, Mechanical, and Antimicrobial Properties of Chitosan Films with Microemulsions of Cinnamon Bark Oil and Soybean Oil. Food Hydrocoll. 2016, 52, 533–542. [Google Scholar] [CrossRef]
- Abdollahi, M.; Rezaei, M.; Farzi, G. Improvement of Active Chitosan Film Properties with Rosemary Essential Oil for Food Packaging. Int. J. Food Sci. Technol. 2012, 47, 847–853. [Google Scholar] [CrossRef]
- Benavides, S.; Villalobos-Carvajal, R.; Reyes, J.E. Physical, Mechanical and Antibacterial Properties of Alginate Film: Effect of the Crosslinking Degree and Oregano Essential Oil Concentration. J. Food Eng. 2012, 110, 232–239. [Google Scholar] [CrossRef]
- Peng, Y.; Li, Y. Combined Effects of Two Kinds of Essential Oils on Physical, Mechanical and Structural Properties of Chitosan Films. Food Hydrocoll. 2014, 36, 287–293. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.W. Gelatin/Agar-Based Functional Film Integrated with Pickering Emulsion of Clove Essential Oil Stabilized with Nanocellulose for Active Packaging Applications. Colloids Surf. A Physicochem. Eng. Asp. 2021, 627, 127220. [Google Scholar] [CrossRef]
- Zinoviadou, K.G.; Koutsoumanis, K.P.; Biliaderis, C.G. Physico-Chemical Properties of Whey Protein Isolate Films Containing Oregano Oil and Their Antimicrobial Action against Spoilage Flora of Fresh Beef. Meat Sci. 2009, 82, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Šuput, D.; Lazić, V.; Pezo, L.; Markov, S.; Vaštag, Ž.; Popović, L.; Radulović, A.; Ostojić, S.; Zlatanović, S.; Popović, S. Characterization of Starch Edible Films with Different Essential Oils Addition. Pol. J. Food Nutr. Sci. 2016, 66, 277–285. [Google Scholar] [CrossRef]
- Tongnuanchan, P.; Benjakul, S.; Prodpran, T. Physico-Chemical Properties, Morphology and Antioxidant Activity of Film from Fish Skin Gelatin Incorporated with Root Essential Oils. J. Food Eng. 2013, 117, 350–360. [Google Scholar] [CrossRef]
- Ocak, B. Properties and Characterization of Thyme Essential Oil Incorporated Collagen Hydrolysate Films Extracted from Hide Fleshing Wastes for Active Packaging. Environ. Sci. Pollut. Res. 2020, 27, 29019–29030. [Google Scholar] [CrossRef]
- Lagarón, J.M.; López-Rubio, A.; Fabra, M.J.; Appl Polym Sci, J.; Mellinas, C.; Valdés, A.; Ramos, M.; Burgos, N.; Carmen Garrigós, M.D.; Jiménz, A.; et al. Active Edible Films: Current State and Future Trends. J. Appl. Polym. Sci. 2016, 133, 42631. [Google Scholar] [CrossRef]
- Chen, C.H.; Kuo, W.S.; Lai, L.S. Effect of Surfactants on Water Barrier and Physical Properties of Tapioca Starch/Decolorized Hsian-Tsao Leaf Gum Films. Food Hydrocoll. 2009, 23, 714–721. [Google Scholar] [CrossRef]
- Tongnuanchan, P.; Benjakul, S.; Prodpran, T. Properties and Antioxidant Activity of Fish Skin Gelatin Film Incorporated with Citrus Essential Oils. Food Chem. 2012, 134, 1571–1579. [Google Scholar] [CrossRef] [PubMed]
- Vital, A.C.P.; Guerrero, A.; Monteschio, J.D.O.; Valero, M.V.; Carvalho, C.B.; De Abreu Filho, B.A.; Madrona, G.S.; Do Prado, I.N. Effect of Edible and Active Coating (with Rosemary and Oregano Essential Oils) on Beef Characteristics and Consumer Acceptability. PLoS ONE 2016, 11, e0160535. [Google Scholar] [CrossRef] [PubMed]
- Hafsa, J.; ali Smach, M.; Ben Khedher, M.R.; Charfeddine, B.; Limem, K.; Majdoub, H.; Rouatbi, S. Physical, Antioxidant and Antimicrobial Properties of Chitosan Films Containing Eucalyptus Globulus Essential Oil. LWT-Food Sci. Technol. 2016, 68, 356–364. [Google Scholar] [CrossRef]
- Azadbakht, E.; Maghsoudlou, Y.; Khomiri, M.; Kashiri, M. Development and Structural Characterization of Chitosan FIlms Containing Eucalyptus globulus Essential Oil: Potential as an Antimicrobial Carrier for Packaging of Sliced Sausage. Food Packag. Shelf Life 2018, 17, 65–72. [Google Scholar] [CrossRef]
- Aziz, M.; Karboune, S. Natural Antimicrobial/Antioxidant Agents in Meat and Poultry Products as Well as Fruits and Vegetables: A Review. Crit. Rev. Food Sci. Nutr. 2017, 58, 486–511. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J.; Rao, J. Food-Grade Nanoemulsions: Formulation, Fabrication, Properties, Performance, Biological Fate, and Potential Toxicity. Crit. Rev. Food Sci. Nutr. 2011, 51, 285–330. [Google Scholar] [CrossRef] [PubMed]
- Aguirre-Joya, J.A.; De Leon-Zapata, M.A.; Alvarez-Perez, O.B.; Torres-León, C.; Nieto-Oropeza, D.E.; Ventura-Sobrevilla, J.M.; Aguilar, M.A.; Ruelas-Chacón, X.; Rojas, R.; Ramos-Aguiñaga, M.E.; et al. Food Applications of Emulsion-Based Edible Films and Coatings. Trends Food Sci. Technol. 2015, 45, 273–283. [Google Scholar] [CrossRef]
- Vasile, C. Polymeric Nanocomposites and Nanocoatings for Food Packaging: A Review. Materials 2018, 11, 1834. [Google Scholar] [CrossRef]
- Rodríguez, M.; Osés, J.; Ziani, K.; Maté, J.I. Combined Effect of Plasticizers and Surfactants on the Physical Properties of Starch Based Edible Films. Food Res. Int. 2006, 39, 840–846. [Google Scholar] [CrossRef]
- Senturk Parreidt, T.; Müller, K.; Schmid, M. Alginate-Based Edible Films and Coatings for Food Packaging Applications. Foods 2018, 7, 170. [Google Scholar] [CrossRef] [PubMed]
- Senturk Parreidt, T.; Schott, M.; Schmid, M.; Müller, K. Effect of Presence and Concentration of Plasticizers, Vegetable Oils, and Surfactants on the Properties of Sodium-Alginate-Based Edible Coatings. Int. J. Mol. Sci. 2018, 19, 742. [Google Scholar] [CrossRef] [PubMed]
- Casariego, A.; Souza, B.W.S.; Vicente, A.A.; Teixeira, J.A.; Cruz, L.; Díaz, R. Chitosan Coating Surface Properties as Affected by Plasticizer, Surfactant and Polymer Concentrations in Relation to the Surface Properties of Tomato and Carrot. Food Hydrocoll. 2008, 22, 1452–1459. [Google Scholar] [CrossRef]
- Sánchez-González, L.; Vargas, M.; González-Martínez, C.; Chiralt, A.; Cháfer, M. Characterization of Edible Films Based on Hydroxypropylmethylcellulose and Tea Tree Essential Oil. Food Hydrocoll. 2009, 23, 2102–2109. [Google Scholar] [CrossRef]
- Almasi, L.; Radi, M.; Amiri, S.; McClements, D.J. Fabrication and Characterization of Antimicrobial Biopolymer Films Containing Essential Oil-Loaded Microemulsions or Nanoemulsions. Food Hydrocoll. 2021, 117, 106733. [Google Scholar] [CrossRef]
- Xiao, D.; Ye, R.; Davidson, P.M.; Hayes, D.G.; Golden, D.A.; Zhong, Q. Sucrose Monolaurate Improves the Efficacy of Sodium Hypochlorite against Escherichia coli O157:H7 on Spinach. Int. J. Food Microbiol. 2011, 145, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Sedaghat Doost, A.; Nikbakht Nasrabadi, M.; Kassozi, V.; Nakisozi, H.; Van der Meeren, P. Recent Advances in Food Colloidal Delivery Systems for Essential Oils and Their Main Components. Trends Food Sci. Technol. 2020, 99, 474–486. [Google Scholar] [CrossRef]
- Ozogul, Y.; Yuvka, İ.; Ucar, Y.; Durmus, M.; Kösker, A.R.; Öz, M.; Ozogul, F. Evaluation of Effects of Nanoemulsion Based on Herb Essential Oils (Rosemary, Laurel, Thyme and Sage) on Sensory, Chemical and Microbiological Quality of Rainbow Trout (Oncorhynchus mykiss) Fillets during Ice Storage. LWT 2017, 75, 677–684. [Google Scholar] [CrossRef]
- Niro, C.M.; Medeiros, J.A.; Freitas, J.A.M.; Azeredo, H.M.C. Advantages and Challenges of Pickering Emulsions Applied to Bio-Based Films: A Mini-Review. J. Sci. Food Agric. 2021, 101, 3535–3540. [Google Scholar] [CrossRef]
- Wu, J.; Ma, G.H. Recent Studies of Pickering Emulsions: Particles Make the Difference. Small 2016, 12, 4633–4648. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.; Xue, C.; Wei, Z. Physicochemical Characteristics, Applications and Research Trends of Edible Pickering Emulsions. Trends Food Sci. Technol. 2021, 107, 1–15. [Google Scholar] [CrossRef]
- Ran, R.; Xiong, Y.; Zheng, T.; Tang, P.; Zhang, Y.; Yang, C.; Li, G. Active and Intelligent Collagen Films Containing Laccase-Catalyzed Mulberry Extract and Pickering Emulsion for Fish Preservation and Freshness Indicator. Food Hydrocoll. 2024, 147, 109326. [Google Scholar] [CrossRef]
- Ran, R.; Zheng, T.; Tang, P.; Xiong, Y.; Yang, C.; Gu, M.; Li, G. Antioxidant and Antimicrobial Collagen Films Incorporating Pickering Emulsions of Cinnamon Essential Oil for Pork Preservation. Food Chem. 2023, 420, 136108. [Google Scholar] [CrossRef] [PubMed]
- Moghimi, R.; Aliahmadi, A.; Rafati, H. Antibacterial Hydroxypropyl Methyl Cellulose Edible Films Containing Nanoemulsions of Thymus Daenensis Essential Oil for Food Packaging. Carbohydr. Polym. 2017, 175, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Norcino, L.B.; Mendes, J.F.; Natarelli, C.V.L.; Manrich, A.; Oliveira, J.E.; Mattoso, L.H.C. Pectin Films Loaded with Copaiba Oil Nanoemulsions for Potential Use as Bio-Based Active Packaging. Food Hydrocoll. 2020, 106, 105862. [Google Scholar] [CrossRef]
- Zhang, Y.; Pu, Y.; Jiang, H.; Chen, L.; Shen, C.; Zhang, W.; Cao, J.; Jiang, W. Improved Sustained-Release Properties of Ginger Essential Oil in a Pickering Emulsion System Incorporated in Sodium Alginate Film and Delayed Postharvest Senescence of Mango Fruits. Food Chem. 2024, 435, 137534. [Google Scholar] [CrossRef] [PubMed]
- Ghadetaj, A.; Almasi, H.; Mehryar, L. Development and Characterization of Whey Protein Isolate Active Films Containing Nanoemulsions of Grammosciadium ptrocarpum Bioss. Essential Oil. Food Packag. Shelf Life 2018, 16, 31–40. [Google Scholar] [CrossRef]
- Dammak, I.; de Carvalho, R.A.; Trindade, C.S.F.; Lourenço, R.V.; do Amaral Sobral, P.J. Properties of Active Gelatin Films Incorporated with Rutin-Loaded Nanoemulsions. Int. J. Biol. Macromol. 2017, 98, 39–49. [Google Scholar] [CrossRef]
- Yuan, L.; Feng, W.; Zhang, Z.; Peng, Y.; Xiao, Y.; Chen, J. Effect of Potato Starch-Based Antibacterial Composite Films with Thyme Oil Microemulsion or Microcapsule on Shelf Life of Chilled Meat. LWT 2021, 139, 110462. [Google Scholar] [CrossRef]
- Kan, J.; Liu, J.; Yong, H.; Liu, Y.; Qin, Y.; Liu, J. Development of Active Packaging Based on Chitosan-Gelatin Blend Films Functionalized with Chinese Hawthorn (Crataegus pinnatifida) Fruit Extract. Int. J. Biol. Macromol. 2019, 140, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Coma, V. Bioactive Packaging Technologies for Extended Shelf Life of Meat-Based Products. Meat Sci. 2008, 78, 90–103. [Google Scholar] [CrossRef] [PubMed]
- Alkan, D.; Yemenicioğlu, A. Potential Application of Natural Phenolic Antimicrobials and Edible Film Technology against Bacterial Plant Pathogens. Food Hydrocoll. 2016, 55, 1–10. [Google Scholar] [CrossRef]
- Sivakanthan, S.; Rajendran, S.; Gamage, A.; Madhujith, T.; Mani, S. Antioxidant and Antimicrobial Applications of Biopolymers: A Review. Food Res. Int. 2020, 136, 109327. [Google Scholar] [CrossRef] [PubMed]
- Karabegović, I.T.; Stojičević, S.S.; Veličković, D.T.; Todorović, Z.B.; Nikolić, N.Č.; Lazić, M.L. The Effect of Different Extraction Techniques on the Composition and Antioxidant Activity of Cherry Laurel (Prunus laurocerasus) Leaf and Fruit Extracts. Ind. Crops Prod. 2014, 54, 142–148. [Google Scholar] [CrossRef]
- Mustafa, A.; Turner, C. Pressurized Liquid Extraction as a Green Approach in Food and Herbal Plants Extraction: A Review. Anal. Chim. Acta 2011, 703, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Vaucher, R.d.A.; Hautrive, T.P.; Kubota, E.H.; Prestes, R.C.; Mello, R.d.O.; Piovesan, N.; Viera, V.B.; Rodrigues, J.B.; dos Santos, R.C.V. Extraction of Phenolic Compounds and Evaluation of the Antioxidant and Antimicrobial Capacity of Red Onion Skin (Allium cepa L.). Int. Food Res. J. 2017. [Google Scholar] [CrossRef]
- Putnik, P.; Lorenzo, J.M.; Barba, F.J.; Roohinejad, S.; Jambrak, A.R.; Granato, D.; Montesano, D.; Kovačević, D.B. Novel Food Processing and Extraction Technologies of High-Added Value Compounds from Plant Materials. Foods 2018, 7, 106. [Google Scholar] [CrossRef] [PubMed]
- Oniszczuk, A.; Podgórski, R.; Oniszczuk, T.; Zukiewicz-Sobczak, W.; Nowak, R.; Waksmundzka-Hajnos, M. Extraction Methods for the Determination of Phenolic Compounds from Equisetum arvense L. Herb. Ind. Crops Prod. 2014, 61, 377–381. [Google Scholar] [CrossRef]
- Harbourne, N.; Marete, E.; Jacquier, J.C.; O’Riordan, D. Conventional Extraction Techniques for Phytochemicals. In Handbook of Plant Food Phytochemicals: Sources, Stability and Extraction; Wiley: Hoboken, NJ, USA, 2013; pp. 397–411. [Google Scholar] [CrossRef]
- Vongsak, B.; Sithisarn, P.; Mangmool, S.; Thongpraditchote, S.; Wongkrajang, Y.; Gritsanapan, W. Maximizing Total Phenolics, Total Flavonoids Contents and Antioxidant Activity of Moringa Oleifera Leaf Extract by the Appropriate Extraction Method. Ind. Crops Prod. 2013, 44, 566–571. [Google Scholar] [CrossRef]
- Corbo, M.R.; Speranza, B.; Filippone, A.; Granatiero, S.; Conte, A.; Sinigaglia, M.; Del Nobile, M.A. Study on the Synergic Effect of Natural Compounds on the Microbial Quality Decay of Packed Fish Hamburger. Int. J. Food Microbiol. 2008, 127, 261–267. [Google Scholar] [CrossRef]
- Bitencourt, C.M.; Fávaro-Trindade, C.S.; Sobral, P.J.A.; Carvalho, R.A. Gelatin-Based Films Additivated with Curcuma Ethanol Extract: Antioxidant Activity and Physical Properties of Films. Food Hydrocoll. 2014, 40, 145–152. [Google Scholar] [CrossRef]
- u Nisa, I.; Ashwar, B.A.; Shah, A.; Gani, A.; Gani, A.; Masoodi, F.A. Development of Potato Starch Based Active Packaging Films Loaded with Antioxidants and Its Effect on Shelf Life of Beef. J. Food Sci. Technol. 2015, 52, 7245–7253. [Google Scholar] [CrossRef]
- López de Dicastillo, C.; Bustos, F.; Guarda, A.; Galotto, M.J. Cross-Linked Methyl Cellulose Films with Murta Fruit Extract for Antioxidant and Antimicrobial Active Food Packaging. Food Hydrocoll. 2016, 60, 335–344. [Google Scholar] [CrossRef]
- Ciannamea, E.M.; Stefani, P.M.; Ruseckaite, R.A. Properties and Antioxidant Activity of Soy Protein Concentrate Films Incorporated with Red Grape Extract Processed by Casting and Compression Molding. LWT 2016, 74, 353–362. [Google Scholar] [CrossRef]
- Ahmed, M.; Verma, A.K.; Patel, R. Physiochemical, Antioxidant, and Food Simulant Release Properties of Collagen-carboxymethyl Cellulose Films Enriched with Berberis lyceum Root Extract for Biodegradable Active Food Packaging. J. Food Process Preserv. 2022, 46, e16485. [Google Scholar] [CrossRef]
- Norajit, K.; Kim, K.M.; Ryu, G.H. Comparative Studies on the Characterization and Antioxidant Properties of Biodegradable Alginate Films Containing Ginseng Extract. J. Food Eng. 2010, 98, 377–384. [Google Scholar] [CrossRef]
- Abugoch, L.E.; Tapia, C.; Villamán, M.C.; Yazdani-Pedram, M.; Díaz-Dosque, M. Characterization of Quinoa Protein–Chitosan Blend Edible Films. Food Hydrocoll. 2011, 25, 879–886. [Google Scholar] [CrossRef]
- Hoque, M.d.S.; Benjakul, S.; Prodpran, T. Properties of Film from Cuttlefish (Sepia pharaonis) Skin Gelatin Incorporated with Cinnamon, Clove and Star Anise Extracts. Food Hydrocoll. 2011, 25, 1085–1097. [Google Scholar] [CrossRef]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef]
- Requena, R.; Vargas, M.; Chiralt, A. Release Kinetics of Carvacrol and Eugenol from Poly(Hydroxybutyrate-Co-Hydroxyvalerate) (PHBV) Films for Food Packaging Applications. Eur. Polym. J. 2017, 92, 185–193. [Google Scholar] [CrossRef]
- Becerril, R.; Nerín, C.; Silva, F. Encapsulation Systems for Antimicrobial Food Packaging Components: An Update. Molecules 2020, 25, 1134. [Google Scholar] [CrossRef]
- Doolaege, E.H.A.; Vossen, E.; Raes, K.; De Meulenaer, B.; Verhé, R.; Paelinck, H.; De Smet, S. Effect of Rosemary Extract Dose on Lipid Oxidation, Colour Stability and Antioxidant Concentrations, in Reduced Nitrite Liver Pâtés. Meat Sci. 2012, 90, 925–931. [Google Scholar] [CrossRef]
- De La Torre, J.E.; Gassara, F.; Kouassi, A.P.; Brar, S.K.; Belkacemi, K. Spice Use in Food: Properties and Benefits. Crit. Rev. Food Sci. Nutr. 2017, 57, 1078–1088. [Google Scholar] [CrossRef]
