Effect of Wood Species on Lignin-Retaining High-Transmittance Transparent Wood Biocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Lignin Modification
2.3. Transparent Wood Production
2.4. Characterization
3. Results
3.1. Physico-Chemical Properties
3.1.1. FTIR Spectroscopy
3.1.2. Density Profile
3.1.3. Thermal Stability
3.1.4. Optical Properties
3.2. Mechanical Properties
3.2.1. Tensile Modulus of Elasticity
3.2.2. Impact Resistance
3.2.3. Hardness
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wegner, T.; Skog, K.E.; Ince, P.J.; Michler, C.J. Uses and desirable properties of wood in the 21st century. J. For. 2010, 108, 165–173. [Google Scholar]
- Bessala, L.F.B.; Gao, J.; He, Z.; Wang, Z.; Yi, S. Effects of Heat Treatment on Color, Dimensional Stability, Hygroscopicity and Chemical Structure of Afrormosia and Newtonia Wood: A Comparative Study of Air and Palm Oil Medium. Polymers 2023, 15, 774. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Fan, H.; Wang, J. Wood carbonization as a protective treatment on resistance to wood destroying fungi. Int. Biodeterior. Biodegrad. 2018, 129, 42–49. [Google Scholar] [CrossRef]
- Salla, J.; Pandey, K.K.; Srinivas, K. Improvement of UV resistance of wood surfaces by using ZnO nanoparticles. Polym. Degrad. Stab. 2012, 97, 592–596. [Google Scholar] [CrossRef]
- Nagarajappa, G.B.; Pandey, K.K. UV resistance and dimensional stability of wood modified with isopropenyl acetate. J. Photochem. Photobiol. B Biol. 2016, 155, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Martinka, J.; Mitterpach, J.; Štefko, T.; Wachter, I.; Rantuch, P. Fire hazard of epoxy-based transparent wood. J. Therm. Anal. Calorim. 2023, 148, 9893–9907. [Google Scholar] [CrossRef]
- Zhang, K.; Chu, C.; Li, M.; Li, W.; Li, J.; Guo, X.; Ding, Y. Transparent wood developed by impregnating poplar with epoxy resin assisted by silane coupling agent. BioResources 2023, 18, 3598–3607. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y.; Vasseghian, Y.; Du, Y.; Kamyab, H.; Hashim, H.; Xia, C. Minimizing the polymer content of compressed transparent synthetic wood from renewable biomass sources: A comparative life cycle assessment. Sustain. Mater. Technol. 2024, 40, e00977. [Google Scholar] [CrossRef]
- Li, T.; Zhu, M.; Yang, Z.; Song, J.; Dai, J.; Yao, Y.; Luo, W.; Pastel, G.; Yang, B.; Hu, L. Wood Composite as an Energy Efficient Building Material: Guided Sunlight Transmittance and Effective Thermal Insulation. Adv. Energy Mater. 2016, 6, 1601122. [Google Scholar] [CrossRef]
- Chutturi, M.; Gillela, S.; Yadav, S.M.; Wibowo, E.S.; Sihag, K.; Rangppa, S.M.; Bhuyar, P.; Siengchin, S.; Antov, P.; Kristak, L.; et al. A comprehensive review of the synthesis strategies, properties, and applications of transparent wood as a renewable and sustainable resource. Sci. Total Environ. 2023, 864, 161067. [Google Scholar] [CrossRef]
- Yang, H.; Wang, H.; Cai, T.; Ge-Zhang, S.; Mu, H. Light and wood: A review of optically transparent wood for architectural applications. Ind. Crops Prod. 2023, 204, 117287. [Google Scholar] [CrossRef]
