Optical Characteristics of a New Molecular Complex: “Nafion–Colloidal CdSe/CdS/ZnS Nanocrystals”
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Luminescence Spectra of the Samples
3.2. Optical Properties of the Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lim, J.; Bae, W.K.; Kwak, J.; Lee, S.; Lee, C.; Char, K. Perspective on synthesis, device structures, and printing processes for quantum dot displays. Opt. Mater. Express 2012, 2, 594–628. [Google Scholar] [CrossRef]
- Coe-Sullivan, S.; Zhou, Z.; Niu, Y.; Perkins, J.; Stevenson, M.; Breen, C.; Kazlas, P.T.; Steckel, J.S. Quantum Dot Light Emitting Diodes for Near-to-eye and Direct View Display Applications. SID Symp. Dig. Tech. Pap. 2011, 42, 135–138. [Google Scholar] [CrossRef]
- Cho, K.-S.; Lee, E.K.; Joo, W.-J.; Jang, E.; Kim, T.-H.; Lee, S.J.; Kwon, S.-J.; Han, J.Y.; Kim, B.-K.; Choi, B.L.; et al. High-performance crosslinked colloidal quantum-dot light-emitting diodes. Nat. Photonics 2009, 3, 341–345. [Google Scholar] [CrossRef]
- Ambrozevich, S.; Auweraer, M.; Dirin, D.; Parshin, M.; Vasil’ev, R.; Vitukhnovsky, A. Hole mobility and trapping in PVK films doped with CdSe/CdS and CdSe quantum dots. J. Russ. Laser Res. 2008, 29, 526–537. [Google Scholar] [CrossRef]
- Vitukhnovsky, A.G.; Shul’ga, A.S.; Ambrozevich, S.A.; Khokhlov, E.M.; Vasiliev, R.B.; Dirin, D.N.; Yudson, V.I. Effect of branching of tetrapod-shaped CdTe/CdSe nanocrystal heterostructures on their luminescence. Phys. Lett. A 2009, 373, 2287–2290. [Google Scholar] [CrossRef]
- Ambrozevich, S.A.; Gorelik, V.S.; Dirin, D.N.; Vasiliev, R.B.; Vitukhnovsky, A.G.; Voinov, Y. Optical properties of 3D photonic crystals filled with CdSe/CdS Quantum Dots. J. Russ. Laser Res. 2009, 30, 384–391. [Google Scholar] [CrossRef]
- Vitukhnovskii, A.G.; Vaschenko, A.A.; Bychkovskii, D.N.; Dirin, D.N.; Tananaev, P.N.; Vakshtein, M.S.; Korzhonov, D.A. Photo- and electroluminescence from semiconductor colloidal quantum dots in organic matrices: QD-OLED. Semiconductors 2013, 47, 1567–1569. [Google Scholar] [CrossRef]
- Chamarro, M.; Gourdon, C.; Lavallard, P.; Lublinskaya, O.; Ekimov, A.I. Enhancement of electron-hole exchange interaction in CdSe nanocrystals: A quantum confinement effect. Phys. Rev. B 1996, 53, 1336–1342. [Google Scholar] [CrossRef]
- Kucur, E.; Riegler, J.; Urban, G.A.; Nann, T. Determination of quantum confinement in CdSe nanocrystals by cyclic voltammetry. J. Chem. Phys. 2003, 119, 2333–2337. [Google Scholar] [CrossRef]
- Henglein, A. Small-particle research: Physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 1989, 89, 1861–1873. [Google Scholar] [CrossRef]
- Brus, L. Electronic wave functions in semiconductor clusters: Experiment and theory. J. Phys. Chem. 1986, 90, 2555–2560. [Google Scholar] [CrossRef]
- Hines, M.; Guyot Sionnest, P. Synthesis and Characterization of Strongly Luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 1996, 100, 468–471. [Google Scholar] [CrossRef]
- Reiss, P.; Bleuse, J.; Pron, A. Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion. Nano Lett. 2002, 2, 781–784. [Google Scholar] [CrossRef]
- Ivanov, S.; Nanda, J.; Piryatinski, A.; Achermann, M.; Balet, L.; Bezel, I.; Anikeeva, P.; Tretiak, S.; Klimov, V. Light amplification using inverted core/shell nanocrystals: Towards lasing in the single-exciton regime. J. Phys. Chem. B 2004, 108, 10625–10630. [Google Scholar] [CrossRef]