- Stojanovic, R.; Belscak-Cvitanovic, A.; Manojlovic, V.; Komes, D.; Nedovic, V.; Bugarski, B. Encapsulation of Thyme (Thymus serpyllum L.) Aqueous Extract in Calcium Alginate Beads. J. Sci. Food Agric. 2012, 92, 685–696. [Google Scholar] [CrossRef]
- Gallego, M.G.; Gordon, M.H.; Segovia, F.J.; Skowyra, M.; Almajano, M.P. Antioxidant Properties of Three Aromatic Herbs (Rosemary, Thyme and Lavender) in Oil-in-Water Emulsions. J. Am. Oil Chem. Soc. 2013, 90, 1559–1568. [Google Scholar] [CrossRef]
- Talón, E.; Trifkovic, K.T.; Nedovic, V.A.; Bugarski, B.M.; Vargas, M.; Chiralt, A.; González-Martínez, C. Antioxidant Edible Films Based on Chitosan and Starch Containing Polyphenols from Thyme Extracts. Carbohydr. Polym. 2017, 157, 1153–1161. [Google Scholar] [CrossRef]
- Bonilla, J.; Sobral, P.J.A. Investigation of the Physicochemical, Antimicrobial and Antioxidant Properties of Gelatin-Chitosan Edible Film Mixed with Plant Ethanolic Extracts. Food Biosci. 2016, 16, 17–25. [Google Scholar] [CrossRef]
- Mei, J.; Yuan, Y.; Wu, Y.; Li, Y. Characterization of Edible Starch–Chitosan Film and Its Application in the Storage of Mongolian Cheese. Int. J. Biol. Macromol. 2013, 57, 17–21. [Google Scholar] [CrossRef]
- Huang, J.; Huang, K.; Liu, S.; Luo, Q.; Xu, M. Adsorption Properties of Tea Polyphenols onto Three Polymeric Adsorbents with Amide Group. J. Colloid. Interface Sci. 2007, 315, 407–414. [Google Scholar] [CrossRef]
- Bañón, S.; Díaz, P.; Rodríguez, M.; Garrido, M.D.; Price, A. Ascorbate, Green Tea and Grape Seed Extracts Increase the Shelf Life of Low Sulphite Beef Patties. Meat Sci. 2007, 77, 626–633. [Google Scholar] [CrossRef]
- Cano, A.; Andres, M.; Chiralt, A.; González-Martinez, C. Use of Tannins to Enhance the Functional Properties of Protein Based Films. Food Hydrocoll. 2020, 100, 105443. [Google Scholar] [CrossRef]
- Borzi, F.; Torrieri, E.; Wrona, M.; Nerín, C. Polyamide Modified with Green Tea Extract for Fresh Minced Meat Active Packaging Applications. Food Chem. 2019, 300, 125242. [Google Scholar] [CrossRef] [PubMed]
- Bubonja-Sonje, M.; Giacometti, J.; Abram, M. Antioxidant and Antilisterial Activity of Olive Oil, Cocoa and Rosemary Extract Polyphenols. Food Chem. 2011, 127, 1821–1827. [Google Scholar] [CrossRef]
- Li, J.H.; Miao, J.; Wu, J.L.; Chen, S.F.; Zhang, Q.Q. Preparation and Characterization of Active Gelatin-Based Films Incorporated with Natural Antioxidants. Food Hydrocoll. 2014, 37, 166–173. [Google Scholar] [CrossRef]
- Fernández-López, J.; Zhi, N.; Aleson-Carbonell, L.; Pérez-Alvarez, J.A.; Kuri, V. Antioxidant and Antibacterial Activities of Natural Extracts: Application in Beef Meatballs. Meat Sci. 2005, 69, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Di Ottavio, F.; Gauglitz, J.M.; Ernst, M.; Panitchpakdi, M.W.; Fanti, F.; Compagnone, D.; Dorrestein, P.C.; Sergi, M. A UHPLC-HRMS Based Metabolomics and Chemoinformatics Approach to Chemically Distinguish ‘Super Foods’ from a Variety of Plant-Based Foods. Food Chem. 2020, 313, 126071. [Google Scholar] [CrossRef] [PubMed]
- Llorent-Martínez, E.J.; Fernández-de Córdova, M.L.; Ortega-Barrales, P.; Ruiz-Medina, A. Characterization and Comparison of the Chemical Composition of Exotic Superfoods. Microchem. J. 2013, 110, 444–451. [Google Scholar] [CrossRef]
- Pranoto, Y.; Salokhe, V.M.; Rakshit, S.K. Physical and Antibacterial Properties of Alginate-Based Edible Film Incorporated with Garlic Oil. Food Res. Int. 2005, 38, 267–272. [Google Scholar] [CrossRef]
- Atarés, L.; Pérez-Masiá, R.; Chiralt, A. The Role of Some Antioxidants in the HPMC Film Properties and Lipid Protection in Coated Toasted Almonds. J. Food Eng. 2011, 104, 649–656. [Google Scholar] [CrossRef]
- Radha Krishnan, K.; Babuskin, S.; Rakhavan, K.R.R.; Tharavin, R.; Azhagu Saravana Babu, P.; Sivarajan, M.; Sukumar, M.; Krishnan, K.R.; Babuskin, S.; Rakhavan, K.R.R.; et al. Potential Application of Corn Starch Edible Films with Spice Essential Oils for the Shelf Life Extension of Red Meat. J. Appl. Microbiol. 2015, 119, 1613–1623. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, M.V.; Ortega-Ramirez, L.A.; Silva-Espinoza, B.A.; Gonzalez-Aguilar, G.A.; Ayala-Zavala, J.F. Antimicrobial, Antioxidant, and Sensorial Impacts of Oregano and Rosemary Essential Oils over Broccoli Florets. J. Food Process Preserv. 2019, 43, e13889. [Google Scholar] [CrossRef]
- Atarés, L.; Bonilla, J.; Chiralt, A. Characterization of Sodium Caseinate-Based Edible Films Incorporated with Cinnamon or Ginger Essential Oils. J. Food Eng. 2010, 100, 678–687. [Google Scholar] [CrossRef]
- Bhatia, S.; Al-Harrasi, A.; Alhadhrami, A.S.; Shah, Y.A.; Kotta, S.; Iqbal, J.; Anwer, M.K.; Nair, A.K.; Koca, E.; Aydemir, L.Y. Physical, Chemical, Barrier, and Antioxidant Properties of Pectin/Collagen Hydrogel-Based Films Enriched with Melissa officinalis. Gels 2023, 9, 511. [Google Scholar] [CrossRef] [PubMed]
- Siripatrawan, U.; Noipha, S. Active Film from Chitosan Incorporating Green Tea Extract for Shelf Life Extension of Pork Sausages. Food Hydrocoll. 2012, 27, 102–108. [Google Scholar] [CrossRef]
- Günlü, A.; Koyun, E. Effects of Vacuum Packaging and Wrapping with Chitosan-Based Edible Film on the Extension of the Shelf Life of Sea Bass (Dicentrarchus labrax) Fillets in Cold Storage (4 °C). Food Bioproc Tech. 2013, 6, 1713–1719. [Google Scholar] [CrossRef]
- Castro, F.V.R.; Andrade, M.A.; Sanches Silva, A.; Vaz, M.F.; Vilarinho, F. The Contribution of a Whey Protein Film Incorporated with Green Tea Extract to Minimize the Lipid Oxidation of Salmon (Salmo salar L.). Foods 2019, 8, 327. [Google Scholar] [CrossRef]
- Qin, Y.-Y.; Yang, J.-Y.; Lu, H.-B.; Wang, S.-S.; Yang, J.; Yang, X.-C.; Chai, M.; Li, L.; Cao, J.-X. Effect of Chitosan Film Incorporated with Tea Polyphenol on Quality and Shelf Life of Pork Meat Patties. Int. J. Biol. Macromol. 2013, 61, 312–316. [Google Scholar] [CrossRef]
- Kuorwel, K.K.; Cran, M.J.; Sonneveld, K.; Miltz, J.; Bigger, S.W. Physico-Mechanical Properties of Starch-Based Films Containing Naturally Derived Antimicrobial Agents. Packag. Technol. Sci. 2014, 27, 149–159. [Google Scholar] [CrossRef]
- Chen, J.; Wu, A.; Yang, M.; Ge, Y.; Pristijono, P.; Li, J.; Xu, B.; Mi, H. Characterization of Sodium Alginate-Based Films Incorporated with Thymol for Fresh-Cut Apple Packaging. Food Control 2021, 126, 108063. [Google Scholar] [CrossRef]
- Nisar, T.; Wang, Z.-C.; Alim, A.; Iqbal, M.; Yang, X.; Sun, L.; Guo, Y. Citrus Pectin Films Enriched with Thinned Young Apple Polyphenols for Potential Use as Bio-Based Active Packaging. CyTA-J. Food 2019, 17, 695–705. [Google Scholar] [CrossRef]
- Su, X.; Yang, Z.; Tan, K.B.; Chen, J.; Huang, J.; Li, Q. Preparation and Characterization of Ethyl Cellulose Film Modified with Capsaicin. Carbohydr. Polym. 2020, 241, 116259. [Google Scholar] [CrossRef] [PubMed]
- Sedlarikova, J.; Janalikova, M.; Peer, P.; Pavlatkova, L.; Minarik, A.; Pleva, P. Zein-Based Films Containing Monolaurin/Eugenol or Essential Oils with Potential for Bioactive Packaging Application. Int. J. Mol. Sci. 2021, 23, 384. [Google Scholar] [CrossRef] [PubMed]
- Tao, R.; Sedman, J.; Ismail, A. Characterization and in Vitro Antimicrobial Study of Soy Protein Isolate Films Incorporating Carvacrol. Food Hydrocoll. 2022, 122, 107091. [Google Scholar] [CrossRef]
- Tang, P.; Zheng, T.; Yang, C.; Li, G. Enhanced Physicochemical and Functional Properties of Collagen Films Cross-Linked with Laccase Oxidized Phenolic Acids for Active Edible Food Packaging. Food Chem. 2022, 393, 133353. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Rhim, J.-W. Preparation of Antimicrobial and Antioxidant Gelatin/Curcumin Composite Films for Active Food Packaging Application. Colloids Surf. B Biointerfaces 2020, 188, 110761. [Google Scholar] [CrossRef] [PubMed]
- de Moraes Crizel, T.; de Oliveira Rios, A.; Alves, V.D.; Bandarra, N.; Moldão-Martins, M.; Hickmann Flôres, S. Active Food Packaging Prepared with Chitosan and Olive Pomace. Food Hydrocoll. 2018, 74, 139–150. [Google Scholar] [CrossRef]
- Santos, L.G.; Silva, G.F.A.; Gomes, B.M.; Martins, V.G. A Novel Sodium Alginate Active Films Functionalized with Purple Onion Peel Extract (Allium cepa). Biocatal. Agric. Biotechnol. 2021, 35, 102096. [Google Scholar] [CrossRef]
- Bernhardt, D.C.; Pérez, C.D.; Fissore, E.N.; De’Nobili, M.D.; Rojas, A.M. Pectin-Based Composite Film: Effect of Corn Husk Fiber Concentration on Their Properties. Carbohydr. Polym. 2017, 164, 13–22. [Google Scholar] [CrossRef]
- Leon-Bejarano, M.; Durmus, Y.; Ovando-Martínez, M.; Simsek, S. Physical, Barrier, Mechanical, and Biodegradability Properties of Modified Starch Films with Nut By-Products Extracts. Foods 2020, 9, 226. [Google Scholar] [CrossRef]
- Nair, M.S.; Saxena, A.; Kaur, C. Effect of Chitosan and Alginate Based Coatings Enriched with Pomegranate Peel Extract to Extend the Postharvest Quality of Guava (Psidium guajava L.). Food Chem. 2018, 240, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Łopusiewicz, Ł.; Drozłowska, E.; Trocer, P.; Kostek, M.; Śliwiński, M.; Henriques, M.H.F.; Bartkowiak, A.; Sobolewski, P. Whey Protein Concentrate/Isolate Biofunctional Films Modified with Melanin from Watermelon (Citrullus lanatus) Seeds. Materials 2020, 13, 3876. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Yu, M.; Wang, L. Preparation and Characterization of Antioxidant Soy Protein Isolate Films Incorporating Licorice Residue Extract. Food Hydrocoll. 2018, 75, 13–21. [Google Scholar] [CrossRef]
- Jirukkakul, N.; Sodtipinta, J. Effects of the Tomato Pomace Oil Extract on the Physical and Antioxidant Properties of Gelatin Films. ETP Int. J. Food Eng. 2017, 3, 1–5. [Google Scholar] [CrossRef]
- Bhargava, N.; Sharanagat, V.S.; Mor, R.S.; Kumar, K. Active and Intelligent Biodegradable Packaging Films Using Food and Food Waste-Derived Bioactive Compounds: A Review. Trends Food Sci. Technol. 2020, 105, 385–401. [Google Scholar] [CrossRef]
- Jönsson, L.J.; Martín, C. Pretreatment of Lignocellulose: Formation of Inhibitory by-Products and Strategies for Minimizing Their Effects. Bioresour. Technol. 2016, 199, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Romani, V.P.; Hernández, C.P.; Martins, V.G. Pink Pepper Phenolic Compounds Incorporation in Starch/Protein Blends and Its Potential to Inhibit Apple Browning. Food Packag. Shelf Life 2018, 15, 151–158. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Sanchez-Zapata, E.; Sayas-Barberá, E.; Sendra, E.; Pérez-Álvarez, J.A.; Fernández-López, J. Tomato and Tomato Byproducts. Human Health Benefits of Lycopene and Its Application to Meat Products: A Review. Crit. Rev. Food Sci. Nutr. 2014, 54, 1032–1049. [Google Scholar] [CrossRef]
- Corrêa-Filho, L.; Lourenço, S.; Duarte, D.; Moldão-Martins, M.; Alves, V. Microencapsulation of Tomato (Solanum lycopersicum L.) Pomace Ethanolic Extract by Spray Drying: Optimization of Process Conditions. Appl. Sci. 2019, 9, 612. [Google Scholar] [CrossRef]
- Brewer, M.S. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Chedea, V.S.; Braicu, C.; Socaciu, C. Antioxidant/Prooxidant Activity of a Polyphenolic Grape Seed Extract. Food Chem. 2010, 121, 132–139. [Google Scholar] [CrossRef]
- Irkin, R.; Esmer, O.K. Novel Food Packaging Systems with Natural Antimicrobial Agents. J. Food Sci. Technol. 2015, 52, 6095–6111. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.R.; Gokulakrishnan, P.; Giriprasad, R.; Yatoo, M.A. Fruit-Based Natural Antioxidants in Meat and Meat Products: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1503–1513. [Google Scholar] [CrossRef] [PubMed]
- Simonetti, G.; Buiarelli, F.; Bernardini, F.; Di Filippo, P.; Riccardi, C.; Pomata, D. Profile of Free and Conjugated Quercetin Content in Different Italian Wines. Food Chem. 2022, 382, 132377. [Google Scholar] [CrossRef] [PubMed]
- Xi, J.; He, L.; Yan, L. Continuous Extraction of Phenolic Compounds from Pomegranate Peel Using High Voltage Electrical Discharge. Food Chem. 2017, 230, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Kanmani, P.; Rhim, J.-W. Development and Characterization of Carrageenan/Grapefruit Seed Extract Composite Films for Active Packaging. Int. J. Biol. Macromol. 2014, 68, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Qu, W.; Huang, K.; Guo, F.; Yang, J.; Zhao, H.; Luo, Y. Antibacterial Effect of Grapefruit Seed Extract on Food-Borne Pathogens and Its Application in the Preservation of Minimally Processed Vegetables. Postharvest Biol. Technol. 2007, 45, 126–133. [Google Scholar] [CrossRef]
- Rubio-Senent, F.; Rodríguez-Gutiérrez, G.; Lama-Muñoz, A.; Fernández-Bolaños, J. Pectin Extracted from Thermally Treated Olive Oil By-Products: Characterization, Physico-Chemical Properties, in Vitro Bile Acid and Glucose Binding. Food Hydrocoll. 2015, 43, 311–321. [Google Scholar] [CrossRef]
- Sciubba, F.; Chronopoulou, L.; Pizzichini, D.; Lionetti, V.; Fontana, C.; Aromolo, R.; Socciarelli, S.; Gambelli, L.; Bartolacci, B.; Finotti, E.; et al. Olive Mill Wastes: A Source of Bioactive Molecules for Plant Growth and Protection against Pathogens. Biology 2020, 9, 450. [Google Scholar] [CrossRef]
- Sagar, N.A.; Pareek, S. Fortification of Multigrain Flour with Onion Skin Powder as a Natural Preservative: Effect on Quality and Shelf Life of the Bread. Food Biosci. 2021, 41, 100992. [Google Scholar] [CrossRef]
- Sagar, N.A.; Pareek, S.; Sharma, S.; Yahia, E.M.; Lobo, M.G. Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 512–531. [Google Scholar] [CrossRef] [PubMed]
- Chernukha, I.; Fedulova, L.; Vasilevskaya, E.; Kulikovskii, A.; Kupaeva, N.; Kotenkova, E. Antioxidant Effect of Ethanolic Onion (Allium cepa) Husk Extract in Ageing Rats. Saudi J. Biol. Sci. 2021, 28, 2877–2885. [Google Scholar] [CrossRef] [PubMed]
- Chernukha, I.; Kupaeva, N.; Kotenkova, E.; Khvostov, D. Differences in Antioxidant Potential of Allium cepa Husk of Red, Yellow, and White Varieties. Antioxidants 2022, 11, 1243. [Google Scholar] [CrossRef] [PubMed]
- Chawla, P.; Sridhar, K.; Kumar, A.; Sarangi, P.K.; Bains, A.; Sharma, M. Production of Nanocellulose from Corn Husk for the Development of Antimicrobial Biodegradable Packaging Film. Int. J. Biol. Macromol. 2023, 242, 124805. [Google Scholar] [CrossRef] [PubMed]
- Magagula, L.P.; Masemola, C.M.; Ballim, M.A.; Tetana, Z.N.; Moloto, N.; Linganiso, E.C. Lignocellulosic Biomass Waste-Derived Cellulose Nanocrystals and Carbon Nanomaterials: A Review. Int. J. Mol. Sci. 2022, 23, 4310. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Weng, Z.; Zheng, H.; Xu, M.; Liang, X.; Duan, J. Preparation and Characterization of Active Oxidized Starch Films Containing Licorice Residue Extracts and Its Potential against Methicillin-Resistant S. Aureus. Int. J. Biol. Macromol. 2021, 187, 858–866. [Google Scholar] [CrossRef]
- Tauferova, A.; Pospiech, M.; Javurkova, Z.; Tremlova, B.; Dordevic, D.; Jancikova, S.; Tesikova, K.; Zdarsky, M.; Vitez, T.; Vitezova, M. Plant Byproducts as Part of Edible Coatings: A Case Study with Parsley, Grape and Blueberry Pomace. Polymers 2021, 13, 2578. [Google Scholar] [CrossRef] [PubMed]
- Villalobos-Delgado, L.H.; Nevárez-Moorillon, G.V.; Caro, I.; Quinto, E.J.; Mateo, J. Natural Antimicrobial Agents to Improve Foods Shelf Life. In Food Quality and Shelf Life; Elsevier: Amsterdam, The Netherlands, 2019; pp. 125–157. [Google Scholar]
- Zacharof, M.P.; Lovitt, R.W. Bacteriocins Produced by Lactic Acid Bacteria a Review Article. APCBEE Procedia 2012, 2, 50–56. [Google Scholar] [CrossRef]
- Verma, D.K.; Thakur, M.; Singh, S.; Tripathy, S.; Gupta, A.K.; Baranwal, D.; Patel, A.R.; Shah, N.; Utama, G.L.; Niamah, A.K.; et al. Bacteriocins as Antimicrobial and Preservative Agents in Food: Biosynthesis, Separation and Application. Food Biosci. 2022, 46, 101594. [Google Scholar] [CrossRef]
- Wang, G.; Li, X.; Wang, Z. APD3: Antimicrobial Peptide Database. Available online: https://aps.unmc.edu/ (accessed on 13 May 2024).
