Patterning of Organic Semiconductors Leads to Functional Integration: From Unit Device to Integrated Electronics
Abstract
:1. Introduction
2. Patterning Methods of Organic Materials
2.1. Surface-Grafting Polymers
2.2. Capillary Force Lithography
2.3. Wettability
2.4. Evaporation Assistant
2.5. Diffusion
3. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, S. Organic semiconductors for device applications: Current trends and future prospects. J. Polym. Eng. 2014, 34, 279–338. [Google Scholar] [CrossRef]
- Franchi, D.; Amara, Z. Applications of sensitized semiconductors as heterogeneous visible-light photocatalysts in organic synthesis. ACS Sustain. Chem. Eng. 2020, 8, 15405–15429. [Google Scholar] [CrossRef]
- Ruiz, C.; García-Frutos, E.M.; Hennrich, G.; Gómez-Lor, B. Organic semiconductors toward electronic devices: High mobility and easy processability. J. Phys. Chem. Lett. 2012, 3, 1428–1436. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Dong, H.; Jiang, L.; Hu, W. Organic semiconductor crystals. Chem. Soc. Rev. 2018, 47, 422–500. [Google Scholar] [CrossRef]
- Wang, S.; Peng, L.; Sun, H.; Huang, W. The future of solution processing toward organic semiconductor devices: A substrate and integration perspective. J. Mater. Chem. C 2022, 10, 12468–12486. [Google Scholar] [CrossRef]
- Qian, Y.; Zhang, X.; Xie, L.; Qi, D.; Chandran, B.K.; Chen, X.; Huang, W. Stretchable organic semiconductor devices. Adv. Mater. 2016, 28, 9243–9265. [Google Scholar] [CrossRef]
- Gui, K.; Mutkins, K.; Schwenn, P.E.; Krueger, K.B.; Pivrikas, A.; Wolfer, P.; Stutzmann, N.S.; Burn, P.L.; Meredith, P. A flexible n-type organic semiconductor for optoelectronics. J. Mater. Chem. 2012, 22, 1800–1806. [Google Scholar] [CrossRef]
- Gupta, S.K.; Jha, P.; Singh, A.; Chehimi, M.M.; Aswal, D.K. Flexible organic semiconductor thin films. J. Mater. Chem. C 2015, 3, 8468–8479. [Google Scholar] [CrossRef]
- Zschieschang, U.; Ante, F.; Yamamoto, T.; Takimiya, K.; Kuwabara, H.; Ikeda, M.; Sekitani, T.; Someya, T.; Kern, K.; Klauk, H. Flexible low-voltage organic transistors and circuits based on a high-mobility organic semiconductor with good air stability. Adv. Mater. 2010, 22, 982–985. [Google Scholar] [CrossRef]
- Bi, P.; Ren, J.; Zhang, S.; Wang, J.; Hou, J. PTV-based p-type organic semiconductors: Candidates for low-cost photovoltaic donors with simple synthetic routes. Polymer 2020, 209, 122900. [Google Scholar] [CrossRef]
- Duan, S.; Gao, X.; Wang, Y.; Yang, F.; Chen, M.; Zhang, X.; Ren, X.; Hu, W. Scalable fabrication of highly crystalline organic semiconductor thin film by channel-restricted screen printing toward the low-cost fabrication of high-performance transistor arrays. Adv. Mater. 2019, 31, e1807975. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Pan, F.; Sun, C.; Zhang, M.; Wang, Z.; Du, J.; Wang, J.; Xiao, M.; Xue, L.; Zhang, Z.-G.; et al. Simplified synthetic routes for low cost and high photovoltaic performance n-type organic semiconductor acceptors. Nat. Commun. 2019, 10, 519. [Google Scholar] [CrossRef] [PubMed]
- Virkar, A.A.; Mannsfeld, S.; Bao, Z.; Stingelin, N. Organic semiconductor growth and morphology considerations for organic thin-film transistors. Adv. Mater. 2010, 22, 3857–3875. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.K.; Cina, S.; Burroughes, J.H. High-efficiency organic light-emitting diodes. IEEE J. Sel. Top. Quantum Electron. 2002, 8, 346–361. [Google Scholar] [CrossRef]
- Tan, X.; Dou, D.; Chua, L.-L.; Png, R.-Q.; Congrave, D.G.; Bronstein, H.; Baumgarten, M.; Li, Y.; Blom, P.W.M.; Wetzelaer, G.-J.A.H. Inverted device architecture for high efficiency single-layer organic light-emitting diodes with imbalanced charge transport. Nat. Commun. 2024, 15, 4107. [Google Scholar] [CrossRef]
- Zheng, D.-G.; Lee, H.-D.; Lee, G.W.; Shin, D.-S.; Kim, J.; Shim, J.-I.; Lin, Z.; Lee, T.-W.; Kim, D.H. Investigation into charge carrier dynamics in organic light-emitting diodes. Nano Res. Energy 2024, 3, e9120109. [Google Scholar] [CrossRef]
- Wang, Z.; Tang, Y.; Han, J.; Zhu, F. Visible-blind near-infrared organic photodetectors. Appl. Phys. Lett. 2024, 124, 021103. [Google Scholar] [CrossRef]