- Li, L.; Reiss, P. One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection. J. Am. Chem. Soc. 2008, 130, 11588–11589. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.Z.; Shen, H.; Zhou, C.; Xu, W.; Li, X.; Wang, H.; Lou, S.; Du, Z.; Li, L.S. Controlled synthesis of high quality type-II/type-I CdS/ZnSe/ZnS core/shell1/shell2 nanocrystals. Dalton Trans. 2010, 39, 3308–3314. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.-A.; Lu, Y. Luminescence enhancement of nanocrystal quantum wells by bandgap and strain engineering. J. Nanophotonics 2015, 9, 093052. [Google Scholar] [CrossRef]
- Mikulics, M.; Arango, Y.C.; Winden, A.; Adam, R.; Hardtdegen, A.; Grützmacher, D.; Plinski, E.; Gregušová, D.; Novák, J.; Kordoš, P.; et al. Direct electro-optical pumping for hybrid CdSe nanocrystal/III-nitride based nano-light-emitting diodes. Appl. Phys. Lett. 2016, 108, 061107. [Google Scholar] [CrossRef]
- Mikulics, M.; Winden, A.; Mayer, J.; Hardtdegen, H.H. Developments in Mask-Free Singularly Addressable Nano-LED Lithography. Nanomanufacturing 2024, 4, 99–110. [Google Scholar] [CrossRef]
- Maduraiveeran, G. Enzyme-free electrochemical sensor platforms based on transition metal nanostructures for clinical diagnostics. Anal. Methods 2023, 15, 6620–6630. [Google Scholar] [CrossRef]
- Schlick, S.; Gebel, G.; Pineri, M.; Volino, F. Study of Nafion Membranes and Solutions Using 19F NMR Spectroscopy. Macromolecules 1991, 24, 3517–3521. [Google Scholar] [CrossRef]
- Gebel, G.; Aldebert, P.; Pineri, M. Swelling study of perfluorosulphonated ionomer membranes. Polymer 1993, 34, 333–339. [Google Scholar] [CrossRef]
- Mauritz, K.A.; Moore, R.B. State of Understanding of Nafion. Chem. Rev. 2004, 104, 4535–4586. [Google Scholar] [CrossRef]
- Kusoglu, A.; Weber, A.Z. New Insights into Perfluorinated Sulfonic-Acid Ionomers. Chem. Rev. 2017, 117, 987–1104. [Google Scholar] [CrossRef]
- Bunkin, N.F.; Bolotskova, P.N.; Kozlov, V.A.; Okuneva, M.A.; Bondarchuk, E.V.; Gryaznov, V.G.; Ovchinnikov, O.V.; Smoliy, O.P.; Turkanov, I.F.; Galkina, C.A.; et al. Stochastic Ultralow-Frequency oscillations of the luminescence intensity from the surface of a polymer membrane swelling in aqueous salt solutions. Polymers 2022, 14, 688. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.X.; Ru, J.; Wang, T.; Wang, Y.J.; Chang, L.F. Performance Enhancement of Ionic Polymer-Metal Composite Actuators with Polyethylene Oxide. Polymers 2022, 14, 80. [Google Scholar] [CrossRef] [PubMed]
- Safronova, E.Y.; Voropaeva, D.Y.; Novikova, S.A.; Yaroslavtsev, A.B. On the Influence of Solvent and Ultrasonic Treatment on Properties of Cast Nafion® Membranes. Membr. Technol. 2022, 4, 39–47. [Google Scholar] [CrossRef]
- Bunkin, N.F.; Bolotskova, P.N.; Gladysheva, Y.V.; Kozlov, V.A.; Timchenko, S.L. Adsorption of Methylene Blue on the Surface of Polymer Membrane; Dependence on the Isotopic Composition of Liquid Matrix. Polymers 2022, 14, 4007. [Google Scholar] [CrossRef]
- Sun, C.; Negro, E.; Nale, A.; Pagot, G.; Vezzù, K.; Zawodzinski, T.A.; Meda, L.; Gambaro, C.; Di Noto, V. An efficient barrier toward vanadium crossover in redox flow batteries: The bilayer [Nafion/(WO3)x] hybrid inorganic-organic membrane. Electrochim. Acta 2021, 378, 138133. [Google Scholar] [CrossRef]
- Belov, N.A.; Pashkevich, D.S.; Alentiev, A.Y.; Tressaud, A. Effect of Direct Fluorination on the Transport Properties and Swelling of Polymeric Materials: A Review. Membranes 2021, 11, 713. [Google Scholar] [CrossRef]
- Liu, L.; Chen, W.; Li, Y. An overview of the proton conductivity of nafion membranes through a statistical analysis. J. Membr. Sci. 2016, 504, 1–9. [Google Scholar] [CrossRef]