- Darbandi, A.; Asadi, A.; Mahdizade Ari, M.; Ohadi, E.; Talebi, M.; Halaj Zadeh, M.; Darb Emamie, A.; Ghanavati, R.; Kakanj, M. Bacteriocins: Properties and Potential Use as Antimicrobials. J. Clin. Lab. Anal. 2022, 36, e24093. [Google Scholar] [CrossRef]
- Grosu-Tudor, S.-S.; Stancu, M.-M.; Pelinescu, D.; Zamfir, M. Characterization of Some Bacteriocins Produced by Lactic Acid Bacteria Isolated from Fermented Foods. World J. Microbiol. Biotechnol. 2014, 30, 2459–2469. [Google Scholar] [CrossRef] [PubMed]
- de Souza, E.L.; de Oliveira, K.Á.; de Oliveira, M.E. Influence of Lactic Acid Bacteria Metabolites on Physical and Chemical Food Properties. Curr. Opin. Food Sci. 2023, 49, 100981. [Google Scholar] [CrossRef]
- Cleveland, J.; Montville, T.J.; Nes, I.F.; Chikindas, M.L. Bacteriocins: Safe, Natural Antimicrobials for Food Preservation. Int. J. Food Microbiol. 2001, 71, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.P.M.; Teixeira, J.A.; Silva, C.C.G. Recent Advances in the Use of Edible Films and Coatings with Probiotic and Bacteriocin-Producing Lactic Acid Bacteria. Food Biosci. 2023, 56, 103196. [Google Scholar] [CrossRef]
- Negash, A.W.; Tsehai, B.A. Current Applications of Bacteriocin. Int. J. Microbiol. 2020, 2020, 4374891. [Google Scholar] [CrossRef] [PubMed]
- Balciunas, E.M.; Castillo Martinez, F.A.; Todorov, S.D.; Franco, B.D.G.d.M.; Converti, A.; Oliveira, R.P. de S. Novel Biotechnological Applications of Bacteriocins: A Review. Food Control 2013, 32, 134–142. [Google Scholar] [CrossRef]
- Ibrahim, S.A.; Ayivi, R.D.; Zimmerman, T.; Siddiqui, S.A.; Altemimi, A.B.; Fidan, H.; Esatbeyoglu, T.; Bakhshayesh, R.V. Lactic Acid Bacteria as Antimicrobial Agents: Food Safety and Microbial Food Spoilage Prevention. Foods 2021, 10, 3131. [Google Scholar] [CrossRef] [PubMed]
- Zimina, M.; Babich, O.; Prosekov, A.; Sukhikh, S.; Ivanova, S.; Shevchenko, M.; Noskova, S. Overview of Global Trends in Classification, Methods of Preparation and Application of Bacteriocins. Antibiotics 2020, 9, 553. [Google Scholar] [CrossRef] [PubMed]
- Acedo, J.Z.; Chiorean, S.; Vederas, J.C.; van Belkum, M.J. The Expanding Structural Variety among Bacteriocins from Gram-Positive Bacteria. FEMS Microbiol. Rev. 2018, 42, 805–828. [Google Scholar] [CrossRef]
- El-Saber Batiha, G.; Hussein, D.E.; Algammal, A.M.; George, T.T.; Jeandet, P.; Al-Snafi, A.E.; Tiwari, A.; Pagnossa, J.P.; Lima, C.M.; Thorat, N.D.; et al. Application of Natural Antimicrobials in Food Preservation: Recent Views. Food Control 2021, 126, 108066. [Google Scholar] [CrossRef]
- Jia, W.; Wu, X.; Li, R.; Liu, S.; Shi, L. Effect of Nisin and Potassium Sorbate Additions on Lipids and Nutritional Quality of Tan Sheep Meat. Food Chem. 2021, 365, 130535. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S.; Bharti, A. Evaluating the Antimicrobial Activity of Nisin, Lysozyme and Ethylenediaminetetraacetate Incorporated in Starch Based Active Food Packaging Film. J. Food Sci. Technol. 2015, 52, 3504–3512. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Oh, D.-H. Integration of Nisin into Nanoparticles for Application in Foods. Innov. Food Sci. Emerg. Technol. 2016, 34, 376–384. [Google Scholar] [CrossRef]
- Penna, T.C.V.; Moraes, D.A.; Fajardo, D.N. The Effect of Nisin on Growth Kinetics from Activated Bacillus cereus Spores in Cooked Rice and in Milk. J. Food Prot. 2002, 65, 419–422. [Google Scholar] [CrossRef]
- And, H.C.; Hoover, D.G. Bacteriocins and Their Food Applications. Compr. Rev. Food Sci. Food Saf. 2003, 2, 82–100. [Google Scholar] [CrossRef] [PubMed]
- Sobrino-López, A.; Martín-Belloso, O. Use of Nisin and Other Bacteriocins for Preservation of Dairy Products. Int. Dairy. J. 2008, 18, 329–343. [Google Scholar] [CrossRef]
- Porto, M.C.W.; Kuniyoshi, T.M.; Azevedo, P.O.S.; Vitolo, M.; Oliveira, R.P.S. Pediococcus spp.: An Important Genus of Lactic Acid Bacteria and Pediocin Producers. Biotechnol. Adv. 2017, 35, 361–374. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, J.M.; Martínez, M.I.; Kok, J. Pediocin PA-1, a Wide-Spectrum Bacteriocin from Lactic Acid Bacteria. Crit. Rev. Food Sci. Nutr. 2002, 42, 91–121. [Google Scholar] [CrossRef] [PubMed]
- Niamah, A.K. Structure, Mode of Action and Application of Pediocin Natural Antimicrobial Food Preservative: A Review. Basrah J. Agric. Sci. 2018, 31, 59–69. [Google Scholar] [CrossRef]
- Santos, J.C.P.; Sousa, R.C.S.; Otoni, C.G.; Moraes, A.R.F.; Souza, V.G.L.; Medeiros, E.A.A.; Espitia, P.J.P.; Pires, A.C.S.; Coimbra, J.S.R.; Soares, N.F.F. Nisin and Other Antimicrobial Peptides: Production, Mechanisms of Action, and Application in Active Food Packaging. Innov. Food Sci. Emerg. Technol. 2018, 48, 179–194. [Google Scholar] [CrossRef]
- Mehta, R.; Arya, R.; Goyal, K.; Singh, M.; Sharma, A. Bio-Preservative and Therapeutic Potential of Pediocin: Recent Trends and Future Perspectives. Recent. Pat. Biotechnol. 2013, 7, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.P.M.; Teixeira, J.A.; Silva, C.C.G. Application of Enterocin-Whey Films to Reduce Listeria Monocytogenes Contamination on Ripened Cheese. Food Microbiol. 2023, 109, 104134. [Google Scholar] [CrossRef]
- Ribeiro, S.C.; Ross, R.P.; Stanton, C.; Silva, C.C.G. Characterization and Application of Antilisterial Enterocins on Model Fresh Cheese. J. Food Prot. 2017, 80, 1303–1316. [Google Scholar] [CrossRef] [PubMed]
- Guitián, M.V.; Ibarguren, C.; Soria, M.C.; Hovanyecz, P.; Banchio, C.; Audisio, M.C. Anti-Listeria Monocytogenes Effect of Bacteriocin-Incorporated Agar Edible Coatings Applied on Cheese. Int. Dairy. J. 2019, 97, 92–98. [Google Scholar] [CrossRef]
- Sanjurjo, K.; Flores, S.; Gerschenson, L.; Jagus, R. Study of the Performance of Nisin Supported in Edible Films. Food Res. Int. 2006, 39, 749–754. [Google Scholar] [CrossRef]
- Ku, K.; Song, K. Bin Physical Properties of Nisin-Incorporated Gelatin and Corn Zein Films and Antimicrobial Activity against Listeria Monocytogenes. J. Microbiol. Biotechnol. 2007, 17, 520–523. [Google Scholar] [PubMed]
- Santiago-Silva, P.; Soares, N.F.F.; Nóbrega, J.E.; Júnior, M.A.W.; Barbosa, K.B.F.; Volp, A.C.P.; Zerdas, E.R.M.A.; Würlitzer, N.J. Antimicrobial Efficiency of Film Incorporated with Pediocin (ALTA® 2351) on Preservation of Sliced Ham. Food Control 2009, 20, 85–89. [Google Scholar] [CrossRef]
- Espitia, P.J.P.; Pacheco, J.J.R.; de Melo, N.R.; Soares, N.d.F.F.; Durango, A.M. Packaging Properties and Control of Listeria Monocytogenes in Bologna by Cellulosic Films Incorporated with Pediocin. Braz. J. Food Technol. 2013, 16, 226–235. [Google Scholar] [CrossRef]
- Pranoto, Y.; Rakshit, S.K.; Salokhe, V.M. Enhancing Antimicrobial Activity of Chitosan Films by Incorporating Garlic Oil, Potassium Sorbate and Nisin. LWT-Food Sci. Technol. 2005, 38, 859–865. [Google Scholar] [CrossRef]
- Luciano, C.G.; Tessaro, L.; Lourenço, R.V.; Bittante, A.M.Q.B.; Fernandes, A.M.; Moraes, I.C.F.; do Amaral Sobral, P.J. Effects of Nisin Concentration on Properties of Gelatin Film-forming Solutions and Their Films. Int. J. Food Sci. Technol. 2021, 56, 587–599. [Google Scholar] [CrossRef]
- Su Cha, D.; Choi, J.H.; Chinnan, M.S.; Park, H.J. Antimicrobial Films Based on Na-Alginate and κ-Carrageenan. LWT 2002, 35, 715–719. [Google Scholar] [CrossRef]
- Kaewprachu, P.; Ben Amara, C.; Oulahal, N.; Gharsallaoui, A.; Joly, C.; Tongdeesoontorn, W.; Rawdkuen, S.; Degraeve, P. Gelatin Films with Nisin and Catechin for Minced Pork Preservation. Food Packag. Shelf Life 2018, 18, 173–183. [Google Scholar] [CrossRef]
- Basch, C.Y.; Jagus, R.J.; Flores, S.K. Physical and Antimicrobial Properties of Tapioca Starch-HPMC Edible Films Incorporated with Nisin and/or Potassium Sorbate. Food Bioproc Tech. 2013, 6, 2419–2428. [Google Scholar] [CrossRef]
- Mei, J.; Yuan, Y.; Guo, Q.; Wu, Y.; Li, Y.; Yu, H. Characterization and Antimicrobial Properties of Water Chestnut Starch-Chitosan Edible Films. Int. J. Biol. Macromol. 2013, 61, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; El-Fahmy, S.; Revol-Junelles, A.-M.; Desobry, S. Cellulose Derivative Based Active Coatings: Effects of Nisin and Plasticizer on Physico-Chemical and Antimicrobial Properties of Hydroxypropyl Methylcellulose Films. Carbohydr. Polym. 2010, 81, 219–225. [Google Scholar] [CrossRef]
- Remedio, L.N.; Silva dos Santos, J.W.; Vieira Maciel, V.B.; Yoshida, C.M.P.; Aparecida de Carvalho, R. Characterization of Active Chitosan Films as a Vehicle of Potassium Sorbate or Nisin Antimicrobial Agents. Food Hydrocoll. 2019, 87, 830–838. [Google Scholar] [CrossRef]
- Ollé Resa, C.P.; Jagus, R.J.; Gerschenson, L.N. Effect of Natamycin, Nisin and Glycerol on the Physicochemical Properties, Roughness and Hydrophobicity of Tapioca Starch Edible Films. Mater. Sci. Eng. C 2014, 40, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Tapia-Blácido, D.R.; da Silva Ferreira, M.E.; Aguilar, G.J.; Lemos Costa, D.J. Biodegradable Packaging Antimicrobial Activity. In Processing and Development of Polysaccharide-Based Biopolymers for Packaging Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 207–238. [Google Scholar]
- Cha, D.S.; Chinnan, M.S. Biopolymer-Based Antimicrobial Packaging: A Review. Crit. Rev. Food Sci. Nutr. 2004, 44, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Jafarzadeh, S.; Jafari, S.M.; Salehabadi, A.; Nafchi, A.M.; Uthaya Kumar, U.S.; Khalil, H.P.S.A. Biodegradable Green Packaging with Antimicrobial Functions Based on the Bioactive Compounds from Tropical Plants and Their By-Products. Trends Food Sci. Technol. 2020, 100, 262–277. [Google Scholar] [CrossRef]
- Varghese, S.A.; Siengchin, S.; Parameswaranpillai, J. Essential Oils as Antimicrobial Agents in Biopolymer-Based Food Packaging—A Comprehensive Review. Food Biosci. 2020, 38, 100785. [Google Scholar] [CrossRef]
- Duran, M.; Aday, M.S.; Zorba, N.N.D.; Temizkan, R.; Büyükcan, M.B.; Caner, C. Potential of Antimicrobial Active Packaging ‘Containing Natamycin, Nisin, Pomegranate and Grape Seed Extract in Chitosan Coating’ to Extend Shelf Life of Fresh Strawberry. Food Bioprod. Process. 2016, 98, 354–363. [Google Scholar] [CrossRef]
- Saeed, F.; Afzaal, M.; Tufail, T.; Ahmad, A. Use of Natural Antimicrobial Agents: A Safe Preservation Approach. In Active Antimicrobial Food Packaging; IntechOpen: London, UK, 2019; p. 18. [Google Scholar]
- Ramos-Villarroel, A.Y.; Soliva-Fortuny, R.; Martin-Belloso, O. Natural Antimicrobials for Food Processing. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2010, 5, 211–227. [Google Scholar] [CrossRef]
- Fuglsang, C.C.; Johansen, C.; Christgau, S.; Adler-Nissen, J. Antimicrobial Enzymes: Applications and Future Potential in the Food Industry. Trends Food Sci. Technol. 1995, 6, 390–396. [Google Scholar] [CrossRef]
- Thallinger, B.; Prasetyo, E.N.; Nyanhongo, G.S.; Guebitz, G.M. Antimicrobial Enzymes: An Emerging Strategy to Fight Microbes and Microbial Biofilms. Biotechnol. J. 2013, 8, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Stiefel, P.; Mauerhofer, S.; Schneider, J.; Maniura-Weber, K.; Rosenberg, U.; Ren, Q. Enzymes Enhance Biofilm Removal Efficiency of Cleaners. Antimicrob. Agents Chemother. 2016, 60, 3647–3652. [Google Scholar] [CrossRef]
- Stopforth, J.; Kudron, T. Naturally Occurring Compounds—Animal Sources. In Antimicrobials in Food; Davidson, P.M., Taylor, T.M., David, J.R.D., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 595–645. [Google Scholar]
- Maidment, C.; Dyson, A.; Beard, J. A Study into Measuring the Antibacterial Activity of Lysozyme-containing Foods. Nutr. Food Sci. 2009, 39, 29–35. [Google Scholar] [CrossRef]
- Huang, H.; Du, J.; Li, S.-W.; Gong, T. Identification and Functional Analysis of a Lysozyme Gene from Coridius chinensis (Hemiptera: Dinidoridae). Biology 2021, 10, 330. [Google Scholar] [CrossRef] [PubMed]
- Ercan, D.; Demirci, A. Recent Advances for the Production and Recovery Methods of Lysozyme. Crit. Rev. Biotechnol. 2016, 36, 1078–1088. [Google Scholar] [CrossRef]
- Sousa, S.G.; Delgadillo, I.; Saraiva, J.A. Effect of Thermal Pasteurisation and High-Pressure Processing on Immunoglobulin Content and Lysozyme and Lactoperoxidase Activity in Human Colostrum. Food Chem. 2014, 151, 79–85. [Google Scholar] [CrossRef]
- Ragland, S.A.; Criss, A.K. From Bacterial Killing to Immune Modulation: Recent Insights into the Functions of Lysozyme. PLoS Pathog. 2017, 13, e1006512. [Google Scholar] [CrossRef]
- Bayarri, M.; Oulahal, N.; Degraeve, P.; Gharsallaoui, A. Properties of Lysozyme/Low Methoxyl (LM) Pectin Complexes for Antimicrobial Edible Food Packaging. J. Food Eng. 2014, 131, 18–25. [Google Scholar] [CrossRef]
- Bonomo, R.C.F.; Santos, T.A.; Santos, L.S.; da Costa Ilhéu Fontan, R.; Rodrigues, L.B.; dos Santos Pires, A.C.; Veloso, C.M.; Gandolfi, O.R.R.; Bonomo, P. Effect of the Incorporation of Lysozyme on the Properties of Jackfruit Starch Films. J. Polym. Environ. 2018, 26, 508–517. [Google Scholar] [CrossRef]
- Taylor, T.M.; Johnson, E.A.; Larson, A.E. Lysozyme. In Antimicrobials in Food; Davidson, P.M., Taylor, T.M., David, J.R.D., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 445–473. [Google Scholar]
- Lesnierowski, G.; Kijowski, J. Lysozyme. In Bioactive Egg Compounds; Springer: Berlin/Heidelberg, Germany, 2007; pp. 33–42. [Google Scholar]
- Silvetti, T.; Morandi, S.; Hintersteiner, M.; Brasca, M. Use of Hen Egg White Lysozyme in the Food Industry. In Egg Innovations and Strategies for Improvements; Elsevier: Amsterdam, The Netherlands, 2017; pp. 233–242. [Google Scholar]
- Leśnierowski, G. Lysozyme and Its Modified Forms: Properties, Potential for Its Production and Application. In Handbook of Eggs in Human Function; Watson, R.R., De Meester, F., Eds.; Wageningen Pers: Wageningen, The Netherlands, 2015; pp. 483–496. [Google Scholar]
- Appendini, P.; Hotchkiss, J.H. Immobilization of Lysozyme on Food Contact Polymers as Potential Antimicrobial Films. Packag. Technol. Sci. 1997, 10, 271–279. [Google Scholar] [CrossRef]
- Öztekin, A. Determination of Some Flavonoid Derivatives Inhibitory Effect on Bovine Milk Lactoperoxidase Enzyme. Turk. J. Sci. 2019, 4, 15–21. [Google Scholar]
- Pisoschi, A.M.; Pop, A.; Georgescu, C.; Turcuş, V.; Olah, N.K.; Mathe, E. An Overview of Natural Antimicrobials Role in Food. Eur. J. Med. Chem. 2018, 143, 922–935. [Google Scholar] [CrossRef]