- Muhammad, N.A.; Armynah, B.; Tahir, D. High transparent wood composite for effective X-ray shielding applications. Mater. Res. Bull. 2022, 154, 111930. [Google Scholar] [CrossRef]
- Yu, Z.; Yao, Y.; Yao, J.; Zhang, L.; Chen, Z.; Gao, Y.; Luo, H. Transparent wood containing Cs x WO3 nanoparticles for heat-shielding window applications. J. Mater. Chem. A 2017, 5, 6019–6024. [Google Scholar] [CrossRef]
- Van Hai, L.; Cho, S.-W.; Kwon, G.-J.; Lee, D.-Y.; Ma, S.-Y.; Bandi, R.; Kim, J.-K.; Han, S.-Y.; Dadigala, R.; Lee, S.-H. Fabrication of eco-friendly transparent wood for UV-shielding functionality. Ind. Crops Prod. 2023, 201, 116918. [Google Scholar] [CrossRef]
- Zhou, T.; Zhou, J.; Feng, Q.; Yang, Q.; Jin, Y.; Li, D.; Xu, Z.; Chen, C. Mechanically strong, hydrostable, and biodegradable all-biobased transparent wood films with UV-blocking performance. Int. J. Biol. Macromol 2024, 255, 128188. [Google Scholar] [CrossRef]
- Hendinata, L.K.; Siddiq, N.A.; Utami, S.S.; Fikri, A.I.R.; Suprapto, M.A.; Prilia, R. Delignified wood biocomposites as sustainable and transparent materials for passive cooling applications. Wood Mater. Sci. Eng. 2023, 19, 291–301. [Google Scholar] [CrossRef]
- Chen, F.; Ritter, M.; Xu, Y.; Tu, K.; Koch, S.M.; Yan, W.; Bian, H.; Ding, Y.; Sun, J.; Burgert, I. Lightweight, Strong, and Transparent Wood Films Produced by Capillary Driven Self-Densification. Small 2024, 2311966. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Chao, W.; Di, X.; Yang, Z.; Yang, T.; Yu, Q.; Liu, F.; Li, J.; Li, G.; Wang, C. Multifunctional wood based composite phase change materials for magnetic-thermal and solar-thermal energy conversion and storage. Energy Convers. Manag. 2019, 200, 112029. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.; Zhan, X.; Luo, D.; Sun, X. Photochromic transparent wood for photo-switchable smart window applications. J. Mater. Chem. C 2019, 7, 8649–8654. [Google Scholar] [CrossRef]
- Xu, R.; Gan, J.; Wang, J.; Zhao, W.; Tong, K.; Wu, Y. Photoluminescent transparent wood with excellent UV-shielding function. ACS Omega 2024, 9, 8092–8102. [Google Scholar] [CrossRef]
- Tian, L.; Zhu, W.; Chen, X.; Feng, Y.; Hu, H.; Wang, H.; Dang, B.; Chai, H.; Sun, Q.; Yang, Y.; et al. Flexible transparent wood with reversible photoresponsive property. Polymer 2024, 294, 126725. [Google Scholar] [CrossRef]
- Fu, Q.; Chen, Y.; Sorieul, M. Wood-based flexible electronics. ACS Nano 2020, 14, 3528–3538. [Google Scholar] [CrossRef]
- Fang, Z.; Zhang, H.; Qiu, S.; Kuang, Y.; Zhou, J.; Lan, Y.; Sun, C.; Li, G.; Gong, S.; Ma, Z. Versatile Wood Cellulose for Biodegradable Electronics. Adv. Mater. Technol. 2021, 6, 2000928. [Google Scholar] [CrossRef]
- Fang, Z.; Zhu, H.; Bao, W.; Preston, C.; Liu, Z.; Dai, J.; Li, Y.; Hu, L. Highly transparent paper with tunable haze for green electronics. Energy Environ. Sci. 2014, 7, 3313–3319. [Google Scholar] [CrossRef]
- Zhang, J.; Koubaa, A.; Tao, Y.; Li, P.; Xing, D. The emerging development of transparent wood: Materials, characteristics, and applications. Curr. For. Rep. 2022, 8, 333–345. [Google Scholar] [CrossRef]
- Wu, J.; Wu, Y.; Yang, F.; Tang, C.; Huang, Q.; Zhang, J. Impact of delignification on morphological, optical and mechanical properties of transparent wood. Compos. Part A Appl. Sci. Manuf. 2018, 117, 324–331. [Google Scholar] [CrossRef]
