One Stone, Three Birds: Feasible Tuning of Barrier Heights Induced by Hybridized Interface in Free-Standing PEDOT@Bi2Te3 Thermoelectric Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Bi2Te3 Nanosheets
2.2. Preparation of PEDOT@Bi2Te3 Flexible Films
2.3. Characterization and Property Measurement
3. Results and Discussion
3.1. Microstructure and Crystal Structure of Bi2Te3 Nanosheets
3.2. Phase Structure Analysis of PEDOT@Bi2Te3 Composite Films
3.3. Interface Structure Analysis of PEDOT@Bi2Te3 Composite Films
3.4. Thermoelectric Property and Flexibility of PEDOT@Bi2Te3 Composite Films
3.5. Temperature-Dependent of Thermoelectric Properties
3.6. Mechanism of Enhanced Thermoelectric Performance in PEDOT@Bi2Te3 Films
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Shi, X.L.; Zou, J.; Chen, Z.G. Advanced thermoelectric design: From materials and structures to devices. Chem. Rev. 2020, 120, 7399–7515. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Tritt, T.M. Advances in thermoelectric materials research: Looking back and moving forward. Science 2017, 357, eaak9997. [Google Scholar] [CrossRef] [PubMed]
- Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef]
- Du, Y.; Xu, J.; Lin, T. Single-walled carbon nanotube/polypyrrole thermoelectric composite materials. IOP Conf. Ser. Earth Environ. Sci. 2018, 108, 022040. [Google Scholar] [CrossRef]
- Rashid, M.; Behram, R.B.; Qasim, I.; Ghrib, T.; Kattan, N.A. Systematic study of optoelectronic and thermoelectric properties of AHfO3 (A= Ca, Ba) perovskites at various pressure via Ab-Initio calculations. Eur. Phys. J. B 2020, 93, 1–13. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, L.; Meng, W.; Cheng, S.; Mi, S.-B. Nanoscale fabrication of heterostructures in thermoelectric SnTe. Nanoscale 2024, 16, 2303–2309. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, L.; Shi, X.L.; Shi, X.; Chen, L.; Dargusch, M.S.; Zou, J.; Chen, Z.G. Flexible thermoelectric materials and generators: Challenges and innovations. Adv. Mater. 2019, 31, e1807916. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.-H.; Shi, X.-L.; Ao, D.-W.; Liu, W.-D.; Li, M.; Kou, L.-Z.; Chen, Y.-X.; Li, F.; Wei, M.; Liang, G.-X. Harvesting waste heat with flexible Bi2Te3 thermoelectric thin film. Nat. Sustain. 2023, 6, 180–191. [Google Scholar] [CrossRef]
- Zunger, A.; Malyi, O.I. Understanding doping of quantum materials. Chem. Rev. 2021, 121, 3031–3060. [Google Scholar] [CrossRef]
- García de Arquer, F.P.; Talapin, D.V.; Klimov, V.I.; Arakawa, Y.; Bayer, M.; Sargent, E.H. Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, eaaz8541. [Google Scholar] [CrossRef]
- Kohashi, K.; Yamamoto, H.; Okano, Y.; Kaneko, K.; Miyake, S.; Takashiri, M. Low-dimensional heterostructures of tin nanoparticle-decorated Bi2Te3 nanoplates for reducing lattice thermal conductivity. Ceram. Int. 2024, 50, 764–771. [Google Scholar] [CrossRef]
- Bailini, A.; Donati, F.; Zamboni, M.; Russo, V.; Passoni, M.; Casari, C.S.; Bassi, A.L.; Bottani, C.E. Pulsed laser deposition of Bi2Te3 thermoelectric films. Appl. Surf. Sci. 2007, 254, 1249–1254. [Google Scholar] [CrossRef]
- Ahmad, M.; Agarwal, K.; Mehta, B. An anomalously high Seebeck coefficient and power factor in ultrathin Bi2Te3 film: Spin–orbit interaction. J. Appl. Phys. 2020, 128, 035108. [Google Scholar] [CrossRef]