- Wright, R.C.; Tramer, J. Factors Influencing the Activity of Cheese Starters. The Role of Milk Peroxidase. J. Dairy. Res. 1958, 25, 104–118. [Google Scholar] [CrossRef]
- Davidson, P.M.; Taylor, T.M.; David, J.R.D. (Eds.) Antimicrobials in Food, 4th ed.; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Köksal, Z.; Alim, Z. Lactoperoxidase, an Antimicrobial Enzyme, Is Inhibited by Some Indazoles. Drug Chem. Toxicol. 2020, 43, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Bafort, F.; Parisi, O.; Perraudin, J.-P.; Jijakli, M.H. Mode of Action of Lactoperoxidase as Related to Its Antimicrobial Activity: A Review. Enzym. Res. 2014, 2014, 517164. [Google Scholar] [CrossRef]
- Aprodu, I.; Stănciuc, N.; Dumitraşcu, L.; Râpeanu, G.; Stanciu, S. Investigations towards Understanding the Thermal Denaturation of Lactoperoxidase. Int. Dairy J. 2014, 38, 47–54. [Google Scholar] [CrossRef]
- Kussendrager, K.D.; van Hooijdonk, A.C.M. Lactoperoxidase: Physico-Chemical Properties, Occurrence, Mechanism of Action and Applications. Br. J. Nutr. 2000, 84, 19–25. [Google Scholar] [CrossRef]
- Ehsani, A.; Hashemi, M.; Aminzare, M.; Raeisi, M.; Afshari, A.; Mirza Alizadeh, A.; Rezaeigolestani, M. Comparative Evaluation of Edible Films Impregnated with Sage Essential Oil or Lactoperoxidase System: Impact on Chemical and Sensory Quality of Carp Burgers. J. Food Process Preserv. 2019, 43, e14070. [Google Scholar] [CrossRef]
- Jasour, M.S.; Ehsani, A.; Mehryar, L.; Naghibi, S.S. Chitosan Coating Incorporated with the Lactoperoxidase System: An Active Edible Coating for Fish Preservation. J. Sci. Food Agric. 2015, 95, 1373–1378. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Min, S.C. Antimicrobial Edible Defatted Soybean Meal-Based Films Incorporating the Lactoperoxidase System. LWT-Food Sci. Technol. 2013, 54, 42–50. [Google Scholar] [CrossRef]
- Shokri, S.; Ehsani, A.; Jasour, M.S. Efficacy of Lactoperoxidase System-Whey Protein Coating on Shelf-Life Extension of Rainbow Trout Fillets During Cold Storage (4 °C). Food Bioproc. Tech. 2015, 8, 54–62. [Google Scholar] [CrossRef]
- Mohamed, C.; Clementine, K.A.; Didier, M.; Gérard, L.; Marie Noëlle, D.-C. Antimicrobial and Physical Properties of Edible Chitosan Films Enhanced by Lactoperoxidase System. Food Hydrocoll. 2013, 30, 576–580. [Google Scholar] [CrossRef]
- Ehsani, A.; Hashemi, M.; Afshari, A.; Aminzare, M.; Raeisi, M.; Zeinali, T. Effect of Different Types of Active Biodegradable Films Containing Lactoperoxidase System or Sage Essential Oil on the Shelf Life of Fish Burger during Refrigerated Storage. LWT 2020, 117, 108633. [Google Scholar] [CrossRef]
- Molayi, R.; Ehsani, A.; Yousefi, M. The Antibacterial Effect of Whey Protein-Alginate Coating Incorporated with the Lactoperoxidase System on Chicken Thigh Meat. Food Sci. Nutr. 2018, 6, 878–883. [Google Scholar] [CrossRef] [PubMed]
- Schachter, H. Glycoproteins: Their Structure, Biosynthesis and Possible Clinical Implications. Clin. Biochem. 1984, 17, 3–14. [Google Scholar] [CrossRef]
- Tabasum, S.; Noreen, A.; Kanwal, A.; Zuber, M.; Anjum, M.N.; Zia, K.M. Glycoproteins Functionalized Natural and Synthetic Polymers for Prospective Biomedical Applications: A Review. Int. J. Biol. Macromol. 2017, 98, 748–776. [Google Scholar] [CrossRef]
- Park, J.-H.; Park, G.-T.; Cho, I.H.; Sim, S.-M.; Yang, J.-M.; Lee, D.-Y. An Antimicrobial Protein, Lactoferrin Exists in the Sweat: Proteomic Analysis of Sweat. Exp. Dermatol. 2011, 20, 369–371. [Google Scholar] [CrossRef]
- Legrand, D. Overview of Lactoferrin as a Natural Immune Modulator. J. Pediatr. 2016, 173, S10–S15. [Google Scholar] [CrossRef] [PubMed]
- Jahan, M.; Francis, N.; Wang, B. Milk Lactoferrin Concentration of Primiparous and Multiparous Sows during Lactation. J. Dairy Sci. 2020, 103, 7521–7530. [Google Scholar] [CrossRef] [PubMed]
- Gajda-Morszewski, P.; Śpiewak-Wojtyła, K.; Oszajca, M.; Brindell, M. Strategies for Oral Delivery of Metal-Saturated Lactoferrin. Curr. Protein Pept. Sci. 2019, 20, 1046–1051. [Google Scholar] [CrossRef] [PubMed]
- Lönnerdal, B. Nutritional and Physiologic Significance of Human Milk Proteins. Am. J. Clin. Nutr. 2003, 77, 1537S–1543S. [Google Scholar] [CrossRef] [PubMed]
- Zimecki, M.; Artym, J.; Kocięba, M.; Kaleta-Kuratewicz, K.; Kuropka, P.; Kuryszko, J.; Kruzel, M. Homologous Lactoferrin Triggers Mobilization of the Myelocytic Lineage of Bone Marrow in Experimental Mice. Stem Cells Dev. 2013, 22, 3261–3270. [Google Scholar] [CrossRef] [PubMed]
- Giansanti, F.; Panella, G.; Leboffe, L.; Antonini, G. Lactoferrin from Milk: Nutraceutical and Pharmacological Properties. Pharmaceuticals 2016, 9, 61. [Google Scholar] [CrossRef] [PubMed]
- Shimazaki, K.; Kawai, K. Advances in Lactoferrin Research Concerning Bovine Mastitis. Biochem. Cell Biol. 2017, 95, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Del Aguila, E.M.; Gomes, L.P.; Freitas, C.S.; Pereira, P.R.; Paschoalin, V.F. Natural Antimicrobials in Food Processing: Bacteriocins, Peptides and Chitooligosaccharides. Front. Anti-Infect. Drug Discov. 2017, 5, 55–108. [Google Scholar]
- Brown, C.A.; Wang, B.; Oh, J.-H. Antimicrobial Activity of Lactoferrin against Foodborne Pathogenic Bacteria Incorporated into Edible Chitosan Film. J. Food Prot. 2008, 71, 319–324. [Google Scholar] [CrossRef]
- Padrão, J.; Gonçalves, S.; Silva, J.P.; Sencadas, V.; Lanceros-Méndez, S.; Pinheiro, A.C.; Vicente, A.A.; Rodrigues, L.R.; Dourado, F. Bacterial Cellulose-Lactoferrin as an Antimicrobial Edible Packaging. Food Hydrocoll. 2016, 58, 126–140. [Google Scholar] [CrossRef]
- Seol, K.-H.; Lim, D.-G.; Jang, A.; Jo, C.; Lee, M. Antimicrobial Effect of κ-Carrageenan-Based Edible Film Containing Ovotransferrin in Fresh Chicken Breast Stored at 5 °C. Meat Sci. 2009, 83, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Alp-Erbay, E.; Yesilsu, A.F.; Türe, M. Antimicrobial Activity of Ovotransferrin Loaded Fish Gelatin Electrospun Nanofibers Against Some Pathogens Originated from Fish Products. Aquat. Food Stud. 2022, 2, AFS92. [Google Scholar] [CrossRef]
- Barbiroli, A.; Bonomi, F.; Capretti, G.; Iametti, S.; Manzoni, M.; Piergiovanni, L.; Rollini, M. Antimicrobial Activity of Lysozyme and Lactoferrin Incorporated in Cellulose-Based Food Packaging. Food Control 2012, 26, 387–392. [Google Scholar] [CrossRef]
- Mirzapour-Kouhdasht, A.; Moosavi-Nasab, M. Shelf-life Extension of Whole Shrimp Using an Active Coating Containing Fish Skin Gelatin Hydrolysates Produced by a Natural Protease. Food Sci. Nutr. 2020, 8, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Haque, Z.Z.; Zhang, Y.; Mukherjee, D. Casein Hydrolyzate Augments Antimicrobial and Antioxidative Persistence of Cheddar Whey Protein Concentrate Based Edible Coatings. Ann. Food Sci. Technol. 2016, 17, 468–477. [Google Scholar]
- Giansanti, F.; Leboffe, L.; Angelucci, F.; Antonini, G. The Nutraceutical Properties of Ovotransferrin and Its Potential Utilization as a Functional Food. Nutrients 2015, 7, 9105–9115. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Guo, Y.; Fu, X.; Jin, Y. Identification and Antimicrobial Mechanisms of a Novel Peptide Derived from Egg White Ovotransferrin Hydrolysates. LWT 2020, 131, 109720. [Google Scholar] [CrossRef]
- Ibrahim, H.R.; Sugimoto, Y.; Aoki, T. Ovotransferrin Antimicrobial Peptide (OTAP-92) Kills Bacteria through a Membrane Damage Mechanism. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2000, 1523, 196–205. [Google Scholar] [CrossRef]
- Baron, F.; Jan, S.; Gonnet, F.; Pasco, M.; Jardin, J.; Giudici, B.; Gautier, M.; Guérin-Dubiard, C.; Nau, F. Ovotransferrin Plays a Major Role in the Strong Bactericidal Effect of Egg White against the Bacillus Cereus Group. J. Food Prot. 2014, 77, 955–962. [Google Scholar] [CrossRef]
- Tranter, H.S.; Board, R.G. The Influence of Incubation Temperature and PH on the Antimicrobial Properties of Hen Egg Albumen. J. Appl. Bacteriol. 1984, 56, 53–61. [Google Scholar] [CrossRef]
- Van der Plancken, I.; Van Loey, A.; Hendrickx, M.E. Effect of Heat-Treatment on the Physico-Chemical Properties of Egg White Proteins: A Kinetic Study. J. Food Eng. 2006, 75, 316–326. [Google Scholar] [CrossRef]
- Rathnapala, E.C.N.; Ahn, D.U.; Abeyrathne, S. Functional Properties of Ovotransferrin from Chicken Egg White and Its Derived Peptides: A Review. Food Sci. Biotechnol. 2021, 30, 619–630. [Google Scholar] [CrossRef]
- Superti, F.; Ammendolia, M.G.; Berlutti, F.; Valenti, P. Ovotransferrin. In Bioactive Egg Compounds; Springer: Berlin/Heidelberg, Germany, 2007; pp. 43–50. [Google Scholar]
- Green, N.M. Avidin. In Advances in Protein Chemistry; Anfinsen, C.B., Edsall, J.T., Richards, F.M., Eds.; Academic Press: Cambridge, MA, USA, 1975; pp. 85–133. [Google Scholar]
- Elo, H.A.; Korpela, J. The Occurrence and Production of Avidin: A New Conception of the High-Affinity Biotin-Binding Protein. Comp. Biochem. Physiol. Part B Comp. Biochem. 1984, 78, 15–20. [Google Scholar] [CrossRef]
- Elo, H.A.; Räisänen, S.; Tuohimaa, P.J. Induction of an Antimicrobial Biotin-Binding Egg White Protein (Avidin) in Chick Tissues in SepticEscherichia Coli Infection. Experientia 1980, 36, 312–313. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.K.; Tausig, F. Biotin-Binding by Parenterally-Administered Streptavidin or Avidin. Biochem. Biophys. Res. Commun. 1964, 14, 210–214. [Google Scholar] [CrossRef]
- Campbell, A.; del Campillo-Campbell, A.; Chang, R. A Mutant of Escherichia Coli That Requires High Concentrations of Biotin. Proc. Natl. Acad. Sci. USA 1972, 69, 676–680. [Google Scholar] [CrossRef] [PubMed]
- Patat, S.A.; Carnegie, R.B.; Kingsbury, C.; Gross, P.S.; Chapman, R.; Schey, K.L. Antimicrobial Activity of Histones from Hemocytes of the Pacific White Shrimp. Eur. J. Biochem. 2004, 271, 4825–4833. [Google Scholar] [CrossRef] [PubMed]
- Robinette, D.; Wada, S.; Arroll, T.; Levy, M.G.; Miller, W.L.; Noga, E.J. Antimicrobial Activity in the Skin of the Channel Catfish Ictalurus Punctatus: Characterization of Broad-Spectrum Histone-like Antimicrobial Proteins. Cell Mol. Life Sci. 1998, 54, 467–475. [Google Scholar] [CrossRef]
- Fernandes, J.M.O.; Kemp, G.D.; Molle, M.G.; Smith, V.J. Anti-Microbial Properties of Histone H2A from Skin Secretions of Rainbow Trout, Oncorhynchus mykiss. Biochem. J. 2002, 368, 611–620. [Google Scholar] [CrossRef]
- Richards, R.C.; O’Neil, D.B.; Thibault, P.; Ewart, K.V. Histone H1: An Antimicrobial Protein of Atlantic Salmon (Salmo salar). Biochem. Biophys. Res. Commun. 2001, 284, 549–555. [Google Scholar] [CrossRef]
- Rose-Martel, M.; Hincke, M.T. Antimicrobial Histones from Chicken Erythrocytes Bind Bacterial Cell Wall Lipopolysaccharides and Lipoteichoic Acids. Int. J. Antimicrob. Agents 2014, 44, 470–472. [Google Scholar] [CrossRef] [PubMed]
- Jodoin, J.; Hincke, M.T. Histone H5 Is a Potent Antimicrobial Agent and a Template for Novel Antimicrobial Peptides. Sci. Rep. 2018, 8, 2411. [Google Scholar] [CrossRef] [PubMed]
- Shechter, D.; Dormann, H.L.; Allis, C.D.; Hake, S.B. Extraction, Purification and Analysis of Histones. Nat. Protoc. 2007, 2, 1445–1457. [Google Scholar] [CrossRef] [PubMed]
- Boparai, J.K.; Sharma, P.K. Mini Review on Antimicrobial Peptides, Sources, Mechanism and Recent Applications. Protein Pept. Lett. 2019, 27, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Berglund, N.A.; Piggot, T.J.; Jefferies, D.; Sessions, R.B.; Bond, P.J.; Khalid, S. Interaction of the Antimicrobial Peptide Polymyxin B1 with Both Membranes of E. Coli: A Molecular Dynamics Study. PLoS Comput. Biol. 2015, 11, e1004180. [Google Scholar] [CrossRef] [PubMed]
- Bahar, A.; Ren, D. Antimicrobial Peptides. Pharmaceuticals 2013, 6, 1543–1575. [Google Scholar] [CrossRef] [PubMed]
- Meira, S.M.M.; Zehetmeyer, G.; Werner, J.O.; Brandelli, A. A Novel Active Packaging Material Based on Starch-Halloysite Nanocomposites Incorporating Antimicrobial Peptides. Food Hydrocoll. 2017, 63, 561–570. [Google Scholar] [CrossRef]
- Dorin, J.R.; McHugh, B.J.; Cox, S.L.; Davidson, D.J. Mammalian Antimicrobial Peptides; Defensins and Cathelicidins. In Molecular Medical Microbiology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 1, pp. 539–565. [Google Scholar]
- Yang, D.; Chertov, O.; Oppenheim, J.J. Participation of Mammalian Defensins and Cathelicidins in Anti-Microbial Immunity: Receptors and Activities of Human Defensins and Cathelicidin (LL-37). J. Leukoc. Biol. 2001, 69, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Huang, Y.; Peng, Z.; Li, Z.; Cen, S. Mammalian Antimicrobial Peptides: Defensins and Cathelicidins. In Molecular Medical Microbiology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 551–573. [Google Scholar]
- Sultana, A.; Luo, H.; Ramakrishna, S. Harvesting of Antimicrobial Peptides from Insect (Hermetia illucens) and Its Applications in the Food Packaging. Appl. Sci. 2021, 11, 6991. [Google Scholar] [CrossRef]
- Vizioli, J.; Salzet, M. Antimicrobial Peptides from Animals: Focus on Invertebrates. Trends Pharmacol. Sci. 2002, 23, 494–496. [Google Scholar] [CrossRef]
- Verma, A.K.; Chatli, M.K.; Mehta, N.; Kumar, P. Assessment of Physico-Chemical, Antioxidant and Antimicrobial Activity of Porcine Blood Protein Hydrolysate in Pork Emulsion Stored under Aerobic Packaging Condition at 4 ± 1 °C. LWT 2018, 88, 71–79. [Google Scholar] [CrossRef]
- Kittiphattanabawon, P.; Benjakul, S.; Visessanguan, W.; Shahidi, F. Gelatin Hydrolysate from Blacktip Shark Skin Prepared Using Papaya Latex Enzyme: Antioxidant Activity and Its Potential in Model Systems. Food Chem. 2012, 135, 1118–1126. [Google Scholar] [CrossRef] [PubMed]
- Nasri, M. Bioactive Peptides from Fish Collagen Byproducts. In Byproducts from Agriculture and Fisheries; Wiley: Hoboken, NJ, USA, 2019; pp. 309–333. [Google Scholar]
- Tkaczewska, J. Peptides and Protein Hydrolysates as Food Preservatives and Bioactive Components of Edible Films and Coatings—A Review. Trends Food Sci. Technol. 2020, 106, 298–311. [Google Scholar] [CrossRef]
- Abdullah Sani, M.S.; Jamaludin, M.A.; Al-Saari, N.; Azid, A.; Noor Azri, N.S. Halal Antimicrobials in Food: A Review on Prospects and Challenges of Antimicrobials from Animal Sources. J. Halal Ind. Serv. 2020, 3, a0000113. [Google Scholar] [CrossRef]