- Xu, T. Ion exchange membranes: State of their development and perspective. J. Membr. Sci. 2005, 263, 1–29. [Google Scholar] [CrossRef]
- Giesbrecht, P.K.; Freund, M.S. Investigation of Hydrogen Oxidation and Evolution Reactions at Porous Pt/C Electrodes in Nafion-Based Membrane Electrode Assemblies Using Impedance Spectroscopy and Distribution of Relaxation Times Analysis. J. Phys. Chem. C 2022, 126, 132–150. [Google Scholar] [CrossRef]
- Kurochkin, N.S.; Katsaba, A.V.; Ambrozevich, S.A.; Vitukhnovsky, A.G.; Vashchenko, A.A.; Tananaev, P.N. Energy transfer from TPD to CdSe/CdS/ZnS colloidal nanocrystals. Semiconductors 2017, 51, 628–631. [Google Scholar] [CrossRef]
- Yu, W.W.; Qu, L.; Guo, W.; Peng, X. Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals. Chem. Mater. 2003, 15, 2854–2860. [Google Scholar] [CrossRef]
- Segets, D.; Lucas, J.M.; Taylor Klupp, R.N.; Scheele, M.; Zheng, H.; Alivisatos, A.P.; Peukert, W. Determination of the Quantum Dot Band Gap Dependence on Particle Size from Optical Absorbance and Transmission Electron Microscopy Measurements. ACS Nano 2012, 6, 9021–9032. [Google Scholar] [CrossRef]
- Bunkin, N.F.; Bolotskova, P.N.; Gudkov, S.V.; Khuong, M.T.; Kozlov, V.A.; Timchenko, S.L.; Voronov, V.V.; Novakovskaya, Y.V. Nafion: A Flexible Template for Selective Structuring. Polymers 2024, 16, 744. [Google Scholar] [CrossRef] [PubMed]
- Gorelik, V.S.; Lepnev, L.S.; Pyatushev, A.Y.; Skrabatun, A.V. Photoluminescence of sodium nitrite under ultraviolet excitation. Inorg. Mater. 2017, 53, 72–76. [Google Scholar] [CrossRef]
- Gorelik, V.S.; Palatnikov, M.N.; Pyatyshev AYu Sidorov, N.V.; Skrabatun, A.V. Optical Properties of Copper-Doped Lithium Niobate Crystals. Inorg. Mater. 2018, 54, 1013–1020. [Google Scholar] [CrossRef]
- Baret, J.F. Kinetics of Adsorption from a Solution. Role of the Diffusion and of the Adsorption-Desorption Antagonism. J. Phys. Chem. 1968, 72, 2755–2758. [Google Scholar] [CrossRef]
- Miller, R.; Kretzschmar, G. Adsorption kinetics of surfactants at fluid interfaces. Adv. Colloid Interface Sci. 1991, 37, 97–121. [Google Scholar] [CrossRef]
- Mehrer, H. Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes; Springer Series in Solid Science; Springer: Berlin/Heidelberg, Germany, 2007; p. 639. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timchenko, S.L.; Ambrozevich, S.A.; Zadorozhnyi, E.N.; Zadorozhnyi, N.A.; Skrabatun, A.V.; Sharandin, E.A. Optical Characteristics of a New Molecular Complex: “Nafion–Colloidal CdSe/CdS/ZnS Nanocrystals”. Polymers 2024, 16, 2092. https://doi.org/10.3390/polym16142092
Timchenko SL, Ambrozevich SA, Zadorozhnyi EN, Zadorozhnyi NA, Skrabatun AV, Sharandin EA. Optical Characteristics of a New Molecular Complex: “Nafion–Colloidal CdSe/CdS/ZnS Nanocrystals”. Polymers. 2024; 16(14):2092. https://doi.org/10.3390/polym16142092
Chicago/Turabian StyleTimchenko, Svetlana L., Sergey A. Ambrozevich, Evgenii N. Zadorozhnyi, Nikolai A. Zadorozhnyi, Alexander V. Skrabatun, and Evgenii A. Sharandin. 2024. "Optical Characteristics of a New Molecular Complex: “Nafion–Colloidal CdSe/CdS/ZnS Nanocrystals”" Polymers 16, no. 14: 2092. https://doi.org/10.3390/polym16142092
APA StyleTimchenko, S. L., Ambrozevich, S. A., Zadorozhnyi, E. N., Zadorozhnyi, N. A., Skrabatun, A. V., & Sharandin, E. A. (2024). Optical Characteristics of a New Molecular Complex: “Nafion–Colloidal CdSe/CdS/ZnS Nanocrystals”. Polymers, 16(14), 2092. https://doi.org/10.3390/polym16142092