- Yang, M.; Yin, B.; Hu, G.; Cao, Y.; Lu, S.; Chen, Y.; He, Y.; Yang, X.; Huang, B.; Li, J.; et al. Sensitive short-wavelength infrared photodetection with a quinoidal ultralow band-gap n-type organic semiconductor. Chem 2024, 10, 1425–1444. [Google Scholar] [CrossRef]
- Yin, B.; Zhou, X.; Li, Y.; Hu, G.; Wei, W.; Yang, M.; Jeong, S.; Deng, W.; Wu, B.; Cao, Y.; et al. Sensitive Organic Photodetectors With Spectral Response up to 1.3 µm Using a Quinoidal Molecular Semiconductor. Adv. Mater. 2024, 36, e2310811. [Google Scholar] [CrossRef]
- Zhang, Y.; Qin, Z.; Gao, H.; Wang, T.; Gao, C.; Zhang, X.; Hu, W.; Dong, H. Highly-Polarized Solar-Blind Ultraviolet Organic Photodetectors. Adv. Mater. 2024, 36, 2404309. [Google Scholar] [CrossRef]
- Shekar, B.C.; Lee, J.; Rhee, S.-W. Organic thin film transistors: Materials, processes and devices. Korean J. Chem. Eng. 2004, 21, 267–285. [Google Scholar] [CrossRef]
- Jia, X.; Fuentes-Hernandez, C.; Wang, C.-Y.; Park, Y.; Kippelen, B. Stable organic thin-film transistors. Sci. Adv. 2018, 4, eaao1705. [Google Scholar] [CrossRef] [PubMed]
- Klauk, H. Organic thin-film transistors. Chem. Soc. Rev. 2010, 39, 2643–2666. [Google Scholar] [CrossRef] [PubMed]
- Newman, C.R.; Frisbie, C.D.; Filho, D.A.d.S.; Brédas, J.-L.; Ewbank, P.C.; Mann, K.R. Introduction to organic thin film transistors and design of n-channel organic semiconductors. Chem. Mater. 2004, 16, 4436–4451. [Google Scholar] [CrossRef]
- Jeon, Y.; Lee, G.; Kim, Y.J.; Jang, B.C.; Yoo, H. Dual Synapses and Security Devices from Ternary C60-Pentacene-TiO2-x Nanorods Heterostructures. Adv. Funct. Mater. 2024, 2409578. [Google Scholar] [CrossRef]
- Sun, J.; Fu, Y.; Wan, Q. Organic synaptic devices for neuromorphic systems. J. Phys. D Appl. Phys. 2018, 51, 314004. [Google Scholar] [CrossRef]
- Tuchman, Y.; Mangoma, T.N.; Gkoupidenis, P.; van de Burgt, Y.; John, R.A.; Mathews, N.; Shaheen, S.E.; Daly, R.; Malliaras, G.G.; Salleo, A. Organic neuromorphic devices: Past, present, and future challenges. MRS Bull. 2020, 45, 619–630. [Google Scholar] [CrossRef]
- Xie, Z.; Zhuge, C.; Zhao, Y.; Xiao, W.; Fu, Y.; Yang, D.; Zhang, S.; Li, Y.; Wang, Q.; Wang, Y.; et al. All-solid-state vertical three-terminal n-type organic synaptic devices for neuromorphic computing. Adv. Funct. Mater. 2022, 32, 2107314. [Google Scholar] [CrossRef]
- Kayaci, N.; Ozdemir, R.; Kalay, M.; Kiremitler, N.B.; Usta, H.; Onses, M.S. Organic light-emitting physically unclonable functions. Adv. Funct. Mater. 2022, 32, 2108675. [Google Scholar] [CrossRef]
- Kim, D.; Im, S.; Kim, D.; Lee, H.; Choi, C.; Cho, J.H.; Ju, H.; Lim, J.A. Reconfigurable electronic physically unclonable functions based on organic thin-film transistors with multiscale polycrystalline entropy for highly secure cryptography primitives. Adv. Funct. Mater. 2023, 33, 2210367. [Google Scholar] [CrossRef]
- Kuribara, K.; Watanabe, Y.; Takei, A.; Uemura, S.; Yoshida, M. Robustness of organic physically unclonable function with buskeeper circuit for flexible security devices. Jpn. J. Appl. Phys. 2022, 61, SE1016. [Google Scholar] [CrossRef]
- Lee, S.; Jang, B.C.; Kim, M.; Lim, S.H.; Ko, E.; Kim, H.H.; Yoo, H. Machine Learning Attacks-Resistant Security by Mixed-Assembled Layers-Inserted Graphene Physically Unclonable Function. Adv. Sci. 2023, 10, 2302604. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Ko, R.; Park, T.; Kim, Y.J.; Jang, B.C.; Yoo, H. Multi-Dimensional Physically Unclonable Functions: Optoelectronic Variation-Induced Multi-Key Generation from Small Molecule PN Heterostructures. Adv. Funct. Mater. 2024, 34, 2314949. [Google Scholar] [CrossRef]
- Erokhin, V.; Howard, G.D.; Adamatzky, A. Organic memristor devices for logic elements with memory. Int. J. Bifurc. Chaos 2012, 22, 1250283. [Google Scholar] [CrossRef]
- Panigrahi, D.; Hayakawa, R.; Honma, K.; Kanai, K.; Wakayama, Y. Organic heterojunction transistors for mechanically flexible multivalued logic circuits. Appl. Phys. Express 2021, 14, 081004. [Google Scholar] [CrossRef]
- Park, T.; Han, Y.; Lee, S.; Kim, Y.H.; Yoo, H. Wavelength-Dependent Multistate Programmability and Optoelectronic Log-ic-in-Memory Operation from the Narrow Bandgap pNDI-SVS Floating Gate. Nano Lett. 2024, 24, 9544–9552. [Google Scholar] [CrossRef]