- Hou, L.; Shi, Y.; Zhai, P.; Le, G. Inhibition of Foodborne Pathogens by Hf-1, a Novel Antibacterial Peptide from the Larvae of the Housefly (Musca domestica) in Medium and Orange Juice. Food Control 2007, 18, 1350–1357. [Google Scholar] [CrossRef]
- Dho, M.; Candian, V.; Tedeschi, R. Insect Antimicrobial Peptides: Advancements, Enhancements and New Challenges. Antibiotics 2023, 12, 952. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, N.; Saito, T.; Ohmura, T.; Kuroda, K.; Suita, K.; Ihara, K.; Isogai, E. Functional Structure and Antimicrobial Activity of Persulcatusin, an Antimicrobial Peptide from the Hard Tick Ixodes Persulcatus. Parasit. Vectors 2016, 9, 85. [Google Scholar] [CrossRef] [PubMed]
- Ashfaq, A.; Khursheed, N.; Fatima, S.; Anjum, Z.; Younis, K. Application of Nanotechnology in Food Packaging: Pros and Cons. J. Agric. Food Res. 2022, 7, 100270. [Google Scholar] [CrossRef]
- Perera, K.Y.; Jaiswal, S.; Jaiswal, A.K. A Review on Nanomaterials and Nanohybrids Based Bio-Nanocomposites for Food Packaging. Food Chem. 2022, 376, 131912. [Google Scholar] [CrossRef]
- Feracci, H.; Gutierrez, B.S.; Hempel, W.; Gil, I.S. Organic Nanoparticles. In Nanobiotechnology: Inorganic Nanoparticles vs. Organic Nanoparticles; de la Fuente, J.M., Grazu, V., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; Volume 4, pp. 197–230. [Google Scholar]
- Alshammari, B.H.; Lashin, M.M.A.; Mahmood, M.A.; Al-Mubaddel, F.S.; Ilyas, N.; Rahman, N.; Sohail, M.; Khan, A.; Abdullaev, S.S.; Khan, R. Organic and Inorganic Nanomaterials: Fabrication, Properties and Applications. RSC Adv. 2023, 13, 13735–13785. [Google Scholar] [CrossRef]
- Amara, C.; El Mahdi, A.; Medimagh, R.; Khwaldia, K. Nanocellulose-Based Composites for Packaging Applications. Curr. Opin. Green Sustain. Chem. 2021, 31, 100512. [Google Scholar] [CrossRef]
- Wang, J.; Euring, M.; Ostendorf, K.; Zhang, K. Biobased Materials for Food Packaging. J. Bioresour. Bioprod. 2022, 7, 1–13. [Google Scholar] [CrossRef]
- Patil, T.V.; Patel, D.K.; Dutta, S.D.; Ganguly, K.; Santra, T.S.; Lim, K.-T. Nanocellulose, a Versatile Platform: From the Delivery of Active Molecules to Tissue Engineering Applications. Bioact. Mater. 2022, 9, 566–589. [Google Scholar] [CrossRef] [PubMed]
- Azeredo, H.M.C.; Rosa, M.F.; Mattoso, L.H.C. Nanocellulose in Bio-Based Food Packaging Applications. Ind. Crops Prod. 2017, 97, 664–671. [Google Scholar] [CrossRef]
- Ludwicka, K.; Kaczmarek, M.; Białkowska, A. Bacterial Nanocellulose—A Biobased Polymer for Active and Intelligent Food Packaging Applications: Recent Advances and Developments. Polymers 2020, 12, 2209. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Gong, C.; Qin, Y.; Hu, Y.; Jiao, A.; Jin, Z.; Qiu, C.; Wang, J. Bioactive and Functional Biodegradable Packaging Films Reinforced with Nanoparticles. J. Food Eng. 2022, 312, 110752. [Google Scholar] [CrossRef]
- Yilmaz Atay, H. Antibacterial Activity of Chitosan-Based Systems. In Functional Chitosan; Springer: Singapore, 2019; pp. 457–489. [Google Scholar]
- Yanat, M.; Schroën, K. Preparation Methods and Applications of Chitosan Nanoparticles; with an Outlook toward Reinforcement of Biodegradable Packaging. React. Funct. Polym. 2021, 161, 104849. [Google Scholar] [CrossRef]
- Hou, X.; Wang, H.; Shi, Y.; Yue, Z. Recent Advances of Antibacterial Starch-Based Materials. Carbohydr. Polym. 2023, 302, 120392. [Google Scholar] [CrossRef] [PubMed]
- Alves, M.J.d.S.; Chacon, W.D.C.; Monteiro, A.R.; Valencia, G.A. Starch Nanoparticles Loaded with the Phenolic Compounds from Green Propolis Extract. Biol. Life Sci. Forum 2023, 28, 6. [Google Scholar] [CrossRef]
- Ahmad, M.; Gani, A.; Hassan, I.; Huang, Q.; Shabbir, H. Production and Characterization of Starch Nanoparticles by Mild Alkali Hydrolysis and Ultra-Sonication Process. Sci. Rep. 2020, 10, 3533. [Google Scholar] [CrossRef]
- Hong, S.; Choi, D.W.; Kim, H.N.; Park, C.G.; Lee, W.; Park, H.H. Protein-Based Nanoparticles as Drug Delivery Systems. Pharmaceutics 2020, 12, 604. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Xu, J.; Chen, J.; Wang, Z.; Wang, X.; Zhong, J. Protein Nanoparticles for Pickering Emulsions: A Comprehensive Review on Their Shapes, Preparation Methods, and Modification Methods. Trends Food Sci. Technol. 2021, 113, 26–41. [Google Scholar] [CrossRef]
- Han, M.; Liu, K.; Liu, X.; Rashid, M.T.; Zhang, H.; Wang, M. Research Progress of Protein-Based Bioactive Substance Nanoparticles. Foods 2023, 12, 2999. [Google Scholar] [CrossRef] [PubMed]
- Pascuta, M.; Vodnar, D. Nanocarriers for Sustainable Active Packaging: An Overview during and Post COVID-19. Coatings 2022, 12, 102. [Google Scholar] [CrossRef]
- Singh, R.; Dutt, S.; Sharma, P.; Sundramoorthy, A.K.; Dubey, A.; Singh, A.; Arya, S. Future of Nanotechnology in Food Industry: Challenges in Processing, Packaging, and Food Safety. Glob. Chall. 2023, 7, 2200209. [Google Scholar] [CrossRef]
- Pateiro, M.; Gómez, B.; Munekata, P.E.S.; Barba, F.J.; Putnik, P.; Kovačević, D.B.; Lorenzo, J.M. Nanoencapsulation of Promising Bioactive Compounds to Improve Their Absorption, Stability, Functionality and the Appearance of the Final Food Products. Molecules 2021, 26, 1547. [Google Scholar] [CrossRef]
- Sanchez, L.T.; Rodriguez-Marin, N.D.; Pinzon, M.I.; Villa, C.C. Nutrients-Based Nanocarriers and Its Application in Packaging Systems. In Nanotechnology-Enhanced Food Packaging; Wiley: Hoboken, NJ, USA, 2022; pp. 129–141. [Google Scholar]
- Souza, V.G.L.; Fernando, A.L. Nanoparticles in Food Packaging: Biodegradability and Potential Migration to Food—A Review. Food Packag. Shelf Life 2016, 8, 63–70. [Google Scholar] [CrossRef]
- Nair, S.S.; Chen, H.; Peng, Y.; Huang, Y.; Yan, N. Polylactic Acid Biocomposites Reinforced with Nanocellulose Fibrils with High Lignin Content for Improved Mechanical, Thermal, and Barrier Properties. ACS Sustain. Chem. Eng. 2018, 6, 10058–10068. [Google Scholar] [CrossRef]
- Naidu, D.S.; John, M.J. Cellulose Nanofibrils Reinforced Xylan-Alginate Composites: Mechanical, Thermal and Barrier Properties. Int. J. Biol. Macromol. 2021, 179, 448–456. [Google Scholar] [CrossRef]
- Yu, Z.; Alsammarraie, F.K.; Nayigiziki, F.X.; Wang, W.; Vardhanabhuti, B.; Mustapha, A.; Lin, M. Effect and Mechanism of Cellulose Nanofibrils on the Active Functions of Biopolymer-Based Nanocomposite Films. Food Res. Int. 2017, 99, 166–172. [Google Scholar] [CrossRef]
- Eslami, R.; Azizi, A.; Najafi, M. Effects of Different Gums on Tensile Properties of Cellulose Nanofibrils (CNFs)-Reinforced Starch. Polym. Polym. Compos. 2021, 29, 436–443. [Google Scholar] [CrossRef]
- Ahmadi, A.; Ahmadi, P.; Ehsani, A. Development of an Active Packaging System Containing Zinc Oxide Nanoparticles for the Extension of Chicken Fillet Shelf Life. Food Sci. Nutr. 2020, 8, 5461–5473. [Google Scholar] [CrossRef]
- Alizadeh-Sani, M.; Khezerlou, A.; Ehsani, A. Fabrication and Characterization of the Bionanocomposite Film Based on Whey Protein Biopolymer Loaded with TiO2 Nanoparticles, Cellulose Nanofibers and Rosemary Essential Oil. Ind. Crops Prod. 2018, 124, 300–315. [Google Scholar] [CrossRef]
- Yu, Z.; Dhital, R.; Wang, W.; Sun, L.; Zeng, W.; Mustapha, A.; Lin, M. Development of Multifunctional Nanocomposites Containing Cellulose Nanofibrils and Soy Proteins as Food Packaging Materials. Food Packag. Shelf Life 2019, 21, 100366. [Google Scholar] [CrossRef]
- Salim, M.H.; Kassab, Z.; Abdellaoui, Y.; García-Cruz, A.; Soumare, A.; Ablouh, E.; El Achaby, M. Exploration of Multifunctional Properties of Garlic Skin Derived Cellulose Nanocrystals and Extracts Incorporated Chitosan Biocomposite Films for Active Packaging Application. Int. J. Biol. Macromol. 2022, 210, 639–653. [Google Scholar] [CrossRef]
- Oberlintner, A.; Likozar, B.; Novak, U. Effect of Environment on Acetylated Cellulose Nanocrystal-Reinforced Biopolymers Films. Polymers 2023, 15, 1663. [Google Scholar] [CrossRef] [PubMed]
- Azizi, S.; Mohamad, R. Mechanical and Barrier Properties of Kappa-Carrageenan/Cellulose Nanocrystals Bio-Nanocomposite Films. IOP Conf. Ser. Mater. Sci. Eng. 2018, 368, 012013. [Google Scholar] [CrossRef]
- Abdollahi, M.; Alboofetileh, M.; Behrooz, R.; Rezaei, M.; Miraki, R. Reducing Water Sensitivity of Alginate Bio-Nanocomposite Film Using Cellulose Nanoparticles. Int. J. Biol. Macromol. 2013, 54, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Khan, R.A.; Salmieri, S.; Le Tien, C.; Riedl, B.; Bouchard, J.; Chauve, G.; Tan, V.; Kamal, M.R.; Lacroix, M. Mechanical and Barrier Properties of Nanocrystalline Cellulose Reinforced Chitosan Based Nanocomposite Films. Carbohydr. Polym. 2012, 90, 1601–1608. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, Y.; Kang, S.; Wang, K.; Xu, H. Development and Evaluation of Soy Protein Isolate-Based Antibacterial Nanocomposite Films Containing Cellulose Nanocrystals and Zinc Oxide Nanoparticles. Food Hydrocoll. 2020, 106, 105898. [Google Scholar] [CrossRef]
- Long, K.; Cha, R.; Zhang, Y.; Li, J.; Ren, F.; Jiang, X. Cellulose Nanocrystals as Reinforcements for Collagen-Based Casings with Low Gas Transmission. Cellulose 2018, 25, 463–471. [Google Scholar] [CrossRef]
- Sukyai, P.; Anongjanya, P.; Bunyahwuthakul, N.; Kongsin, K.; Harnkarnsujarit, N.; Sukatta, U.; Sothornvit, R.; Chollakup, R. Effect of Cellulose Nanocrystals from Sugarcane Bagasse on Whey Protein Isolate-Based Films. Food Res. Int. 2018, 107, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Rafieian, F.; Shahedi, M.; Keramat, J.; Simonsen, J. Mechanical, Thermal and Barrier Properties of Nano-Biocomposite Based on Gluten and Carboxylated Cellulose Nanocrystals. Ind. Crops Prod. 2014, 53, 282–288. [Google Scholar] [CrossRef]
- Alves, J.S.; dos Reis, K.C.; Menezes, E.G.T.; Pereira, F.V.; Pereira, J. Effect of Cellulose Nanocrystals and Gelatin in Corn Starch Plasticized Films. Carbohydr. Polym. 2015, 115, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Liyaskina, E.V.; Revin, V.V.; Paramonova, E.N.; Revina, N.V.; Kolesnikova, S.G. Bacterial Cellulose/Alginate Nanocomposite for Antimicrobial Wound Dressing. KnE Energy 2018, 3, 202–211. [Google Scholar] [CrossRef]
- Yang, Y.-N.; Lu, K.-Y.; Wang, P.; Ho, Y.-C.; Tsai, M.-L.; Mi, F.-L. Development of Bacterial Cellulose/Chitin Multi-Nanofibers Based Smart Films Containing Natural Active Microspheres and Nanoparticles Formed in Situ. Carbohydr. Polym. 2020, 228, 115370. [Google Scholar] [CrossRef] [PubMed]
- Osorio, M.A.; Restrepo, D.; Velásquez-Cock, J.A.; Zuluaga, R.O.; Montoya, U.; Rojas, O.; Gañán, P.F.; Marin, D.; Castro, C.I. Synthesis of Thermoplastic Starch-Bacterial Cellulose Nanocomposites via in Situ Fermentation. J. Braz. Chem. Soc. 2014, 25, 1607–1613. [Google Scholar] [CrossRef]
- Ul-Islam, M.; Shah, N.; Ha, J.H.; Park, J.K. Effect of Chitosan Penetration on Physico-Chemical and Mechanical Properties of Bacterial Cellulose. Korean J. Chem. Eng. 2011, 28, 1736–1743. [Google Scholar] [CrossRef]
- Wang, X.; Xie, Y.; Ge, H.; Chen, L.; Wang, J.; Zhang, S.; Guo, Y.; Li, Z.; Feng, X. Physical Properties and Antioxidant Capacity of Chitosan/Epigallocatechin-3-Gallate Films Reinforced with Nano-Bacterial Cellulose. Carbohydr. Polym. 2018, 179, 207–220. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, D.; Lopez-Sanchez, P.; Yang, X. Characterizations of Bacterial Cellulose Nanofibers Reinforced Edible Films Based on Konjac Glucomannan. Int. J. Biol. Macromol. 2020, 145, 634–645. [Google Scholar] [CrossRef]
- Almeida, T.; Karamysheva, A.; Valente, B.F.A.; Silva, J.M.; Braz, M.; Almeida, A.; Silvestre, A.J.D.; Vilela, C.; Freire, C.S.R. Biobased Ternary Films of Thermoplastic Starch, Bacterial Nanocellulose and Gallic Acid for Active Food Packaging. Food Hydrocoll. 2023, 144, 108934. [Google Scholar] [CrossRef]
- Wang, X.; Ullah, N.; Sun, X.; Guo, Y.; Chen, L.; Li, Z.; Feng, X. Development and Characterization of Bacterial Cellulose Reinforced Biocomposite Films Based on Protein from Buckwheat Distiller’s Dried Grains. Int. J. Biol. Macromol. 2017, 96, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Elsawy, M.A.; Saad, G.R.; Sayed, A.M. Mechanical, Thermal, and Dielectric Properties of Poly(Lactic Acid)/Chitosan Nanocomposites. Polym. Eng. Sci. 2016, 56, 987–994. [Google Scholar] [CrossRef]
- de Moura, M.R.; Lorevice, M.V.; Mattoso, L.H.C.; Zucolotto, V. Highly Stable, Edible Cellulose Films Incorporating Chitosan Nanoparticles. J. Food Sci. 2011, 76, N25–N29. [Google Scholar] [CrossRef]
- Chang, P.R.; Jian, R.; Yu, J.; Ma, X. Fabrication and Characterisation of Chitosan Nanoparticles/Plasticised-Starch Composites. Food Chem. 2010, 120, 736–740. [Google Scholar] [CrossRef]
- Lipatova, I.M.; Yusova, A.A.; Makarova, L.I. Fabrication and Characterization of Starch Films Containing Chitosan Nanoparticles Using in Situ Precipitation and Mechanoactivation Techniques. J. Food Eng. 2021, 304, 110593. [Google Scholar] [CrossRef]
- Shapi’i, R.A.; Othman, S.H.; Nordin, N.; Kadir Basha, R.; Nazli Naim, M. Antimicrobial Properties of Starch Films Incorporated with Chitosan Nanoparticles: In Vitro and in Vivo Evaluation. Carbohydr. Polym. 2020, 230, 115602. [Google Scholar] [CrossRef]
- Gomes, L.; Souza, H.; Campiña, J.; Andrade, C.; Silva, A.; Gonçalves, M.; Paschoalin, V. Edible Chitosan Films and Their Nanosized Counterparts Exhibit Antimicrobial Activity and Enhanced Mechanical and Barrier Properties. Molecules 2018, 24, 127. [Google Scholar] [CrossRef] [PubMed]
- Shapi’i, R.A.; Othman, S.H.; Basha, R.K.; Naim, M.N. Mechanical, Thermal, and Barrier Properties of Starch Films Incorporated with Chitosan Nanoparticles. Nanotechnol. Rev. 2022, 11, 1464–1477. [Google Scholar] [CrossRef]
- Melo, P.T.S.; Nunes, J.C.; Otoni, C.G.; Aouada, F.A.; de Moura, M.R. Combining Cupuassu (Theobroma grandiflorum) Puree, Pectin, and Chitosan Nanoparticles into Novel Edible Films for Food Packaging Applications. J. Food Sci. 2019, 84, 2228–2233. [Google Scholar] [CrossRef]
- Hosseini, S.F.; Rezaei, M.; Zandi, M.; Farahmandghavi, F. Fabrication of Bio-Nanocomposite Films Based on Fish Gelatin Reinforced with Chitosan Nanoparticles. Food Hydrocoll. 2015, 44, 172–182. [Google Scholar] [CrossRef]