- Yaddanapudi, H.S.; Hickerson, N.; Saini, S.; Tiwari, A. Fabrication and characterization of transparent wood for next generation smart building applications. Vacuum 2017, 146, 649–654. [Google Scholar] [CrossRef]
- Yin, X.; Zhang, Y.; Xu, Y. Luminescent transparent wood from balsa wood loaded by graphite carbon nitride for application in photoelectric device. Wood Sci. Technol. 2023, 57, 467–481. [Google Scholar] [CrossRef]
- Arcieri, N. Characterization Methodology to Assess the Mechanical Properties of Delignified Birch/PMMA Transparent Wood Biocomposites. Master’s Thesis, Politecnico di Torino, Torino, Italy, 2022. [Google Scholar]
- Gierer, J. The chemistry of delignification-A general concept-Part II. Holzforschung 1982, 36, 55–64. [Google Scholar] [CrossRef]
- Karp, S.G.; Woiciechowski, A.L.; Soccol, V.T.; Soccol, C.R. Pretreatment strategies for delignification of sugarcane bagasse: A review. Braz. Arch. Biol. Technol. 2013, 56, 679–689. [Google Scholar] [CrossRef]
- Agustiany, E.A.; Rasyidur Ridho, M.; Rahmi DN, M.; Madyaratri, E.W.; Falah, F.; Lubis, M.A.R.; Solihat, N.N.; Syamani, F.A.; Karungamye, P.; Sohail, A.; et al. Recent developments in lignin modification and its application in lignin-based green composites: A review. Polym. Compos. 2022, 43, 4848–4865. [Google Scholar] [CrossRef]
- Wang, J.; Deng, Y.; Qian, Y.; Qiu, X.; Ren, Y.; Yang, D. Reduction of lignin color via one-step UV irradiation. Green Chem. 2015, 18, 695–699. [Google Scholar] [CrossRef]
- Zhang, H.; Fu, S.; Chen, Y. Basic understanding of the color distinction of lignin and the proper selection of lignin in color-depended utilizations. Int. J. Biol. Macromol. 2020, 147, 607–615. [Google Scholar] [CrossRef] [PubMed]
- ASTM D3039; Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM D2240; Standard Test Method for Rubber Property—Durometer Hardness. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM D1003; Standard Test Method for Haze and Luminous Transmittance of Transparent Plastics. ASTM International: West Conshohocken, PA, USA, 2021.
- Pandey, K. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J. Appl. Polym. Sci. 1999, 71, 1969–1975. [Google Scholar] [CrossRef]
- De Mil, T.; Tarelkin, Y.; Hahn, S.; Hubau, W.; Deklerck, V.; Debeir, O.; Van Acker, J.; De Cannière, C.; Beeckman, H.; Van den Bulcke, J. Wood density profiles and their corresponding tissue fractions in tropical angiosperm trees. Forests 2018, 9, 763. [Google Scholar] [CrossRef]
- Ziemińska, K.; Westoby, M.; Wright, I.J. Broad anatomical variation within a narrow wood density range—A study of twig wood across 69 Australian angiosperms. PLoS ONE 2015, 10, e0124892. [Google Scholar]
- Krauss, A.; Moliński, W.; Kúdela, J.; Čunderlík, I. Differences in the mechanical properties of early and latewood within individual annual rings in dominant pine tree (Pinus sylvestris L.). Wood Res. 2011, 56, 1–12. [Google Scholar]
- Boonstra, M.J.; Rijsdijk, J.; Sander, C.; Kegel, E.; Tjeerdsma, B.; Militz, H.; Van Acker, J.; Stevens, M. Microstructural and physical aspects of heat treated wood. Part 1. Softwoods. Maderas. Cienc. Y Tecnol. 2006, 8, 193–208. [Google Scholar]
