Previous Issue
Volume 16, September-1
 
 
polymers-logo

Journal Browser

Journal Browser

Polymers, Volume 16, Issue 18 (September-2 2024) – 14 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
16 pages, 4639 KiB  
Article
Preparation and Stability Study of an Injectable Hydrogel for Artificial Intraocular Lenses
by Haifeng Cui, Pengfei Li, Zekun Su, Shiqiang Guan, He Dong and Xufeng Dong
Polymers 2024, 16(18), 2562; https://doi.org/10.3390/polym16182562 - 10 Sep 2024
Abstract
Currently available intraocular lenses (IOLs) on the market often differ significantly in elastic modulus compared to the natural human lens, which impairs their ability to respond effectively to the tension of the ciliary muscles for focal adjustment after implantation. In this study, we [...] Read more.
Currently available intraocular lenses (IOLs) on the market often differ significantly in elastic modulus compared to the natural human lens, which impairs their ability to respond effectively to the tension of the ciliary muscles for focal adjustment after implantation. In this study, we synthesized a polyacrylamide–sodium acrylate hydrogel (PAH) through the cross-linking polymerization of acrylamide and sodium acrylate. This hydrogel possesses excellent biocompatibility and exhibits several favorable properties. Notably, the hydrogel demonstrates high transparency (94%) and a refractive index (1.41 ± 0.07) that closely matches that of the human lens (1.42). Additionally, it shows strong compressive strength (14.00 kPa), good extensibility (1400%), and an appropriate swelling ratio (50 ± 2.5%). Crucially, the tensile modulus of the hydrogel is 2.07 kPa, which closely aligns with the elastic modulus of the human lens (1.70–2.10 kPa), enabling continuous focal adjustment under the tension exerted by the ciliary muscles. Full article
(This article belongs to the Section Innovation of Polymer Science and Technology)
Show Figures

Figure 1

38 pages, 3380 KiB  
Review
Opportunities and Challenges in the Application of Bioplastics: Perspectives from Formulation, Processing, and Performance
by Daniela Negrete-Bolagay and Víctor H. Guerrero
Polymers 2024, 16(18), 2561; https://doi.org/10.3390/polym16182561 - 10 Sep 2024
Abstract
Tremendously negative effects have been generated in recent decades by the continuously increasing production of conventional plastics and the inadequate management of their waste products. This demands the production of materials within a circular economy, easy to recycle and to biodegrade, minimizing the [...] Read more.
Tremendously negative effects have been generated in recent decades by the continuously increasing production of conventional plastics and the inadequate management of their waste products. This demands the production of materials within a circular economy, easy to recycle and to biodegrade, minimizing the environmental impact and increasing cost competitiveness. Bioplastics represent a sustainable alternative in this scenario. However, the replacement of plastics must be addressed considering several aspects along their lifecycle, from bioplastic processing to the final application of the product. In this review, the effects of using different additives, biomass sources, and processing techniques on the mechanical and thermal behavior, as well as on the biodegradability, of bioplastics is discussed. The importance of using bioplasticizers is highlighted, besides studying the role of surfactants, compatibilizers, cross-linkers, coupling agents, and chain extenders. Cellulose, lignin, starch, chitosan, and composites are analyzed as part of the non-synthetic bioplastics considered. Throughout the study, the emphasis is on the use of well-established manufacturing processes, such as extrusion, injection, compression, or blow molding, since these are the ones that satisfy the quality, productivity, and cost requirements for large-scale industrial production. Particular attention is also given to fused deposition modeling, since this additive manufacturing technique is nowadays not only used for making prototypes, but it is being integrated into the development of parts for a wide variety of biomedical and industrial applications. Finally, recyclability and the commercial requirements for bioplastics are discussed, and some future perspectives and challenges for the development of bio-based plastics are discussed, with the conclusion that technological innovations, economic incentives, and policy changes could be coupled with individually driven solutions to mitigate the negative environmental impacts associated with conventional plastics. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