- Di, C.A.; Zhang, F.; Zhu, D. Multi-functional integration of organic field-effect transistors (OFETs): Advances and perspectives. Adv. Mater. 2013, 25, 313–330. [Google Scholar] [CrossRef]
- Song, M.; Seo, J.; Kim, H.; Kim, Y. Ultrasensitive multi-functional flexible sensors based on organic field-effect transistors with polymer-dispersed liquid crystal sensing layers. Sci. Rep. 2017, 7, 2630. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Gao, C.; Ni, Z.; Zhang, X.; Hu, W.; Dong, H. Recent advances in n-type and ambipolar organic semi-conductors and their multi-functional applications. Chem. Soc. Rev. 2023, 52, 1331–1381. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, B. A 2-in-1 multi-functional sensor for efficient epinephrine detection based on a cucurbit [7] uril functionalized lanthanide metal–organic framework and its intelligent application in a molecular robot. J. Mater. Chem. C 2022, 10, 9326–9333. [Google Scholar] [CrossRef]
- Diao, Y.; Shaw, L.; Bao, Z.; Mannsfeld, S.C.B. Morphology control strategies for solution-processed organic semiconductor thin films. Energy Environ. Sci. 2014, 7, 2145–2159. [Google Scholar] [CrossRef]
- Kolesov, V.A.; Fuentes-Hernandez, C.; Chou, W.-F.; Aizawa, N.; Larrain, F.A.; Wang, M.; Perrotta, A.; Choi, S.; Graham, S.; Bazan, G.C.; et al. Solution-based electrical doping of semiconducting polymer films over a limited depth. Nat. Mater. 2017, 16, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Mohapatra, S.K.; Kim, S.B.; Barlow, S.; Marder, S.R.; Kahn, A. Solution doping of organic semiconductors using air-stable n-dopants. Appl. Phys. Lett. 2012, 100, 083305. [Google Scholar] [CrossRef]
- Shaw, L.; Bao, Z. The Large-Area, Solution-Based Deposition of Single-Crystal Organic Semiconductors. Isr. J. Chem. 2014, 54, 496–512. [Google Scholar] [CrossRef]
- Azarova, N.A.; Owen, J.W.; McLellan, C.A.; Grimminger, M.A.; Chapman, E.K.; Anthony, J.E.; Jurchescu, O.D. Fabrication of organic thin-film transistors by spray-deposition for low-cost, large-area electronics. Org. Electron. 2010, 11, 1960–1965. [Google Scholar] [CrossRef]
- Dimitrakopoulos, C.D.; Malenfant, P.R. Organic thin film transistors for large area electronics. Adv. Mater. 2002, 14, 99–117. [Google Scholar] [CrossRef]
- Søndergaard, R.R.; Hösel, M.; Krebs, F.C. Roll-to-Roll fabrication of large area functional organic materials. J. Polym. Sci. Part B Polym. Phys. 2013, 51, 16–34. [Google Scholar] [CrossRef]
- Zhang, X.; Jie, J.; Deng, W.; Shang, Q.; Wang, J.; Wang, H.; Chen, X.; Zhang, X. Alignment and patterning of ordered small-molecule organic semiconductor micro-/nanocrystals for device applications. Adv. Mater. 2016, 28, 2475–2503. [Google Scholar] [CrossRef]
- Ma, Z.; Zhao, B.; Gao, H.; Gong, Y.; Yu, R.; Tan, Z. Recent advances of crosslinkable organic semiconductors in achieving solution-processed and stable optoelectronic devices. J. Mater. Chem. A 2022, 10, 18542–18576. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, S.; Ni, Y.; Tong, Y.; Tang, Q.; Liu, Y. High-performance full-photolithographic top-contact conformable organic transistors for soft electronics. Adv. Sci. 2021, 8, 2004050. [Google Scholar] [CrossRef]
- Fang, X.; Shi, J.; Zhang, X.; Ren, X.; Lu, B.; Deng, W.; Jie, J.; Zhang, X. Patterning liquid crystalline organic semiconductors via inkjet printing for high-performance transistor arrays and circuits. Adv. Funct. Mater. 2021, 31, 2100237. [Google Scholar] [CrossRef]
- Jiang, X.; Jiang, L. One-dimensional arrays of sensing materials based on wettability interface dewetting process. Acc. Mater. Res. 2020, 1, 53–62. [Google Scholar] [CrossRef]
- Kwon, H.-J.; Li, X.; Hong, J.; Park, C.E.; Jeong, Y.J.; Moon, H.C.; Kim, S.H. Non-lithographic direct patterning of carbon nanomaterial electrodes via electrohydrodynamic-printed wettability patterns by polymer brush for fabrication of organic field-effect transistor. Appl. Surf. Sci. 2020, 515, 145989. [Google Scholar] [CrossRef]
- Narupai, B.; Page, Z.A.; Treat, N.J.; McGrath, A.J.; Pester, C.W.; Discekici, E.H.; Dolinski, N.D.; Meyers, G.F.; de Alaniz, J.R.; Hawker, C.J. Simultaneous preparation of multiple polymer brushes under ambient conditions using microliter volumes. Angew. Chem. Int. Ed. 2018, 57, 13433–13438. [Google Scholar] [CrossRef]