- Ahmad, A.A.; Sarbon, N.M. A Comparative Study: Physical, Mechanical and Antibacterial Properties of Bio-Composite Gelatin Films as Influenced by Chitosan and Zinc Oxide Nanoparticles Incorporation. Food Biosci. 2021, 43, 101250. [Google Scholar] [CrossRef]
- Amaregouda, Y.; Kamanna, K. Carboxymethyl Cellulose/Starch-Based Films Incorporating Chitosan Nanoparticles for Multifunctional Food Packaging. Cellulose 2024, 31, 2413–2427. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, C.; Wang, X.; Xiong, L.; Sun, Q. Physicochemical Properties of Starch Nanocomposite Films Enhanced by Self-Assembled Potato Starch Nanoparticles. LWT-Food Sci. Technol. 2016, 69, 251–257. [Google Scholar] [CrossRef]
- Fan, H.; Ji, N.; Zhao, M.; Xiong, L.; Sun, Q. Characterization of Starch Films Impregnated with Starch Nanoparticles Prepared by 2,2,6,6-Tetramethylpiperidine-1-Oxyl (TEMPO)-Mediated Oxidation. Food Chem. 2016, 192, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Qiu, C.; Ji, N.; Sun, C.; Xiong, L.; Sun, Q. Mechanical, Barrier and Morphological Properties of Starch Nanocrystals-Reinforced Pea Starch Films. Carbohydr. Polym. 2015, 121, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Costa, É.K.d.C.; de Souza, C.O.; da Silva, J.B.A.; Druzian, J.I. Hydrolysis of Part of Cassava Starch into Nanocrystals Leads to Increased Reinforcement of Nanocomposite Films. J. Appl. Polym. Sci. 2017, 134, 45311. [Google Scholar] [CrossRef]
- Dularia, C.; Sinhmar, A.; Thory, R.; Pathera, A.K.; Nain, V. Development of Starch Nanoparticles Based Composite Films from Non-Conventional Source—Water Chestnut (Trapa bispinosa). Int. J. Biol. Macromol. 2019, 136, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.N.; Lim, S.A.; Navaranjan, N.; Hsu, Y.-I.; Uyama, H. Green Sago Starch Nanoparticles as Reinforcing Material for Green Composites. Polymer 2020, 202, 122646. [Google Scholar] [CrossRef]
- Li, X.; Ji, N.; Qiu, C.; Xia, M.; Xiong, L.; Sun, Q. The Effect of Peanut Protein Nanoparticles on Characteristics of Protein- and Starch-Based Nanocomposite Films: A Comparative Study. Ind. Crops Prod. 2015, 77, 565–574. [Google Scholar] [CrossRef]
- Tian, H.; Xu, G. Processing and Characterization of Glycerol-Plasticized Soy Protein Plastics Reinforced with Citric Acid-Modified Starch Nanoparticles. J. Polym. Environ. 2011, 19, 582–588. [Google Scholar] [CrossRef]
- Zheng, H.; Ai, F.; Chang, P.R.; Huang, J.; Dufresne, A. Structure and Properties of Starch Nanocrystal-reinforced Soy Protein Plastics. Polym. Compos. 2009, 30, 474–480. [Google Scholar] [CrossRef]
- Alinaqi, Z.; Khezri, A.; Rezaeinia, H. Sustained Release Modeling of Clove Essential Oil from the Structure of Starch-Based Bio-Nanocomposite Film Reinforced by Electrosprayed Zein Nanoparticles. Int. J. Biol. Macromol. 2021, 173, 193–202. [Google Scholar] [CrossRef]
- Gilbert, J.; Cheng, C.J.; Jones, O.G. Vapor Barrier Properties and Mechanical Behaviors of Composite Hydroxypropyl Methylcelluose/Zein Nanoparticle Films. Food Biophys. 2018, 13, 25–36. [Google Scholar] [CrossRef]
- Oymaci, P.; Altinkaya, S.A. Improvement of Barrier and Mechanical Properties of Whey Protein Isolate Based Food Packaging Films by Incorporation of Zein Nanoparticles as a Novel Bionanocomposite. Food Hydrocoll. 2016, 54, 1–9. [Google Scholar] [CrossRef]
- Bora, A.; Mishra, P. Characterization of Casein and Casein-Silver Conjugated Nanoparticle Containing Multifunctional (Pectin–Sodium Alginate/Casein) Bilayer Film. J. Food Sci. Technol. 2016, 53, 3704–3714. [Google Scholar] [CrossRef]
Source | Amount Added | Biopolymer Matrix | Changes in Film Properties | Changes in Activity | Refs. |
---|---|---|---|---|---|
Essential Oils | |||||
Eucalyptus | 0.5–4 wt.% | chitosan/glycerol/tween 80 (1.5 g in 100 mL acetic acid 0.7% (v/v):0.15 g/g chitosan) chitosan/glycerol/tween 80 (2 g in 100 mL acetic acid 1% (v/v):0.5 mL/g chitosan) | A decrease in WS, TS, MC, homogeneity, transparency, increased WVP, EAB. Changes in color. | Antimicrobial activity against E. coli, S. enterica, B. cereus, S. aureus, P. aeruginosa, C. albicans and parapsilosis. | [107,108] |
Lemon, thyme, cinnamon and mixture | 1 mL or blend 0.5 mL + 0.5 mL | chitosan/glycerol/tween 20 (2 g in 100 mL acetic acid 1% (v/v):0.6 g:0.1 g) | The films were slightly rough. An increase in thickness, TS and glow. A decrease in WS, swelling degree (SD), WVP, WC, EAB and transparency. | Antimicrobial activity against S. aureus (more pronounced) and E. coli. | [97] |
Rosemary | 0.5–1.5% w/v | chitosan/tween 80 (2 g in 100 mL acetic acid 1% (v/v):0.2% (w/v)) | Heterogeneous and rough film structure. A decrease in WS, TS and light transmission in UV spectra. An increase in WVP (at ≥0.5% rosemary), EAB and transparency. | Antimicrobial activity against L. monocytogenes, P. putida, S. agalactiae, E. coli and L. Lactis. | [95] |
Garlic | Previous (10%) dilution with ethanol 0.1%, 0.2%, 0.3% and 0.4% v/v | sodium alginate/glycerol (1 g:0.4 mL) | An increase in WVP and EAB (at ≤0.4% garlic). A decrease in TS. Minor changes in color. | Antimicrobial activity against E. coli, S. typhimurium, S. aureus and B. cereus. | [172] |
Oregano | 0.5, 1.0 and 1.5% w/v | sodium alginate/glycerol/tween 80/CaCO3/glucono-δ-lactone (GDL) (1.5 g:0.243 g/g of alginate:0.250 g/g of essential oil:0.03 g/g alginate:5.4 g/g CaCO3) | Small pores and yellowish. An increase in thickness, EAB and WVP. A decrease in TS and transparency. | Antimicrobial activity against Gram-positive (high) S. aureus and L. monocytogenes and Gram-negative (less pronounced) E. coli and S. enteritidis. | [96] |
Ginger | 0.5% w/w | hydroxypropylmethylcellulose (HPMC)/tween 80 (5 g:0.25 g) | A decrease in TS, EAB and WVP. An increase in oxygen permeability (OP). Slight darkening. | Antioxidant activity: peroxide value (PV) reduction. | [173] |
Clove, cinnamon and mixture | 0; 0.5; 1; 1.5; 2; 2.5; 3; 3.5; and 4% (v/v) | corn starch/glycerol/xanthum gum/cooking oil (6 g:50% (w/w) of starch:0.1% (w/v):2% (v/v)) | Changes in color. | Antioxidant activity: TBARS reduction. Antimicrobial activity against L. monocytogenes, L. lactis (high) and less pronounced against L. mesenteroides, P. fluorescens, S. putrifaciens, E. coli and S. typhimurium. MIC—1%. | [174] |
Oregano and black cumin | 0.5–2.0% w/v | maize starch/glycerol/guar-xanthan (1.5 mg/mL:40% (w/v) of starch:0.1% (w/v) of starch) | An increase in thickness and EAB. A decrease in TS, transparency, SD, WVP and WC. Changes in color. | Antioxidant activity: DPPH increases. Antimicrobial activity against S. Typhimurium, E. coli and L. monocytogenes. | [100] |
Rosemary, oregano and mixture | 1.82, 0.48 and 0.91 + 0.24 mg/mL | pectin/glycerol (1 g:1 mL) | The use on fresh broccoli did not show unacceptable sensory changes. | Antioxidant activity: DPPH and ABTS elevation. Antimicrobial activity against mesophilic bacteria, coliforms, yeasts and molds. | [175] |
Clove | 0.75 mL/g of protein | sunflower protein concentrate/glycerol (5 g:1.5 g) | Inhomogeneities on surface. A decrease in WS, transparency and EAB. Slight increase in TS and thickness. Changes in color. | Antioxidant activity: ABTS and FRAP increase, low TBARS levels. Antimicrobial activity against A. hydrophila, A. niger, B. cereus, B. coagulans, B. animalis subespecie lactis, B. bifidum, B. thermophacta, C. freundii, C. perfringens, D. hansenii, E. faecium, E. coli, L. acidophilus, L. helveticus, L. innocua, L. monocytogenes, P. expansum, P. phosphoreum, P. aeruginosa, P. fluorescens, S. cholerasuis, S. putrefaciens, S. sonnei, S. aureus, V. parahaemolyticus and Y. enterocolítica. | [80] |
Oregano | 0.5–1.5 wt.% | WPI/sorbitol (8 g and 5 g:3 g and 1.875 g) | An increase in EAB. A decrease in glass transition temperature (Tg), TS and YM. | Antimicrobial activity against P. aeruginosa and Lactobacillus spp. Reduction in bacterial total viability count (TVC). | [99] |
Cinnamon, ginger | 2.5%, 5.0%, 7.5%, 10% w/w of protein | sodium caseinate/glycerol (8 g:2.4 g) | Roughness decreased. Reduction in TS and EAB in a dose-dependent manner, correlated with humidity level. EM decreased at 10% humidity and increased at 5% humidity. An increase in WVP correlated with the level of humidity. Changes in color. | Antioxidant activity: peroxide value (PV) reduction. | [176] |
Ginger, turmeric, plai | 25%, 50%, 100% w/w of gelatin | fish skin gelatin/glycerol/tween 20 (3.5 g:30% (w/w) of gelatin:glycerol:25% (w/w) of essential oils) | A decrease in WVP, TS and light transmittance. An increase in thickness, hydrophobicity, EAB and yellowness. | Antioxidant activity: ABTS and DPPH increase. | [101] |
Thyme | 2, 4, 6, 8% (w/w) | collagen hydrolysate/glycerol/tween 80 (8 g:2 g:0.5 g) | Roughness decreased. An increase in thickness, EAB and yellowness. A decrease in TS, solubility, light transmittance and transparency. | Antioxidant activity: DPPH elevation. | [102] |
Melissa officinalis | 0.1, 0.15, 0.20% (v/v) | pectin/collagen/glycerol/tween 80 (1.5 g:1 g:1.25 g:0.2 g) | Less transparent, but uniform and flexible. A decrease in WVP, WC and TS. An increase in thickness and EAB. Changes in color. | Antioxidant activity: ABTS and DPPH increase. | [177] |
Emulsions | |||||
Thyme oil (microemulsion in RH40 and Span80 (2:1)) | 1%, 2.5%, 5%, 10%, 20% (v/v) | potato starch/glycerol (4 g:1.5 g) | Reduced the release of the active components. Slight changes in color. | A decrease in the total number of colonies. Antimicrobial activity against S. aureus and E. coli. | [132] |
Cinnamon bark oil (CBO, microemulsion with soybean oil (SBO), tween 80, propylene glycol/water) | 1, 2, and 3% w/w (CBO/SBO (1:0, 2:1, 4:1)) | chitosan/glycerol (2 g in 100 mL acetic acid 1% (v/v):0.4 g) | A decrease in MC and TS. An increase in thickness, WVP, EAB and yellowness. | Antimicrobial activity against L. monocytogenes, E. coli and S. enterica (at >1% microemulsion). | [94] |
Copaiba oil (CO) (nanoemulsion with tween 80) | 1:1 (CO of water 1, 3, 6%:FFS) | pectin/glycerol (6 g:15% (w/w of pectin)) | An increase in roughness, EAB and hydrophobicity. A decrease in thermostability, EM, TS and WVP. Changes in color. The ability to biodegrade. | Antimicrobial activity against S. aureus and E. coli. | [128] |
Ginger essential oil (GEO Pickering emulsion stabilized by cellulose nanocrystals (CNCs)) | 3 g GEO:0.3 g CNC in 60 mL of deionized water | sodium alginate/glycerol (6 g to 240 mL of deionized water:2 g) | Smooth, dense and uniform surface without cracks. A decrease in MC, WVP, EAB and TS. An increase in YM. WCA value corresponded to hydrophilic surface. High transparency and satisfactory barrier properties in relation to UV. Slow release of the active component. | Antioxidant activity: ABTS and DPPH increase. | [129] |
Thymus daenensis essential oil—wild and cultivated (nanoemulsion with tween 80, lecithin) | 2 mL | HPMC/polyethylene glycol (16 g:1 g) | An increase in thickness. A decrease in TS, EAB and EM. | Antimicrobial and antifungal activity against E. coli, S. typhi, S. Dysenetriae, S. flexneri, S. aureus, S. epidermidis, B. subtilis, E. faecalis, E. faecium, A. baumannii, K. pneumoniae and C. albicans. | [127] |
Rutin (nanoemulsion with SBO, spin 80, tween 80) | 5, 10, 15 or 20% (w/w of the gelatin) | gelatin of pig skin/glycerol (6.25 g:30 g/100 g of gelatin) | A decrease in light transmission, MC and WS. An increase in hydrophobicity, WVP, EAB and TS. | Antioxidant activity: ABTS, FRAP and DPPH elevation. | [131] |
Grammosciadium pterocarpum Bioss. essential oil (GEO nanoemulsion with tween 80 (HLB-15) and water), GEO/tween 80 (4:1) | 0.5, 1 and 1.5% of WPI | WPI/glycerol (5 g:2.5 g) | Improved the integrity, absorbed less moisture. An increase in TS and EAB. Reduction in WVP. | Antioxidant activity: DPPH increases. Antimicrobial activity against Gram-negative (S. typhimorium, E. coli, P. aeruginosa) and Gram-positive (L. monocytogenes) microorganisms. | [130] |
Extracts | |||||
Green tea (ethanol) | 5% (w/w of starch) | potato starch/glycerol (2.5 g:0.6 mL) | Smooth and uniform. A decrease in WVTR, EAB and WS. An increase in Tg, enthalpy transition (H) and TS. | Antioxidant activity: DPPH increases, TBARS reduction, inhibition of oxymyoglobin oxidation. | [146] |
Ginseng (ethanol in water (1:8)) | 0.5 g/mL of FFS | sodium alginate/CaCl2/glycerol (2 g:0.01 g:3 g) After drying, 2% CaCl2 solution was poured onto the surface of films for 30 s and then dried. | An increase in EAB and transparency. A decrease in WS, TS and EM. A slight increase in WVP. | Antioxidant activity: DPPH increases. | [150] |
Green tea (water) | 20% (w/v) | chitosan/glycerol (2 g in 100 mL acetic acid 1% (v/v):30% (w/w of chitosan)) | The cutting force increased. Changes in color. Wrapped samples of pork sausages had a more acceptable smell and color. | Antioxidant activity: TBA reduction. Antimicrobial activity: population of total aerobic counts, yeasts and molds, and lactic acid bacteria decreased. | [178] |
Murta fruit (50% ethanol) | 0.25 w/w of MC | methyl cellulose (MC)/glutaraldehyde/polyethylene glycol (1 g in 100 mL ethanol 70%:10, 15, 20% (w/w) of MC:25% (w/w) of MC) | Small pores and heterogeneity. A decrease in SI and EAB. An increase in thermostability, TS, EM and yellowness. | Antioxidant activity: ABTS elevation. Antimicrobial activity against L. innocua. | [147] |
Green tea | 0.1–0.2 mg/mL of FFS | whey protein concentrate/glycerol (1 g or 2 g:5 g or 8 g) | - | Antioxidant activity: DPPH increases and the β-carotene bleaching test, decrease in p-anisidine and TBARS. | [179,180] |
Red grape | 0–10% (w/w of protein) | soy protein concentrate/glycerol (5 g:30% or 40% (w/w of protein)) in phosphate buffer solution pH 10 | An increase in EAB and EM. Reduction in MC, transparency and WVP. A slight increase in overall color difference (ΔE); 30% glycerin—significant increase in EAB; 40%—decrease in TS and EAB. | Antioxidant activity: FRAP and DPPH elevation. | [148] |
Curcuma (ethanol) | 5, 50, 100, 150 and 200 g/100 g of gelatin | gelatin of pork skin/sorbitol (2 g:30 g/100 g of gelatin) | Less uniform structure. An increase in TS and EAB. A decrease in WS, WVP, EM and glow. Changes in color. | Antioxidant activity: ABTS and DPPH elevation. | [145] |