24 pages, 6399 KiB  
Article
Gelatin–Sodium Alginate Hydrogels Cross-Linked by Squaric Acid and Dialdehyde Starch as a Potential Bio-Ink
by Joanna Skopinska-Wisniewska, Marta Tuszynska, Łukasz Kaźmierski, Mateusz Bartniak and Anna Bajek
Polymers 2024, 16(18), 2560; https://doi.org/10.3390/polym16182560 - 10 Sep 2024
Abstract
Hydrogels as biomaterials possess appropriate physicochemical and mechanical properties that enable the formation of a three-dimensional, stable structure used in tissue engineering and 3D printing. The integrity of the hydrogel composition is due to the presence of covalent or noncovalent cross-linking bonds. Using [...] Read more.
Hydrogels as biomaterials possess appropriate physicochemical and mechanical properties that enable the formation of a three-dimensional, stable structure used in tissue engineering and 3D printing. The integrity of the hydrogel composition is due to the presence of covalent or noncovalent cross-linking bonds. Using various cross-linking methods and agents is crucial for adjusting the properties of the hydrogel to specific biomedical applications, e.g., for direct bioprinting. The research subject was mixtures of gel-forming polymers: sodium alginate and gelatin. The polymers were cross-linked ionically with the addition of CaCl2 solutions of various concentrations (10%, 5%, 2.5%, and 1%) and covalently using squaric acid (SQ) and dialdehyde starch (DAS). Initially, the polymer mixture’s composition and the hydrogel cross-linking procedure were determined. The obtained materials were characterized by mechanical property tests, swelling degree, FTIR, SEM, thermal analysis, and biological research. It was found that the tensile strength of hydrogels cross-linked with 1% and 2.5% CaCl2 solutions was higher than after using a 10% solution (130 kPa and 80 kPa, respectively), and at the same time, the elongation at break increased (to 75%), and the stiffness decreased (Young Modulus is 169 kPa and 104 kPa, respectively). Moreover, lowering the concentration of the CaCl2 solution from 10% to 1% reduced the final material’s toxicity. The hydrogels cross-linked with 1% CaCl2 showed lower degradation temperatures and higher weight losses than those cross-linked with 2.5% CaCl2 and therefore were less thermally stable. Additional cross-linking using SQ and DAS had only a minor effect on the strength of the hydrogels, but especially the use of 1% DAS increased the material’s elasticity. All tested hydrogels possess a 3D porous structure, with pores of irregular shape and heterogenic size, and their swelling degree initially increased sharply to the value of approx. 1000% during the first 6 h, and finally, it stabilized at a level of 1200–1600% after 24 h. The viscosity of 6% gelatin and 2% alginate solutions with and without cross-linking agents was similar, and they were only slightly shear-thinning. It was concluded that a mixture containing 2% sodium alginate and 6% gelatin presented optimal properties after gel formation and lowering the concentration of the CaCl2 solution to 1% improved the hydrogel’s biocompatibility and positively influenced the cross-linking efficiency. Moreover, chemical cross-linking by DAS or SQ additionally improved the final hydrogel’s properties and the mixture’s printability. In conclusion, among the tested systems, the cross-linking of 6% gelatin–2% alginate mixtures by 1% DAS addition and 1% CaCl2 solution is optimal for tissue engineering applications and potentially suitable for 3D printing. Full article
(This article belongs to the Special Issue Biodegradable and Natural Polymers II)
Show Figures