- Deng, W.; Lv, Y.; Zhang, X.; Fang, X.; Lu, B.; Lu, Z.; Jie, J. High-resolution patterning of organic semiconductor single crystal arrays for high-integration organic field-effect transistors. Mater. Today Proc. 2020, 40, 82–90. [Google Scholar] [CrossRef]
- Fu, B.; Yang, F.; Sun, L.; Zhao, Q.; Ji, D.; Sun, Y.; Zhang, X.; Hu, W. Challenging bendable organic single crystal and transistor arrays with high mobility and durability toward flexible electronics. Adv. Mater. 2022, 34, e2203330. [Google Scholar] [CrossRef]
- Ge, F.; Wang, X.; Zhang, Y.; Song, E.; Zhang, G.; Lu, H.; Cho, K.; Qiu, L. Modulating the surface via polymer brush for high-performance inkjet-printed organic thin-film transistors. Adv. Electron. Mater. 2017, 3, 1600402. [Google Scholar] [CrossRef]
- Lee, S.B.; Lee, S.; Kim, D.G.; Kim, S.H.; Kang, B.; Cho, K. Solutal-Marangoni-Flow-Mediated Growth of Patterned Highly Crystalline Organic Semiconductor Thin Film Via Gap-Controlled Bar Coating. Adv. Funct. Mater. 2021, 31, 2100196. [Google Scholar] [CrossRef]
- Yuan, J.; Liu, D.; Zhao, H.; Lin, B.; Zhou, X.; Naveed, H.B.; Zhao, C.; Zhou, K.; Tang, Z.; Chen, F.; et al. Patterned blade coating strategy enables the enhanced device reproducibility and optimized morphology of organic solar cells. Adv. Energy Mater. 2021, 11, 2100098. [Google Scholar] [CrossRef]
- Zhao, Y.; Fan, X.; Feng, J.; Wang, X.; Wu, Y.; Su, B.; Jiang, L. Regulated Dewetting for Patterning Organic Single Crystals with Pure Crystallographic Orientation toward High Performance Field-Effect Transistors. Adv. Funct. Mater. 2018, 28, 1800470. [Google Scholar] [CrossRef]
- He, Z.; Zhang, Z.; Asare-Yeboah, K.; Bi, S.; Chen, J.; Li, D. Crystal growth of small-molecule organic semiconductors with nucleation additive. Curr. Appl. Phys. 2021, 21, 107–115. [Google Scholar] [CrossRef]
- Higashino, T.; Inoue, S.; Arai, S.; Matsui, H.; Toda, N.; Horiuchi, S.; Azumi, R.; Hasegawa, T. Architecting layered crystalline organic semiconductors based on unsymmetric π-extended thienoacenes. Chem. Mater. 2021, 33, 7379–7385. [Google Scholar] [CrossRef]
- Horowitz, G.; Hajlaoui, M.E. Mobility in polycrystalline oligothiophene field-effect transistors dependent on grain size. Adv. Mater. 2000, 12, 1046–1050. [Google Scholar] [CrossRef]
- Jurchescu, O.D.; Baas, J.; Palstra, T.T.M. Effect of impurities on the mobility of single crystal pentacene. Appl. Phys. Lett. 2004, 84, 3061–3063. [Google Scholar] [CrossRef]
- Minari, T.; Nemoto, T.; Isoda, S. Fabrication and characterization of single-grain organic field-effect transistor of pentacene. J. Appl. Phys. 2004, 96, 769–772. [Google Scholar] [CrossRef]
- Belmonte, A.; Pilz da Cunha, M.; Nickmans, K.; Schenning, A.P. Brush-paintable, temperature and light responsive triple shape-memory photonic coatings based on micrometer-sized cholesteric liquid crystal polymer particles. Adv. Opt. Mater. 2020, 8, 2000054. [Google Scholar] [CrossRef]
- Cavallini, M.; Melucci, M. Organic Materials for Time–Temperature Integrator Devices. ACS Appl. Mater. Interfaces 2015, 7, 16897–16906. [Google Scholar] [CrossRef]
- Gentili, D.; Durso, M.; Bettini, C.; Manet, I.; Gazzano, M.; Capelli, R.; Muccini, M.; Melucci, M.; Cavallini, M. A time-temperature integrator based on fluorescent and polymorphic compounds. Sci. Rep. 2013, 3, 2581. [Google Scholar] [CrossRef]
- Kim, H.; Choi, S.-K.; Ahn, J.; Yu, H.; Min, K.; Hong, C.; Shin, I.-S.; Lee, S.; Lee, H.; Im, H.; et al. Kaleidoscopic fluorescent arrays for machine-learning-based point-of-care chemical sensing. Sens. Actuators B Chem. 2021, 329, 129248. [Google Scholar] [CrossRef]
- Kim, J.-M.; Lee, Y.B.; Yang, D.H.; Lee, J.-S.; Lee, G.S.; Ahn, D.J. A polydiacetylene-based fluorescent sensor chip. J. Am. Chem. Soc. 2005, 127, 17580–17581. [Google Scholar] [CrossRef]
- Melucci, M.; Zambianchi, M.; Favaretto, L.; Palermo, V.; Treossi, E.; Montalti, M.; Bonacchi, S.; Cavallini, M. Multicolor, large-area fluorescence sensing through oligothiophene-self-assembled monolayers. Chem. Commun. 2011, 47, 1689–1691. [Google Scholar] [CrossRef] [PubMed]