Berberis lyceum root (methanol) | 1, 2, 4% (w/v) | collagen of fish skin/carboxymethylcellulose/glycerol (3 g:1.5 g:0.05% (w/v)) | A decrease in transparency. An increase in thickness, SI, WS and WCA. High biodegradability and barrier properties against the UV–visible spectra. | Antioxidant activity: DPPH, nitric oxide scavenging, FRAP and TAC increase. | [149] |
Cinnamon, guarana, rosemary and boldo do chili (ethanol) | 1% (w/v) | gelatin of pork skin/chitosan or blend (75%:25%, 50%:50%) (4 g/1 g in 100 mL acetic acid 1% (v/v)) | An increase in EAB, glow and yellowness. A decrease in TS and EM. Changes in color. | Antioxidant activity: TEAC elevation. Antimicrobial activity against S. aureus and E. coli. | [161] |
Individual compounds | |||||
Green tea polyphenols | 30% (w/w of chitosan) | chitosan/glycerol (2 g in 100 mL acetic acid 1% (v/v):0.5% (w/v)) | - | Antioxidant activity: TBARS and metmyoglobin reduction. Antimicrobial activity: the total microbial contamination decreased. | [181] |
Carvacrol, linalool and thymol | 2%, 4% and 6% (w/w) | starch/water/glycerol (63%, 61% or 59% (w/w):10% (w/w):25% (w/w)) | Voids in the structure. A decrease in TS and light transmission. An increase in EAB and EM; WVP increased slightly. | - | [182] |
Thymol (ethanol) | 0.01, 0.1, 1.0, 10 mg/mL | sodium alginate/tween 80/glycerol (1 g:1 g:1 g); 2 stages of crosslinking: (1) Ca2+ at a concentration of 0.01 g/100 mL in film-forming solution for 1 h; (2) after drying, dipping into 1.0 L of aqueous Ca2+ solution [2.0 g/100 mL (w/v) Ca2+, 3% (v/v) glycerol] for 15 min and rinsing with glycerol solution (5%, v/v) | A decrease in WS, IS, WVP, transmission coefficients of UV and visible light. Smoother, but cracks appeared at 10 mg/mL. The highest TS was observed at 1.0 mg/mL, and EAB at 0.1 mg/mL; the lowest TS and EAB, at 10 mg/mL. Reduction in the weight loss of sliced apples and better color preservation. | Antioxidant activity: DPPH elevation. Antimicrobial activity against S. aureus and E. coli. | [183] |
Polyphenols from apple | 0.5%, 1% and 1.5% (v/v) | citrus pectin/glycerol (2.75 g:30% (w/w) of pectin) +30 mL CaCl2 solution (1% w/w of pectin) | A decrease in MC, EAB, WVP and transparency. An increase in thickness, density, WS, SI and TS. Changes in color. | Antioxidant activity: DPPH elevation. Antimicrobial activity against S. aureus, E. coli and L. monocytogenes. | [184] |
Capsaicin | 0.1, 0.3 and 0.5 g | ethyl cellulose/castor oil (2 g in ethanol 95% for 45 mL solution:0.7 mL) | An increase in EAB. A decrease in TS (at >0.1 g capsaicin) and water absorption. | Antioxidant activity. Antimicrobial activity against S. aureus and E. coli. | [185] |
Tannins from white, red peel grape and oak bark | 1:3 g of protein | sodium casein/glycerol (2 g:0.3 g/g of casein) | No breaks, compact with microcracks, slightly yellow and glowing. A decrease in MC, WS, EAB and WVP. An increase in thickness and EM. A slight increase in TS. | Antioxidant activity: DPPH elevation. Antimicrobial activity against E. coli and L. innocua. | [165] |
Monolaurin, eugenol and mixture | 3.0, 5.0/2.0, 3.0% (wt) | zein/ethanol/glycerol (powder:17% (wt):4% (wt)) | Flat and plate structures. A decrease in TS and WVP; an increase in EAB. The thickness of the films varied: increased with eugenol addition, decreased with laurine addition, including when adding a mixture. WCA was reduced, but all films could be classified as hydrophobic. | Antimicrobial activity against E. coli, S. aureus, C. albicans and A. niger. | [186] |
Carvacrol | 1%, 2%, or 3% (w/v) | SPI/glycerol (5 g:0%, 1%, 1.5%, 2%, 2.5% or 3% w/v) 1.5% glycerol for all concentrations of carvacrol; for other glycerol, 1% carvacrol | A decrease in TS, YM and transparency. An increase in thickness, EAB and WVP. Good barrier properties against UV spectra. | Antimicrobial activity against L. grayi and E. coli. | [187] |
Laccase-oxidized vanillic acid, protocatechuic acid, gallic acid, ferulic acid, caffeic acid | 20 mmol/L (30 mL) | collagen sponge (5 mg/mL in 0.1 mol/L acetic acid) | Smooth and uniform surface, no visible phase separation. Low MC value and transparency. An increase in TS, thermal denaturation temperature (Td) and EAB (slight). A decrease in WVP. Barrier properties against UV and visible spectra. Changes in color. | Antioxidant activity: ABTS and DPPH elevation. Antimicrobial activity against S. aureus and E. coli. | [188] |
Curcumin | 0.25, 0.5, 1.0 and 1.5% (w/w of gelatin) | gelatin A/sodium dodecyl sulfate/glycerol (5 g:1% (w/w of gelatin):30% (w/w of gelatin)) | Smooth surface, no visible damage, transparent with a yellow tint. A decrease in EAB (till curcumin < 1%), WVP, WCA and UV light transmittance. An increase in thickness, TS and EM. | Antioxidant activity: ABTS and DPPH elevation. Antimicrobial activity against E. coli and L. monocytogenes. | [189] |
Waste and by-products | |||||
Microparticles of olive pomace | 10%, 20% and 30% of chitosan | chitosan/glycerol (2 g in 100 mL acetic acid 1% (w/w):1% (w/w)) | Smooth surface with lots of drops of air and oil. No significant influence on WVP and WS. A decrease in MC at 30%. An increase in thickness, TS and EAB at 10% with the following reduction. Excellent UV barrier properties and reduced light transmission. | Antioxidant activity: DPPH and FRAP increase, prevention of packaged walnuts oxidation. | [190] |
Purple onion peel extracts | 10, 20 or 30% (v/v) | sodium alginate/glycerol (2 g:40% (w/w of alginate)) | An increase in thickness and WVP. A decrease in WS, TS, EAB and transparency. Changes in color. | Antioxidant activity: ABTS and FRAP. | [191] |
Corn husk fiber | 1.0, 3.0, 5.0 or 8.0 g/100 g of LMP | low methyl pectin (LMP)/potassium sorbate/glycerol (5.25 g LMP in 8 g commercial pectin in 250 mL of deionized water:0.09 g:2.4 g) +5.5 mL CaCl2 solution (0.5 g) | Homogeneous with furrows. Changes in color. A decrease in density and WVP. WCA demonstrated the hydrophilicity. An increase in thickness. TS decreased and only at 5 g/100 g of the LMP was elevated. | Antioxidant activity: DPPH and FRAP increase. | [192] |
Hecan nutshell extract, hazelnut skin extract | 0.025, 0.050, 0.075, 0.1% w/v of 10 mL ethanol | octenyl succinate starch/glycerol (4 g:2 g) | No change in MC, EAB and WVP, and a slight increase in thickness. A decrease in WS, puncture resistance, TS and YM. An increase in WCA corresponded to hydrophobicity. Changes in color. Less transparent, barrier properties against visible light and UV spectra, good biodegradation. | - | [193] |
Pomegranate peel extract | 1% w/v | chitosan/glycerol (1 g in 100 mL acetic acid 1% (w/w):0.75%% (w/w)) sodium alginate/glycerol (2 g:10% (w/w of alginate)) + CaCl2 solution (2% w/v) | - | Antioxidant activity: DPPH and FRAP increase, slow down the oxidation of guava and save more ascorbic acid. | [194] |
Melanin from watermelon seeds | 0.1% and 0.5% (w/w) | WPI or concentrate/glycerol (10 g:5% (w/w)) | A decrease in WS, EAB, WCA, WVTR, transparency and light transmission. An increase in MC, SI, TS and barrier properties against UV spectra. | Antioxidant activity: ABTS and DPPH, radical scavenging activity elevation. | [195] |
Licorice residue extract | 10, 30, 50 and 70 g/kg of SPI in 10 mL etanol | SPI/glycerol (6 g:3 g) | Rough and barrier properties against UV spectra. Changes in color. A decrease in WVP and EAB till 50 g/kg of SPI. An increase in TS and ΔE. | Antioxidant activity: ABTS and DPPH increase. | [196] |
Tomato pomace oil extract | 0.5 and 1% (w/w) | gelatin/polyethylene glycol (2, 4, 6 g:1% (w/w)) | No changes in EAB. An increase in thickness, WVP and orangeness. A decrease in WS, MC and TS. | Antioxidant activity: DPPH increases. | [197] |
Active Agent | Amount of Addition | Biopolymer Matrix | Changes in Film Properties | Changes in Activity | Refs. |
---|---|---|---|---|---|
Nisin | 2000, 3000, 5000 IU/mL | tapioca starch/glycerin/water (5.0:2.5:92.5 in weight); tapioca starch 5% w/w and 2% w/w | Decreased stress at break, EM and strain at break. Elevation of WVP, solubility in water and yellow index (YI). | Antimicrobial activity (reduction in CFU) increased in a dose-dependent manner. Bacteriostatic effect against L. innocua, reduction in Zygosaccharomyces bailii count. | [250,258] |
10,000 IU/mL | 6 g of HPMC, 35 mL of ethanol and 65 mL of distilled water | A decrease in TS, YM, transparency and light transmission. An increase in ultimate elongation and WVP. | Antimicrobial activity against L. ivanoii (the highest), L. innocua (the lowest), Enterococcus spp., S. aureus and B. cereus. | [260] | |
100 mg/mL | Na-alginate 2% (w/w) and plasticizer 0.75% (50% PEG + 50% glycerol) | A decrease in TS and EAB | Antimicrobial activity against M. luteus No inhibition of Gram-negative bacteria. | [256] | |
51, 102, 153 or 204 (103 IU/g chitosan) | chitosan (1 g in 100 mL of 1% acetic acid solution) | A decrease in TS. An increase in EAB with minimum nisin addition. An increase in WVP and ΔE and a decrease in transparency in a dose-dependent manner. | Antimicrobial activity against S. aureus, L. monocytogenes (the highest) and B. cereus without a dose-dependent manner. No inhibition of E. Coli and S. typhimurium. | [254] | |
2.5, 5.0, 7.5 or 10.0 mg/g chitosan | chitosan (2 g in 100 g of 1% acetic acid solution) | Reduction in TS in dose-dependent manner. An increase in EAB. | - | [261] | |
10,000 IU/g | chitosan 1.3% (w/v), water chestnut starch 1.5% (w/v), glycerol (1.5 g in 400 mL starch–chitosan solution) | Improved mechanical properties, increase in TS, EAB and WVP. Slight changes in optical properties. | Antimicrobial activity against S. aureus and L. monocytogenes (the highest). Low inhibition of E. Coli. | [259] | |
4000, 8000, 12,000 IU/mL | corn zein/glycerol/ethanol (10%:3%:100 mL) gelatin/glycerol/water (10%:3%:100 mL) | An increase in EAB (more remarkable for corn zein film). A decrease in WVP in a dose-dependent manner. | Antimicrobial activity (reduction in CFU) increased in a dose-dependent manner. | [251] | |
28, 56, 84 and 112 mg/g gelatin | gelatin 2% (w/w), glycerol (30 g/100 g) | Changes in mechanical properties depended on nisin content. Reduction in TS, EM at high nisin content, increase in EAB. Slight increase in WVP. No influence on color parameters and opacity. | Antimicrobial activity against S. aureus and L. monocytogenes without a dose-dependent manner. | [255] | |
0.12 g/100 g of FFS | gelatin (3 g/100 g of FFS), glycerol (25 g/100 g of protein) | Reduction in EAB. A slight increase in TS. Insignificant change in color parameters, light transmission and transparency of gelatin films. A slight decrease in WVP. | No inhibition of P. Aeruginosa. Antimicrobial activity in descending order against S. aureus, B. cereus and E. coli. | [257] | |
Nisin Natamycin | 0.0068 g nisin/100 g FFS; 0.027 g natamycin/100 g FFS | for films with nisin/tapioca starch/glycerol/water (3:1:56, in weight); for films with natamycin/tapioca starch/glycerol/water (1.8:1:32.5, in weight) | Nisin addition led to a decrease in stress at break, firmness at break and an increase in the strain at break. No influence on WVP. Changes in color of films with nisin, while the effect of natamycin on optical parameters was less pronounced. | - | [262] |
Pediocin | 25% and 50% (w/w) of cellulose weight | cellulose acetate | Affected both the mechanical properties and microstructure of the films: increased thickness, force in rupture and surface roughness. | Antimicrobial activity against L. innocua, slight effect against Salmonella sp. | [252] |
30, 40 and 50% (w/w) | cellulose acetate/acetone (1:10 w/v) | Increased and then decreased the load at break. An increase in thickness in a dose-dependent manner. An increase in WVP at 50% pediocin. | Antimicrobial activity against L. innocua and L. monocytogenes. | [253] | |
Enterocin | 5 mL (3200 AU mL−1) | agar (5%, 2.5%, 1.25% and 0.8%, w/v), glycerol (20% (w/w) of agar) | - | Antimicrobial activity against L. monocytogenes. | [249] |
100 mL enterocin whey solution | gelatin (6 g), glycerol (2 g) | Barrier properties (WVTR, WVP, LTR and LP) and mechanical properties (TS and EAB) were not significantly affected. | Antimicrobial activity against L. monocytogenes. | [247] |
Active Agent | Amount of Addition | Biopolymer Matrix | Changes in Properties | Changes in Activity | Refs. |
---|---|---|---|---|---|
Lysozyme | 0.143 g/g of low methoxyl (LM) pectin | LM pectin (aqueous solution, 30 g/L) and glycerol (0.2 g/g of LM pectin) | Increased the YM, a slight decrease in EAB. | - | [279] |
2, 4, 6, 8 and 10% w/w of starch | starch (4% w/v) and glycerol (30% based on the weight of starch) | Increased TS and YM at 8%, while at 2% and 4%, TS was decreased. The WVP and thickness were increased in a dose-dependent manner. | Antimicrobial activity against M. lysodeikticus increased in a dose-dependent manner. | [280] | |
LPS | 5% (v/v) | chitosan (1.5% w/v), acetic acid (1% v/v) and glycerol (0.75 mL/g of chitosan) | - | Antimicrobial activity against S. putrefaciens, P. fluorescens, psychrotrophic and mesophilic bacteria. | [295] |
1, 2, 3, 4, 5 and 10% (w/w) | defatted soybean meal (DSM, water suspension, 10% w/v), glycerol at 20%, 30% or 50% (w/w DSM) and polysorbate-20 (1% w/w of DSM) | Decreased TS and YM. No effect on EAB and WVP. | Antimicrobial activity against S. typhimurium. | [296] | |
0, 1.25, 2.5, 5 and 7.5% (v/v) | whey protein (aqueous solution, 10% w/v)/glycerol (1:1) | - | Antimicrobial activity against S. putrefaciens and P. fluorescens. | [297] | |
5% (v/v) | chitosan (0.5, 1 and 1.5% w/v), lactic acid (0.875%, v/v), glycerol (25% p/p of chitosan) | Barrier (WVP) and mechanical properties (TS and EAB) were not significantly affected. | Antimicrobial activity against X. campestris and antifungal activity against C. gloeosporioides and L. theobromae. | [298] | |
LF | 0.5, 1 or 2 mg per disc | chitosan (1.5%, w/v), acetic acid (1% v/v) and glycerol (2.5% w/v) | At 2 mg LF per disc, WVP was increased. | Did not exhibit significant inhibitory effects against E. coli and L. monocytogenes. | [312] |
1 mL of LF (in PBS)/10 mg bacterial cellulose (BC) | BC nanofibers | The WVP was not altered. A decrease in YM and TS, a slight decrease in EAB. | Antimicrobial activity against E. coli and S. aureus. | [313] | |