- Miyoshi, Y.; Kojiro, K.; Furuta, Y. Effects of density and anatomical feature on mechanical properties of various wood species in lateral tension. J. Wood Sci. 2018, 64, 509–514. [Google Scholar] [CrossRef]
- Jakes, J.E.; Hunt, C.G.; Zelinka, S.L.; Ciesielski, P.N.; Plaza, N.Z. Effects of Moisture on Diffusion in Unmodified Wood Cell Walls: A Phenomenological Polymer Science Approach. Forests 2019, 10, 1084. [Google Scholar] [CrossRef]
- Tamblyn, N. Treatment of wood by diffusion. In Preservation of Timber in the Tropics; Springer: Berlin/Heidelberg, Germany, 1985; pp. 121–140. [Google Scholar]
- Dietenberger, M.; Hasburgh, L. Wood products thermal degradation and fire. Ref. Modul. Mater. Sci. Mater. Eng. 2016, 1, 9712–9716. [Google Scholar]
- Poletto, M.; Zattera, A.J.; Santana, R.M. Thermal decomposition of wood: Kinetics and degradation mechanisms. Bioresour. Technol. 2012, 126, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Macan, J.; Brnardić, I.; Orlić, S.; Ivanković, H.; Ivanković, M. Thermal degradation of epoxy–silica organic–inorganic hybrid materials. Polym. Degrad. Stab. 2006, 91, 122–127. [Google Scholar] [CrossRef]
- Chen, H.; Baitenov, A.; Li, Y.; Vasileva, E.; Popov, S.; Sychugov, I.; Yan, M.; Berglund, L. Thickness Dependence of Optical Transmittance of Transparent Wood: Chemical Modification Effects. ACS Appl. Mater. Interfaces 2019, 11, 35451–35457. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.-J.; Pascal Kamdem, D. Chemical composition, crystallinity and crystallite cellulose size in Populus hybrids and aspen. Cellul. Chem. Technol. 2009, 43, 229. [Google Scholar]
- Tullus, A.; Mandre, M.; Soo, T.; Tullus, H. Relationships between cellulose, lignin and nutrients in the stemwood of hybrid aspen in Estonian plantations. Cellul. Chem. Technol. 2010, 44, 101. [Google Scholar]
- De Araujo, F.; Hart, J.F.; Mansfield, S.D. Variation in Trembling Aspen and White Spruce Wood Quality Grown in Mixed and Single Species Stands in the Boreal Mixedwood Forest. Forests 2015, 6, 1628–1648. [Google Scholar] [CrossRef]
- Keith, C.; Chauret, G. Basic wood properties of European larch from fast-growth plantations in eastern Canada. Can. J. For. Res. 1988, 18, 1325–1331. [Google Scholar] [CrossRef]
- Gullo, F.; Marangon, A.; Croce, A.; Gatti, G.; Aceto, M. From Natural Woods to High Density Materials: An Ecofriendly Approach. Sustainability 2023, 15, 2055. [Google Scholar] [CrossRef]
- Qian, J.; Yue, K.; Lv, C.; Zhu, L.; Jiao, X.; Wu, P.; Xu, C.; Sun, K. Measurements of the mechanical properties of larch at elevated and high temperature under nitrogen conditions. Polym. Test. 2023, 128, 108228. [Google Scholar] [CrossRef]
- Montanari, C.l.; Li, Y.; Chen, H.; Yan, M.; Berglund, L.A. Transparent wood for thermal energy storage and reversible optical transmittance. ACS Appl. Mater. Interfaces 2019, 11, 20465–20472. [Google Scholar] [CrossRef] [PubMed]
- Kretschmann, D.E. Mechanical properties of wood. Environments 2010, 5, 34. [Google Scholar]