- Michalek, L.; Barner, L.; Barner-Kowollik, C. Polymer on top: Current limits and future perspectives of quantitatively evaluating surface grafting. Adv. Mater. 2018, 30, e1706321. [Google Scholar] [CrossRef] [PubMed]
- Michalek, L.; Mundsinger, K.; Barner-Kowollik, C.; Barner, L. The long and the short of polymer grafting. Polym. Chem. 2019, 10, 54–59. [Google Scholar] [CrossRef]
- Roy, D.; Semsarilar, M.; Guthrie, J.T.; Perrier, S. Cellulose modification by polymer grafting: A review. Chem. Soc. Rev. 2009, 38, 2046–2064. [Google Scholar] [CrossRef] [PubMed]
- Vega-Hernández, M.; Cano-Díaz, G.S.; Vivaldo-Lima, E.; Rosas-Aburto, A.; Hernández-Luna, M.G.; Martinez, A.; Palacios-Alquisira, J.; Mohammadi, Y.; Penlidis, A. A review on the synthesis, characterization, and modeling of polymer grafting. Processes 2021, 9, 375. [Google Scholar] [CrossRef]
- Li, Y.; Zuilhof, H. Photochemical grafting and patterning of organic monolayers on indium tin oxide substrates. Langmuir 2012, 28, 5350–5359. [Google Scholar] [CrossRef]
- Ebata, K.; Furukawa, K.; Matsumoto, N. Synthesis and characterization of end-grafted polysilane on a substrate surface. J. Am. Chem. Soc. 1998, 120, 7367–7368. [Google Scholar] [CrossRef]
- Koutsos, V.; van der Vegte, E.W.; Pelletier, E.; Stamouli, A.; Hadziioannou, G. Structure of chemically end-grafted polymer chains studied by scanning force microscopy in bad-solvent conditions. Macromolecules 1997, 30, 4719–4726. [Google Scholar] [CrossRef]
- Ito, Y.; Ochiai, Y.; Park, Y.S.; Imanishi, Y. pH-sensitive gating by conformational change of a polypeptide brush grafted onto a porous polymer membrane. J. Am. Chem. Soc. 1997, 119, 1619–1623. [Google Scholar] [CrossRef]
- Jordan, R.; Ulman, A. Surface initiated living cationic polymerization of 2-oxazolines. J. Am. Chem. Soc. 1998, 120, 243–247. [Google Scholar] [CrossRef]
- Feng, J.; Jiang, X.; Yan, X.; Wu, Y.; Su, B.; Fu, H.; Yao, J.; Jiang, L. “Capillary-Bridge Lithography” for Patterning Organic Crystals toward Mode-Tunable Microlaser Arrays. Adv. Mater. 2017, 29, 1603652. [Google Scholar] [CrossRef] [PubMed]
- Jo, P.S.; Vailionis, A.; Park, Y.M.; Salleo, A. Scalable fabrication of strongly textured organic semiconductor micropatterns by capillary force lithography. Adv. Mater. 2012, 24, 3269–3274. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.-J.; Kim, K.; An, T.K.; Kim, S.H.; Park, C.E. Effect of lateral confinement on crystallization behavior of a small-molecule semiconductor during capillary force lithography for use in high-performance OFETs. J. Ind. Eng. Chem. 2019, 75, 187–193. [Google Scholar] [CrossRef]
- Park, Y.; Park, J.; Cho, S.; Sung, M.M. Large-area single-crystal organic patterned thin films by vertically confined lateral crystal growth via capillary force lithography. Appl. Surf. Sci. 2019, 494, 1023–1029. [Google Scholar] [CrossRef]
- Ho, D.; Zou, J.; Zdyrko, B.; Iyer, K.S.; Luzinov, I. Capillary force lithography: The versatility of this facile approach in de-veloping nanoscale applications. Nanoscale 2015, 7, 401–414. [Google Scholar] [CrossRef]
- Cavallini, M.; Albonetti, C.; Biscarini, F. Nanopatterning soluble multifunctional materials by unconventional wet lithography. Adv. Mater. 2009, 21, 1043–1053. [Google Scholar] [CrossRef]
- Cavallini, M.; Biscarini, F. Nanostructuring conjugated materials by lithographically controlled wetting. Nano Lett. 2003, 3, 1269–1271. [Google Scholar] [CrossRef]
- Cavallini, M.; Gentili, D.; Greco, P.; Valle, F.; Biscarini, F. Micro- and nanopatterning by lithographically controlled wetting. Nat. Protoc. 2012, 7, 1668–1676. [Google Scholar] [CrossRef]
- Huang, S.; Song, J.; Lu, Y.; Chen, F.; Zheng, H.; Yang, X.; Liu, X.; Sun, J.; Carmalt, C.J.; Parkin, I.P.; et al. Underwater spontaneous pumpless transportation of nonpolar organic liquids on extreme wettability patterns. ACS Appl. Mater. Interfaces 2016, 8, 2942–2949. [Google Scholar] [CrossRef]
- Lee, H.S.; Kwak, D.; Lee, W.H.; Cho, J.H.; Cho, K. Self-organization characteristics of soluble pentacene on wettability-controlled patterned substrate for organic field-effect transistors. J. Phys. Chem. C 2010, 114, 2329–2333. [Google Scholar] [CrossRef]