- Nan, J.; Liu, Y.; Chao, D.; Fang, Y.; Dong, S. Crystal defect engineering of Bi2Te3 nanosheets by Ce doping for efficient electrocatalytic nitrogen reduction. Nano Res. 2023, 16, 6544–6551. [Google Scholar] [CrossRef]
- Qi, X.; Ma, W.; Zhang, X.; Zhang, C. Raman characterization and transport properties of morphology-dependent two-dimensional Bi2Te3 nanofilms. Appl. Surf. Sci. 2018, 457, 41–48. [Google Scholar] [CrossRef]
- Chang, C.; Wu, M.; He, D.; Pei, Y.; Wu, C.-F.; Wu, X.; Yu, H.; Zhu, F.; Wang, K.; Chen, Y. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science 2018, 360, 778–783. [Google Scholar] [CrossRef] [PubMed]
- Youn, S.; Freeman, A. First-principles electronic structure and its relation to thermoelectric properties of Bi2Te3. Phys. Rev. B 2001, 63, 085112. [Google Scholar] [CrossRef]
- Cao, Y.; Zhu, T.; Zhao, X. Thermoelectric Bi2Te3 nanotubes synthesized by low-temperature aqueous chemical method. J. Alloys Compd. 2008, 449, 109–112. [Google Scholar] [CrossRef]
- Rashad, M.M.; El-Dissouky, A.; Soliman, H.M.; Elseman, A.M.; Refaat, H.M.; Ebrahim, A. Structure evaluation of bismuth telluride (Bi2Te3) nanoparticles with enhanced Seebeck coefficient and low thermal conductivity. Mater. Res. Innov. 2018, 22, 315–323. [Google Scholar] [CrossRef]
- Mamur, H.; Bhuiyan, M.R.A.; Korkmaz, F.; Nil, M. A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications. Renew. Sustain. Energy Rev. 2018, 82, 4159–4169. [Google Scholar] [CrossRef]
- Peranio, N.; Leister, E.; Töllner, W.; Eibl, O.; Nielsch, K. Stoichiometry controlled, single-crystalline Bi2Te3 nanowires for transport in the basal plane. Adv. Funct. Mater. 2012, 22, 151–156. [Google Scholar] [CrossRef]
- Batili, H.; Hamawandi, B.; Ergül, A.B.; Szukiewicz, R.; Kuchowicz, M.; Toprak, M.S. A comparative study on the surface chemistry and electronic transport properties of Bi2Te3 synthesized through hydrothermal and thermolysis routes. Colloids Surf. A Physicochem. Eng. Asp. 2024, 682, 132898. [Google Scholar] [CrossRef]
- Na, Y.; Kim, S.; Mallem, S.P.R.; Yi, S.; Kim, K.T.; Park, K.-I. Energy harvesting from human body heat using highly flexible thermoelectric generator based on Bi2Te3 particles and polymer composite. J. Alloys Compd. 2022, 924, 166575. [Google Scholar] [CrossRef]
- Thongkham, W.; Lertsatitthanakorn, C.; Jiramitmongkon, K.; Tantisantisom, K.; Boonkoom, T.; Jitpukdee, M.; Sinthiptharakoon, K.; Klamchuen, A.; Liangruksa, M.; Khanchaitit, P. Self-assembled three-dimensional Bi2Te3 nanowire-PEDOT: PSS hybrid nanofilm network for ubiquitous thermoelectrics. ACS Appl. Mater. Interfaces 2019, 11, 6624–6633. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Wang, L.; Xu, J.; Liu, C.; Zhou, W.; Shi, H.; Jiang, Q.; Jiang, F. Thermoelectric performance of PEDOT:PSS/Bi2Te3-nanowires: A comparison of hybrid types. J. Mater. Sci. Mater. Electron. 2016, 27, 1769–1776. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Z.; Liu, Y.; Wang, B.; Fang, L.; Qiu, J.; Zhang, K.; Wang, S. Exceptional thermoelectric properties of flexible organic−inorganic hybrids with monodispersed and periodic nanophase. Nat. Commun. 2018, 9, 3817. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Jin, H.; Liao, Y.; Ji, P. Bi2Te3 nanowires tuning PEDOT:PSS structure for significant enhancing electrical transport property. Mater. Lett. 2023, 338, 134019. [Google Scholar] [CrossRef]