OTF | 25 mg OTF per g of κ-carrageenan | κ-carrageenan (aqueous solution, 2% w/w), 1.5% plasticizer (50% polyethylene glycol + 50% glycerol) | - | Slight antimicrobial activity against aerobic bacteria and E. coli was increased synergistically in the presence of 5 mM EDTA. | [314] |
0, 5, 10, 15% (w/w) per biopolymer | fish gelatin (2 g) was dissolved in 10 mL of food-grade acetic acid | Reduction in WCA and TS. | Antimicrobial activity against E. coli (mostly), F. psychrophilum, S. putrefaciens and P. florescens at 15% OTF. | [315] | |
LF + Lysozyme | 5% (w/w) of LF and 5% (w/w) of lysozyme | carboxymethyl cellulose (CMC) | - | Reduction in total aerobic count (TAC). | [316] |
Gelatin hydrolysates (GHs) | 1 mg/mL of GH | 4% (w/v) fish gelatin (FG) solution | Lowered the viscosity of solution. A decrease in gelling and melting points. | The shelf life of coated shrimp samples was extended by three days when stored at 4 °C due to a reduction in free fatty acid content, total volatile base nitrogen, lipid oxidation and carbonyl content. | [317] |
Casein hydrolysates (CHs) | 0.05 to 0.3%, w/v | whey protein concentrate (WPC) powder (5% w/v), sorbitol (2.5% w/v), glucomannan (0.25% w/v), calcium chloride (0.125% w/v), carboxymethyl cellulose (0.25% w/v) | - | A decrease in coliform counts with increasing CH concentration up to 0.2%. The antioxidative persistence was enhanced. | [318] |
Nanomaterial | Amount of Addition | Biopolymer Matrix | Changes in Film Properties | Changes in Activity | Refs. |
---|---|---|---|---|---|
CNFs | 10 wt.% | 0.2 wt.% solids consistency PLA | An increase in the YM and TS, and the WVP was reduced. | - | [379] |
1–10 wt.% | xylan/alginate/glycerol (3.6 g:3.6 g:0.8 g) | An increase in the TS, YM and WVP. | - | [380] | |
20–100%, w/w | starch (4%, w/v)/chitosan (1%, w/v) (1:1) + 20% (w/w) of glycerol based on the dry weight of starch and chitosan | The light, oxygen and water vapor barrier capacities were reinforced. With a high concentration of CNFs (≥60%), the rigidity of the films was enhanced. | Stronger antimicrobial properties in a dose-dependent manner. | [381] | |
0.032–0.026 g | starch/glycerol/citric acid/sodium hypophosphite (3.0 g:0.9 g:0.15 g:0.075 g) | At 5% w/w, showed better mechanical properties and an increase in the TS. | - | [382] | |
2.5%, 5% and 7.5% w/w of gelatin | gelatin powder (3.5% w/w) and 40% glycerol (based on gelatin) | At 5%, boosted YM and TS, but decreased EAB, WVP and moisture absorption (MA). | - | [383] | |
2.5, 5, 7.5 and 10% | WPI (10% w/v) and glycerol (6% w/w) | At 7.5%, improved water resistance (WVP, WS, MA and MC), increased TS and YM, while EAB decreased. The addition of CNFs at high concentrations reduced TS and YM, while EAB increased. | - | [384] | |
5% w/w, based on the dry weight of SPI | SPI (6% w/v) and glycerol (60% w/w, based on the dry weight of SPI) | Enhanced the mechanical properties and TS. | - | [385] | |
CNCs | 5 wt.% on a chitosan basis | 2% wt./v chitosan | Significantly improved TS, YM and EAB, but decreased transparency | [386] | |
3 wt.% with respect to chitosan 5 wt.% based on the mass of alginate | chitosan (1.5 wt.%) dissolved in 1 v/v% lactic acid together with 30% glycerol (based on biopolymer mass) alginate (1.5 wt.%) and glycerol (30 wt.% with respect to biomass) | The modification of CNCs prior to their integration positively influenced WCA, WVTR and mechanical properties, which was especially noticeable in environments with high humidity (RH 75%). The best performance was observed in films with incorporated pristine CNCs. | - | [387] | |
1, 3 or 5 wt.% | 2 g of kappa-carrageenan in 100 mL of distilled water with addition of glycerol (25 wt.% on biopolymer solid base) | The TS and YM increased in a dose-dependent manner. The oxygen barrier property was best enhanced at 3.0 wt.%. | - | [388] | |
1, 3, 5 and 10 wt.% | sodium alginate (1 w/v) and glycerol (0.25 g/g of alginate) | WS and WVP decreased in a dose-dependent manner. TS increased with increasing CNCs content from 0 to 5%. A decrease in film transparency. | - | [389] | |
suspension (0.1% w/w) in 1–10% w/w in the dry chitosan-based nanocomposite film | chitosan (1%, w/v) in 2% aqueous acetic acid solution | An increase in TS and a reduction in WVP at 5%. | - | [390] | |
0.5% (w/v) | SPI/glycerol (6 g:2.5 g) | Elevated the TS, barrier ability and thermal stability. | - | [391] | |
CNCs (2.0% w/v) at different mass ratios: 1, 2, 3, 4, 5, 6 and 7 wt.% | 2.0% (w/v) collagen solution | Improved the light transmittance, barrier property, TS, YM and thermostability; at 4 wt.%, the WVP reached the minimum. | - | [392] | |
0, 2, 5 and 8 wt.% | WPI (5% by weight) and glycerol (50% solid) | An increase in strength and barrier properties. | - | [393] | |
0, 2.5, 5.0, 7.5 and 10.0 wt.% (based on gluten weight) | surfactant (0.2 wt.%), glycerol (1.3 wt.%) and wheat gluten (5 wt.%) | Mechanical properties improved significantly with low loadings of CNCs. Elevated WVP and melting point (at 10 wt.%). | - | [394] | |
0.44–3% | 3% corn starch, 20% glycerol and gelatin (6–14%) | Higher concentrations of gelatin and CNCs resulted in improved mechanical properties. | - | [395] | |
BNC | in situ | addition of 2% (w/v) alginate during the static culture of Gluconacetobacter sucrofermentans B-11267 for 5 days at 28 °C and crosslinked by an aqueous solution of 5% CaCl2 for 3 h | Wet nanocomposite demonstrated higher TS, while dried one demonstrated elongation. | - | [396] |
chitin nanofiber was added in the culture medium for the growth of G. xylinus at a concentration of 1 mg/mL, 14 days of incubation | Improved the mechanical strength and barrier property. | - | [397] | ||
starch (4%) as the matrix of the nanocomposite, glycerol (2%) as the plasticizer, citric acid (0.24%) as the crosslinking agent and NaH2PO4 (0.12%) as the catalyst of the chemical crosslinking inoculated with a recently isolated strain of Glucanacetobacter medellinensis (15%) | Improvement of the water and thermal stability, an increase in TS and YM. | - | [398] | ||
ex situ | The BNC sheets were immersed in the 1% acetic acid solution, in which 1% chitosan was dissolved | Improved mechanical properties, water holding capacity (WHC) and water release rate (WRR). | - | [399] | |
0%, 5% and 10% (based on CH dry weight) | 2% chitosan (CH) solution and 30% glycerol (based on the CH dry weight) | Lowered the high WS, improved the mechanical properties. | - | [400] | |
0%, 1%, 2%, 3% and 4% wt., based on the weight of KGM | 1% (w/v) konjac glucomannan (KGM) and 30% glycerol (w/w, based on the KGM) | Improved physical and barrier properties. An increase in TS. EAB was increased and then decreased. | - | [401] | |
1, 5 and 10% w/w, on starch dry basis | Potato starch powder (2% w/v) and glycerol (20% w/w, on starch dry basis) | An increase in strength (YM and TS), resistance to both MA and WS. Reduced elasticity. | - | [402] | |
1.1, 1.6, 1.8 and 2.0% (based on protein weight) | Ten milliliters of the DDGS (buckwheat distiller’s dried grains) protein solution (5%) was mixed with sorbitol (0.25 g, half of the weight of the protein) | 1.8% and 2.0% improved the properties of the biocomposite films, promoted the mechanical properties and WVP. | - | [403] | |
ChNPs | 1.0, 3.0 and 5.0 wt.% | PLA | Slightly decreased the thermal stability, improved the elongation and the impact strength, but decreased the TS. | - | [404] |
0.2, 0.5 and 0.8 in wt.% | 2.0 wt.% CMC | Improvement of thermal and mechanical properties. | - | [405] | |
0, 1, 2, 4, 6 and 8 wt.% based on the amount of potato starch | 5 g of potato starch and glycerol (1.5 g) | Improved the effect on the TS, storage modulus, glass transition temperature, water vapor barrier and thermal stability, higher ChNP loads (8 wt.%) resulted in the aggregation in the composites. | - | [406] | |
Formation of particles in starch hydrogels was observed by changes in turbidity | Two portions of 5% (w/w) starch hydrogel, one of which contains dissolved chitosan, and the second contains salt magnesium sulfate (crosslinker) mixed in a volume ratio of 1:1 and added 1% (w/w) glycerol (20% by weight of starch) | Increased the elongation and flexibility, lower vapor permeability. | - | [407] | |
0, 5, 10, 15, 20% w/w | 3% w/w tapioca starch and 25% w/w glycerol of the dry starch solid weight | - | Antimicrobial activity against B. cereus, S. aureus, E. coli and S. typhimurium. More efficient to inhibit the microbial growth in cherry tomatoes (at 15% w/w). | [408] | |
Combined with chitosan at 3:7, 1:1 and 7:3 ratios | 3% (w/w) colloidal film chitosan blends | Positively affects film mechanical strength and stiffness. | Antimicrobial activity against E. coli and S. aureus. | [409] | |
5, 10, 15, 20, 25, 30, 35% w/w of solid starch | 3% w/w solution of tapioca starch and glycerol (25% w/w of the dry starch solid weight) | 5% w/w enhanced the TS and EAB, reduced thermal stability, WVP and oxygen permeability, increased opacity. | - | [410] | |
50 mL of ChNP solution | 47 g of cupuassu puree and 3 g of pectin | The WVP decreased, elevated elongation, TS only in pectin films. | [411] | ||
0, 2, 4, 6 and 8%, w/w | 4 g fish gelatin and glycerol (0.3 g/g gelatin) | Improved the mechanical properties and decreased the WVP. | [412] | ||
12.5% | Gelatin/glycerol/tapioca starch (10:3:1) | An increase in WVP and EAB, a decrease in TS. | Antimicrobial activity against S. aureus and E. coli. | [413] | |
StNPs | 0, 1, 3, 6 and 9 wt.% | 2% of CMC, 2% of starch mixed in a 2:1 (w/w) ratio | Enhanced the physico-mechanical properties. Reduction in WPR and oxygen permeability, an increase in the TS. | Antioxidant properties, significantly extended shelf life of chicken to 56 h. | [414] |
0%, 3%, 6%, 9% and 12% on the dry basis of pea starch | pea starch (7.5 g) and glycerol (3.0 g) | The highest TS value at 6%. Elevation of melting temperature and water barrier properties. | - | [415] | |
0.0, 0.5, 1.0, 2.0 and 5.0 wt.% (based on maize starch) | 7.0 g of maize starch and 3.0 g of glycerol with final solid concentration at 10.0 wt.% (w/v) | An increase in TS and breaking elongation (at 1%). A decrease in WVP and opacity. | - | [416] | |
0, 0.05, 0.15, 0.25, 0.35 and 0.45 g | 5.0 g of pea starch and 1.5 g of glycerol | An increase in TS, water vapor barrier and thermostability. | - | [417] | |
0.5–10 wt.%, relative to the dry total mass | cassava starch (4 wt.%) and glycerol as plasticizer (2.0 wt.%) | WVTR, TS and EM were influenced by the linear effect of StNP concentration. A decrease in WVP (at 10%) and an increase in traction resistance and EM. | - | [418] | |
0.5, 1, 2, 5 and 10% | starch (5%) (w/w, dry basis), glycerol (2.5%) (w/w) and vegetable oil (2 g/L) | An increase in thickness, solubility, WVTR and burst strength. | - | [419] | |
0, 2, 4, 6 and 8 wt.% on the dry basis of starch | Starch (2 g) added to 30 mL of deionized water to obtain composite solutions | Improved WPR and WCA. | - | [420] | |
Peanut protein NPs 0, 0.025, 0.05, 0.1 and 0.2 g | SPI or cornstarch (5 g) and glycerol (1.25 g) | An increase in EAB, improved water vapor barrier and thermostability. | - | [421] | |
0, 1, 2, 3, 4 or 5 wt.% was based on the amount of SPI | SPI of desired weight and 33 wt.% glycerol | Enhanced the storage modulus, Tg, TS and YM. A decrease in EAB and water uptake. | - | [422] | |
Content in original freeze-dried powders was 1, 2, 3, 4, 8, 12 and 16% | weight ratio of every solid powder (StNPs incorporated into SPI) and glycerol was maintained at 70:30 | 2 wt.% showed a predominant reinforcing function. Elevated TS and YM. | - | [423] | |
Protein-based NPs | Zein NPs 5, 10 and 15% w/w based on starch weight | Potato starch (5 g) and glycerol (35% w/w based on starch weight) | Improved the mechanical properties of films. | - | [424] |
Zein NPs 0.05, 0.1, 0.5 or 1.0% (w/v) | 3% (w/w) Methocel A15 Food-Grade-Modified Cellulose | An increase in WCA and TS. A decrease in WPR, capacity to elongate, an initial increase followed by a gradual decrease in YM. | - | [425] | |
Zein NPs 0.2, 0.4, 0.8 and 1.2 (w/w of WPI) | 7% (w/v) solution of whey protein isolate (WPI) and glycerol (60%, w/w of WPI) | Decreased hydrophilicity, improved moisture barrier and mechanical properties. | - | [426] | |
Casein-based NPs 0.02 g/10 mL | 5% casein and 1.5% (v/v basis) of glycerol 2.5% pectin, 1.25% sodium alginate, 0.01% (of whole solution) of CaCl2 solution and glycerol (50% w/w of total polysaccharide) | Improved the water and light barrier properties, TS and thermal properties. | Antimicrobial activity against E. coli. due to silver. | [427] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Revutskaya, N.; Polishchuk, E.; Kozyrev, I.; Fedulova, L.; Krylova, V.; Pchelkina, V.; Gustova, T.; Vasilevskaya, E.; Karabanov, S.; Kibitkina, A.; et al. Application of Natural Functional Additives for Improving Bioactivity and Structure of Biopolymer-Based Films for Food Packaging: A Review. Polymers 2024, 16, 1976. https://doi.org/10.3390/polym16141976
Revutskaya N, Polishchuk E, Kozyrev I, Fedulova L, Krylova V, Pchelkina V, Gustova T, Vasilevskaya E, Karabanov S, Kibitkina A, et al. Application of Natural Functional Additives for Improving Bioactivity and Structure of Biopolymer-Based Films for Food Packaging: A Review. Polymers. 2024; 16(14):1976. https://doi.org/10.3390/polym16141976
Chicago/Turabian StyleRevutskaya, Natalia, Ekaterina Polishchuk, Ivan Kozyrev, Liliya Fedulova, Valentina Krylova, Viktoriya Pchelkina, Tatyana Gustova, Ekaterina Vasilevskaya, Sergey Karabanov, Anastasiya Kibitkina, and et al. 2024. "Application of Natural Functional Additives for Improving Bioactivity and Structure of Biopolymer-Based Films for Food Packaging: A Review" Polymers 16, no. 14: 1976. https://doi.org/10.3390/polym16141976
APA StyleRevutskaya, N., Polishchuk, E., Kozyrev, I., Fedulova, L., Krylova, V., Pchelkina, V., Gustova, T., Vasilevskaya, E., Karabanov, S., Kibitkina, A., Kupaeva, N., & Kotenkova, E. (2024). Application of Natural Functional Additives for Improving Bioactivity and Structure of Biopolymer-Based Films for Food Packaging: A Review. Polymers, 16(14), 1976. https://doi.org/10.3390/polym16141976