- Liu, S.; Wang, W.M.; Mannsfeld, S.C.B.; Locklin, J.; Erk, P.; Gomez, M.; Richter, F.; Bao, Z. Solution-assisted assembly of organic semiconducting single crystals on surfaces with patterned wettability. Langmuir 2007, 23, 7428–7432. [Google Scholar] [CrossRef] [PubMed]
- Svarnas, P.; Yang, L.; Munz, M.; Edwards, A.J.; Shard, A.G.; Bradley, J.W. Highly-selective wettability on organic light-emitting-diodes patterns by sequential low-power plasmas. J. Appl. Phys. 2010, 107, 103313. [Google Scholar] [CrossRef]
- Bae, J.; Park, S.; Jung, H.; Ko, E.-H.; Kymissis, I.; Kim, C.-H. Polymer field-effect transistors with inkjet-printed silver electrodes: From device fabrication to circuit simulation. J. Mater. Sci. Mater. Electron. 2024, 35, 185. [Google Scholar] [CrossRef]
- Kwak, D.; Lim, J.A.; Kang, B.; Lee, W.H.; Cho, K. Self-organization of inkjet-printed organic semiconductor films prepared in inkjet-etched microwells. Adv. Funct. Mater. 2013, 23, 5224–5231. [Google Scholar] [CrossRef]
- Kwon, Y.-J.; Park, Y.D.; Lee, W.H. Inkjet-printed organic transistors based on organic semiconductor/insulating polymer blends. Materials 2016, 9, 650. [Google Scholar] [CrossRef]
- Ren, X.; Qiu, F.; Deng, W.; Fang, X.; Wu, Y.; Yu, S.; Liu, X.; Grigorian, S.; Shi, J.; Jie, J.; et al. Topology-Mediated Molecule Nucleation Anchoring Enables Inkjet Printing of Organic Semiconducting Single Crystals for High-Performance Printed Electronics. ACS Nano 2023, 17, 25175–25184. [Google Scholar] [CrossRef]
- Kim, K.; Bae, J.; Noh, S.H.; Jang, J.; Kim, S.H.; Park, C.E. Direct writing and aligning of small-molecule organic semiconductor crystals via “dragging mode” electrohydrodynamic jet printing for flexible organic field-effect transistor arrays. J. Phys. Chem. Lett. 2017, 8, 5492–5500. [Google Scholar] [CrossRef]
- Lee, S.B.; Kang, B.; Kim, D.; Park, C.; Kim, S.; Lee, M.; Lee, W.B.; Cho, K. Motion-programmed bar-coating method with controlled gap for high-speed scalable preparation of highly crystalline organic semiconductor thin films. ACS Appl. Mater. Interfaces 2019, 11, 47153–47161. [Google Scholar] [CrossRef]
- Sung, S.; Lee, W.-J.; Payne, M.M.; Anthony, J.E.; Kim, C.-H.; Yoon, M.-H. Large-area printed low-voltage organic thin film transistors via minimal-solution bar-coating. J. Mater. Chem. C 2020, 8, 15112–15118. [Google Scholar] [CrossRef]
- Zhang, Z.; Peng, B.; Ji, X.; Pei, K.; Chan, P.K.L. Marangoni-effect-assisted bar-coating method for high-quality organic crystals with compressive and tensile strains. Adv. Funct. Mater. 2017, 27, 1703443. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Z.; Cai, Z.; Qiao, Y.; Yang, Y.; Chen, S.; Ma, X.; Li, H.; Meng, Q.; Zhang, F.; et al. Vapor-induced marangoni coating for organic functional films. J. Mater. Chem. C 2021, 9, 17518–17525. [Google Scholar] [CrossRef]
- Wang, H.; Liu, S.; Li, H.; Li, M.; Wu, X.; Zhang, S.; Ye, L.; Hu, X.; Chen, Y. Green Printing for Scalable Organic Photovoltaic Modules by Controlling the Gradient Marangoni Flow. Adv. Mater. 2024, 36, e2313098. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Wang, Z.; Dong, G.; Duan, L. Fabrication of highly oriented large-scale TIPS pentacene crystals and transistors by the Marangoni effect-controlled growth method. Phys. Chem. Chem. Phys. 2015, 17, 6274–6279. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.; Ge, F.; Qiu, L.; Cho, K. Effective Use of Electrically Insulating Units in Organic Semiconductor Thin Films for High-Performance Organic Transistors. Adv. Electron. Mater. 2017, 3, 1600240. [Google Scholar] [CrossRef]
- Shin, N.; Kang, J.; Richter, L.J.; Prabhu, V.M.; Kline, R.J.; Fischer, D.A.; DeLongchamp, D.M.; Toney, M.F.; Satija, S.K.; Gundlach, D.J.; et al. Vertically Segregated Structure and Properties of Small Molecule–Polymer Blend Semiconductors for Organic Thin-Film Transistors. Adv. Funct. Mater. 2013, 23, 366–376. [Google Scholar] [CrossRef]
- Lee, J.; Hwang, S.; Cho, D.-H.; Hong, J.; Shin, J.H.; Byun, D. RF plasma based selective modification of hydrophilic regions on super hydrophobic surface. Appl. Surf. Sci. 2017, 394, 543–553. [Google Scholar] [CrossRef]
- Goessl, A.; Garrison, M.D.; Lhoest, J.-B.; Hoffman, A.S. Plasma lithography—Thin-film patterning of polymeric biomaterials by RF plasma polymerization I: Surface preparation and analysis. J. Biomater. Sci. Polym. Ed. 2001, 12, 721–738. [Google Scholar] [CrossRef]