- Qiao, J.; Chai, N.; Feng, Y.; Li, J.; Chen, X.; Yue, Y.; Li, S.; Zeng, Z.; Zhou, J.; Wang, H. Two-step surface treatment of femtosecond laser irradiation and ionic liquid to enhance thermoelectric properties of PEDOT:PSS films. Appl. Surf. Sci. 2024, 642, 158569. [Google Scholar] [CrossRef]
- Zhang, J.; Ye, C.; Wei, G.; Guo, L.; Cai, Y.; Li, Z.; Wu, X.; Sun, F.; Li, Q.; Wang, Y. Polaron interfacial entropy as a route to high thermoelectric performance in DAE-doped PEDOT:PSS films. Natl. Sci. Rev. 2024, 11, nwae009. [Google Scholar] [CrossRef]
- Jiang, Q.; Liu, C.; Song, H.; Xu, J.; Mo, D.; Shi, H.; Wang, Z.; Jiang, F.; Lu, B.; Zhu, Z. Free-standing PEDOT:PSS film as electrode for the electrodeposition of bismuth telluride and its thermoelectric performance. Int. J. Electrochem. Sci. 2014, 9, 7540–7551. [Google Scholar] [CrossRef]
- Gayner, C.; Amouyal, Y. Energy filtering of charge carriers: Current trends, challenges, and prospects for thermoelectric materials. Adv. Funct. Mater. 2020, 30, 1901789. [Google Scholar] [CrossRef]
- Minnich, A.; Dresselhaus, M.S.; Ren, Z.; Chen, G. Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ. Sci. 2009, 2, 466–479. [Google Scholar] [CrossRef]
- Bahk, J.-H.; Bian, Z.; Shakouri, A. Electron energy filtering by a nonplanar potential to enhance the thermoelectric power factor in bulk materials. Phys. Rev. B 2013, 87, 075204. [Google Scholar] [CrossRef]
- Shi, W.; Shuai, Z.; Wang, D. Tuning thermal transport in chain-oriented conducting polymers for enhanced thermoelectric efficiency: A computational study. Adv. Funct. Mater. 2017, 27, 1702847. [Google Scholar] [CrossRef]
- Song, H.; Liu, C.; Zhu, H.; Kong, F.; Lu, B.; Xu, J.; Wang, J.; Zhao, F. Improved thermoelectric performance of free-standing PEDOT/Bi2Te3 films with low thermal conductivity. J Electron. Mater. 2013, 42, 1268–1274. [Google Scholar] [CrossRef]
Sample | σ (S/cm) | S (μV/K) | PF (μW/mK2) | n (×1019 cm-3) | μ (cm2/Vs) |
---|---|---|---|---|---|
PB-0 | 475 | 15.8 | 11.9 | 54.4 | 1.3 |
PB-5 | 684 | 17.1 | 20 | 259.7 | 0.7 |
PB-10 | 639 | 18.7 | 22.3 | 87.3 | 1.8 |
PB-15 | 558 | 17.7 | 17.5 | 76.7 | 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, L.; Wang, F.; Luo, H.; Zhang, Y.; Zhu, J.; Qin, Y. One Stone, Three Birds: Feasible Tuning of Barrier Heights Induced by Hybridized Interface in Free-Standing PEDOT@Bi2Te3 Thermoelectric Films. Polymers 2024, 16, 1979. https://doi.org/10.3390/polym16141979
Feng L, Wang F, Luo H, Zhang Y, Zhu J, Qin Y. One Stone, Three Birds: Feasible Tuning of Barrier Heights Induced by Hybridized Interface in Free-Standing PEDOT@Bi2Te3 Thermoelectric Films. Polymers. 2024; 16(14):1979. https://doi.org/10.3390/polym16141979
Chicago/Turabian StyleFeng, Li, Fen Wang, Hongjie Luo, Yajuan Zhang, Jianfeng Zhu, and Yi Qin. 2024. "One Stone, Three Birds: Feasible Tuning of Barrier Heights Induced by Hybridized Interface in Free-Standing PEDOT@Bi2Te3 Thermoelectric Films" Polymers 16, no. 14: 1979. https://doi.org/10.3390/polym16141979
APA StyleFeng, L., Wang, F., Luo, H., Zhang, Y., Zhu, J., & Qin, Y. (2024). One Stone, Three Birds: Feasible Tuning of Barrier Heights Induced by Hybridized Interface in Free-Standing PEDOT@Bi2Te3 Thermoelectric Films. Polymers, 16(14), 1979. https://doi.org/10.3390/polym16141979