- Senalik, C.A.; Farber, B. Mechanical properties of wood. In Wood Handbook—Wood as an Engineering Material; Environments; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2021; Chapter 5; p. 34. [Google Scholar]
- Zhang, S. Effect of growth rate on wood specific gravity and selected mechanical properties in individual species from distinct wood categories. Wood Sci. Technol. 1995, 29, 451–465. [Google Scholar] [CrossRef]
- Zhang, S. Wood specific gravity-mechanical property relationship at species level. Wood Sci. Technol. 1997, 31, 181–191. [Google Scholar] [CrossRef]
- Xie, Y.; Fu, Q.; Wang, Q.; Xiao, Z.; Militz, H. Effects of chemical modification on the mechanical properties of wood. Eur. J. Wood Wood Prod. 2013, 71, 401–416. [Google Scholar] [CrossRef]
- Green, D.W.; Winandy, J.E.; Kretschmann, D.E. Mechanical properties of wood. In Wood Handbook: Wood as An Engineering Material; General technical report FPL; GTR-113; USDA Forest Service, Forest Products Laboratory: Madison, WI, USA, 1999; Volume 113, pp. 4.1–4.45. [Google Scholar]
- Machado, J.S.; Louzada, J.L.; Santos, A.J.; Nunes, L.; Anjos, O.; Rodrigues, J.; Simões, R.M.; Pereira, H. Variation of wood density and mechanical properties of blackwood (Acacia melanoxylon R. Br.). Mater. Des. 2013, 56, 975–980. [Google Scholar] [CrossRef]
- Dorey, G. Relationship between impact resistance and fracture toughness in advanced composite materials. In Effect of Service Environment on Composite Materials; AGARD Conference Proceedings; NATO Communications and Information Agency: Brussels, Belgium, 1980; Volume 28. [Google Scholar]
- Zhang, Z.; Liu, H.; Yang, J.; Lin, H. Theoretical investigation on impact resistance and energy absorption of foams with nonlinearly varying density. Compos. Part B Eng. 2017, 116, 76–88. [Google Scholar] [CrossRef]
- Esteban, L.G.; de Palacios, P.; Heinz, I.; Gasson, P.; García-Iruela, A.; García-Fernández, F. Softwood Anatomy: A Review. Forests 2023, 14, 323. [Google Scholar] [CrossRef]
Sample | T5%(°C) | T50%(°C) | Residue (%) |
---|---|---|---|
NW-WS | 80.3 | 374.2 | 22.0 |
NW-A | 72.7 | 322.5 | 16.8 |
NW-L | 75.3 | 348.5 | 15.6 |
Resin | 357.0 | 392.5 | 5.5 |
TW-WS | 212.3 | 387.6 | 13.7 |
TW-A | 272.0 | 387.9 | 10.2 |
TW-L | 197.4 | 386.8 | 11.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bradai, H.; Koubaa, A.; Zhang, J.; Demarquette, N.R. Effect of Wood Species on Lignin-Retaining High-Transmittance Transparent Wood Biocomposites. Polymers 2024, 16, 2493. https://doi.org/10.3390/polym16172493
Bradai H, Koubaa A, Zhang J, Demarquette NR. Effect of Wood Species on Lignin-Retaining High-Transmittance Transparent Wood Biocomposites. Polymers. 2024; 16(17):2493. https://doi.org/10.3390/polym16172493
Chicago/Turabian StyleBradai, Hamza, Ahmed Koubaa, Jingfa Zhang, and Nicole R. Demarquette. 2024. "Effect of Wood Species on Lignin-Retaining High-Transmittance Transparent Wood Biocomposites" Polymers 16, no. 17: 2493. https://doi.org/10.3390/polym16172493
APA StyleBradai, H., Koubaa, A., Zhang, J., & Demarquette, N. R. (2024). Effect of Wood Species on Lignin-Retaining High-Transmittance Transparent Wood Biocomposites. Polymers, 16(17), 2493. https://doi.org/10.3390/polym16172493