- Steudel, S.; Myny, K.; De Vusser, S.; Genoe, J.; Heremans, P. Patterning of organic thin film transistors by oxygen plasma etch. Appl. Phys. Lett. 2006, 89, 183503. [Google Scholar] [CrossRef]
- Visconti, P.; Turco, C.; Rinaldi, R.; Cingolani, R. Nanopatterning of organic and inorganic materials by holographic li-thography and plasma etching. Microelectron. Eng. 2000, 53, 391–394. [Google Scholar] [CrossRef]
- Ali, S.; Bae, J.; Lee, C.H. Organic diode with high rectification ratio made of electrohydrodynamic printed organic layers. Electron. Mater. Lett. 2016, 12, 270–275. [Google Scholar] [CrossRef]
- Li, X.; Go, M.; Lim, S.; An, T.K.; Jeong, Y.J.; Kim, S.H. Electrohydrodynamic (EHD) jet printing of carbon-black composites for solution-processed organic field-effect transistors. Org. Electron. 2019, 73, 279–285. [Google Scholar] [CrossRef]
- Sun, Z.; Li, B.; Zhou, C.; Luo, K.; Wu, J. Organic phase change materials melting with electrohydrodynamics (EHD): Numerical simulation and experimental validation. Int. J. Heat Mass Transf. 2023, 217, 124646. [Google Scholar] [CrossRef]
- Fukuhira, Y.; Yabu, H.; Ijiro, K.; Shimomura, M. Interfacial tension governs the formation of self-organized honey-comb-patterned polymer films. Soft Matter 2009, 5, 2037–2041. [Google Scholar] [CrossRef]
- Li, L.; Zhong, Y.; Ma, C.; Li, J.; Chen, C.; Zhang, A.; Tang, D.; Xie, S.; Ma, Z. Honeycomb-patterned hybrid films and their template applications via a tunable amphiphilic block polymer/inorganic precursor system. Chem. Mater. 2009, 21, 4977–4983. [Google Scholar] [CrossRef]
- Yabu, H.; Tanaka, M.; Ijiro, K.; Shimomura, M. Preparation of honeycomb-patterned polyimide films by self-organization. Langmuir 2003, 19, 6297–6300. [Google Scholar] [CrossRef]
- Cheng, Q.; Lin, L.; Deng, X.; Zheng, T.; Wang, Q.; Gao, Y.; Zhai, X.; Yang, J.; Ma, W.; Li, X.; et al. Large-scale and low-cost preparation of ordered honeycomb-patterned film by solvent evaporation-induced phase separation method. Ind. Eng. Chem. Res. 2021, 60, 898–907. [Google Scholar] [CrossRef]
- Wang, Z.; Bao, R.; Zhang, X.; Ou, X.; Lee, C.S.; Chang, J.C.; Zhang, X. One-Step Self-Assembly, Alignment, and Patterning of Organic Semiconductor Nanowires by Controlled Evaporation of Confined Microfluids. Angew. Chem. Int. Ed. 2011, 12, 2811–2815. [Google Scholar] [CrossRef]
- Abdul Wahab, M.; Sellinger, A. Photoluminescent surfactants: Mesostructured organosilica nanocomposites via evaporation-induced self assembly (EISA). Chem. Lett. 2006, 35, 1240–1241. [Google Scholar] [CrossRef]
- Chou, Y.-H.; Lee, W.-Y.; Chen, W.-C. Self-assembled nanowires of organic n-type semiconductor for nonvolatile transistor memory devices. Adv. Funct. Mater. 2012, 22, 4352–4359. [Google Scholar] [CrossRef]
- Fan, X.; Yu, T.; Wang, Y.; Zheng, J.; Gao, L.; Li, Z.; Ye, J.; Zou, Z. Role of phosphorus in synthesis of phosphated mesoporous TiO2 photocatalytic materials by EISA method. Appl. Surf. Sci. 2008, 254, 5191–5198. [Google Scholar] [CrossRef]
- Ki, H.S.; Yeum, J.H.; Choe, S.; Kim, J.H.; Cheong, I.W. Fabrication of transparent conductive carbon nano-tubes/polyurethane-urea composite films by solvent evaporation-induced self-assembly (EISA). Compos. Sci. Technol. 2009, 69, 645–650. [Google Scholar] [CrossRef]
- Hong, S.W.; Byun, M.; Lin, Z. Robust Self-Assembly of Highly Ordered Complex Structures by Controlled Evaporation of Confined Microfluids. Angew. Chem. Int. Ed. 2009, 48, 512–516. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.W.; Xu, J.; Lin, Z. Template-assisted formation of gradient concentric gold rings. Nano Lett. 2006, 6, 2949–2954. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, K.; Datar, A.; Oitker, R.; Chen, H.; Zuo, J.; Zang, L. Nanobelt self-assembly from an organic n-type semiconductor: Propoxyethyl-PTCDI. J. Am. Chem. Soc. 2005, 127, 10496–10497. [Google Scholar] [CrossRef]
- Abolfath-Beygi, M.; Krishnamurthy, V.; Cornell, B. Multiple surface-based biosensors for enhanced molecular detection in fluid flow systems. IEEE Sens. J. 2013, 13, 1265–1273. [Google Scholar] [CrossRef]
- Hansen, R.; Bruus, H.; Callisen, T.H.; Hassager, O. Transient convection, diffusion, and adsorption in surface-based biosensors. Langmuir 2012, 28, 7557–7563. [Google Scholar] [CrossRef]
- Malhotra, B.D.; Chaubey, A.; Singh, S. Prospects of conducting polymers in biosensors. Anal. Chim. Acta 2006, 578, 59–74. [Google Scholar] [CrossRef]
- Radke, W. Polymer separations by liquid interaction chromatography: Principles–prospects–limitations. J. Chromatogr. A 2014, 1335, 62–79. [Google Scholar] [CrossRef]
- Cohen, S.C.; Tabor, D. The friction and lubrication of polymers. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1966, 291, 186–207. [Google Scholar]
- Fusaro, R. Self-lubricating polymer composites and polymer transfer film lubrication for space applications. Tribol. Int. 1990, 23, 105–122. [Google Scholar] [CrossRef]
- Liu, G.; Feng, Y.; Zhao, N.; Chen, Z.; Shi, J.; Zhou, F. Polymer-based lubricating materials for functional hydration lubrication. J. Chem. Eng. 2022, 429, 132324. [Google Scholar] [CrossRef]
- Raviv, U.; Giasson, S.; Kampf, N.; Gohy, J.-F.; Jérôme, R.; Klein, J. Lubrication by charged polymers. Nature 2003, 425, 163–165. [Google Scholar] [CrossRef] [PubMed]
- Collman, J.P.; Kosydar, K.M.; Bressan, M.; Lamanna, W.; Garrett, T. Polymer-bound substrates: A method to distinguish between homogeneous and heterogeneous catalysis. J. Am. Chem. Soc. 1984, 106, 2569–2579. [Google Scholar] [CrossRef]
- Kaur, P.; Hupp, J.T.; Nguyen, S.T. Porous organic polymers in catalysis: Opportunities and challenges. ACS Catal. 2011, 1, 819–835. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhan, Z. Conjugated microporous polymers for heterogeneous catalysis. Chem. Asian J. 2018, 13, 9–19. [Google Scholar] [CrossRef]
- Yang, B.; Adams, D.J.; Marlow, M.; Zelzer, M. Surface-mediated supramolecular self-assembly of protein, peptide, and nucleoside derivatives: From surface design to the underlying mechanism and tailored functions. Langmuir 2018, 34, 15109–15125. [Google Scholar] [CrossRef]
- Wang, D.; He, C.; Stoykovich, M.P.; Schwartz, D.K. Nanoscale topography influences polymer surface diffusion. ACS Nano 2015, 9, 1656–1664. [Google Scholar] [CrossRef]
- Perevedentsev, A.; Campoy-Quiles, M. Rapid and high-resolution patterning of microstructure and composition in organic semiconductors using ‘molecular gates’. Nat. Commun. 2020, 11, 3610. [Google Scholar] [CrossRef]
Patterning Method | Organic Material | Pattern Resolution | Device Type | Device Performance | [Ref.] |
---|---|---|---|---|---|
Surface-grafting polymers | p(DMAEMA) | 20 μm | N/A | N/A | [54] |
Surface-grafting polymers | TIPS-pentacene | 46.4–105 μm | OTFT | Carrier mobility = 1.2 cm2·V−1·s−1 | [57] |
Capillary force lithography | C8-BTBT 1D single crystal | ~3 μm | OFET | Carrier mobility = 5.7 cm2·V−1·s−1 | [55] |
Capillary force lithography | C8-BTBT 1D single crystal | ~3 μm | OFET | Carrier mobility = 8.7 cm2·V−1·s−1 | [60] |
Wettability | C8-BTBT single crystal | 100 μm | OFET | Carrier mobility = 9.3 cm2·V−1·s−1 | [51] |
Wettability | C8-BTBT/PTAA single crystal | 300–400 μm | OTFT | Carrier mobility = 20.6 cm2·V−1·s−1 | [58] |
Wettability | PS nanoparticle | 30 μm | N/A | N/A | [106] |
LB medium 1 | 30 μm | N/A | N/A | ||
PEDOT:PSS ink 2 | 200 μm | N/A | N/A | ||
Evaporation Assistant | PS | 4–6 μm | N/A | N/A | [116] |
PSF 3 | 4–6 μm | N/A | N/A | ||
PES 4 | 4–6 μm | N/A | N/A | ||
Evaporation Assistant | DMQA nanowire | 30–40 μm | MSM 5 | The slope of the I–V curve = 3.1 × 10−12 S | [117] |
Diffusion | PS | 0.024 μm | N/A | N/A | [137] |
Diffusion | PFO | 4–25 μm | N/A | N/A | [138] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, W.; Kim, Y.E.; Yoo, H. Patterning of Organic Semiconductors Leads to Functional Integration: From Unit Device to Integrated Electronics. Polymers 2024, 16, 2613. https://doi.org/10.3390/polym16182613
Choi W, Kim YE, Yoo H. Patterning of Organic Semiconductors Leads to Functional Integration: From Unit Device to Integrated Electronics. Polymers. 2024; 16(18):2613. https://doi.org/10.3390/polym16182613
Chicago/Turabian StyleChoi, Wangmyung, Yeo Eun Kim, and Hocheon Yoo. 2024. "Patterning of Organic Semiconductors Leads to Functional Integration: From Unit Device to Integrated Electronics" Polymers 16, no. 18: 2613. https://doi.org/10.3390/polym16182613