Figure 1

13 pages, 4372 KiB  
Article
Effect of Cutting Conditions on the Size of Dust Particles Generated during Milling of Carbon Fibre-Reinforced Composite Materials
by Štěpánka Dvořáčková, Dora Kroisová, Tomáš Knápek and Martin Váňa
Polymers 2024, 16(18), 2559; https://doi.org/10.3390/polym16182559 - 10 Sep 2024
Abstract
Conventional dry machining (without process media) of carbon fibre composite materials (CFRP) produces tiny chips/dust particles that float in the air and cause health hazards to the machining operator. The present study investigates the effect of cutting conditions (cutting speed, feed per tooth [...] Read more.
Conventional dry machining (without process media) of carbon fibre composite materials (CFRP) produces tiny chips/dust particles that float in the air and cause health hazards to the machining operator. The present study investigates the effect of cutting conditions (cutting speed, feed per tooth and depth of cut) during CFRP milling on the size, shape and amount of harmful dust particles. For the present study, one type of cutting tool (CVD diamond-coated carbide) was used directly for machining CFRP. The analysis of harmful dust particles was carried out on a Tescan Mira 3 (Tescan, Brno, Czech Republic) scanning electron microscope and a Keyence VK-X 1000 (Keyence, Itasca, IL, USA) confocal microscope. The results show that with the combination of higher feed per tooth (mm) and lower cutting speed, for specific CFRP materials, the size and shape of harmful dust particles is reduced. Particles ranging in size from 2.2 to 99 μm were deposited on the filters. Smaller particles were retained on the tool body (1.7 to 40 μm). Similar particle sizes were deposited on the machine and in the work area. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

20 pages, 4932 KiB  
Article
Phenolic Foam Preparation Using Hydrofluoroolefin Blowing Agents and the Toughening Effect of Polyethylene Glycol
by P. R. Sarika, Paul Nancarrow and Taleb H. Ibrahim
Polymers 2024, 16(18), 2558; https://doi.org/10.3390/polym16182558 - 10 Sep 2024
Abstract
In this work, a new class of fourth-generation, zero ozone depletion potential, hydrofluoroolefin-based blowing agents were used to prepare phenolic foam. While hydrofluoroolefin blowing agents have been used previously to prepare polyurethane foams, few studies have been reported on their use in phenolic [...] Read more.
In this work, a new class of fourth-generation, zero ozone depletion potential, hydrofluoroolefin-based blowing agents were used to prepare phenolic foam. While hydrofluoroolefin blowing agents have been used previously to prepare polyurethane foams, few studies have been reported on their use in phenolic foams. We introduce an effective method for foam preparation using two low-boiling blowing agents, cis-1,1,1,4,4,4-hexafluoro-2-butene and trans-1,1,1,4,4,4-hexafluoro-2-butene, and their combinations with hexane. Traditionally, phenolic foams have been prepared using chlorofluorocarbons and hydrochlorofluorocarbons, which can have harmful effects on the environment due to their high ozone depletion potential or global warming potential. Conductor-like screening model for real solvents (COSMO-RS) modeling studies were performed to understand the effects of different blowing agent combinations on their boiling points. A series of phenolic foams were prepared by varying the concentration of the hydrofluoroolefin and the hydrofluoroolefin–hexane blowing agent combinations. The concentrations of the surfactant, Agnique CSO 30, and the toughening agent, polyethylene glycol, were also varied to yield a formulation with the optimal properties. The foams formulated with the hydrofluoroolefin–hexane mixture displayed a higher compressive strength and a lower thermal conductivity than those prepared with either hydrofluoroolefin or hexane alone. The cell microstructure of all the foams was examined using scanning electron microscopy. By introducing flexible chains into the resin matrix, PEG facilitates proper distribution of hydrofluoroolefin–hexane blowing agents and other reagents and thereby increases the mechanical strength of the foam. Full article
(This article belongs to the Special Issue Advanced Polymer Nanocomposites III)
Show Figures

Graphical abstract

11 pages, 5365 KiB  
Article
Evaluation of Mechanical Properties of Composite Material with a Thermoplastic Matrix Reinforced with Cellulose Acetate Microfibers
by Pedro Rodríguez Sandoval, Andres Felipe Rubiano-Navarrete, Edwin Yesid Gómez-Pachón and Ricardo Vera-Graziano
Polymers 2024, 16(18), 2557; https://doi.org/10.3390/polym16182557 - 10 Sep 2024
Abstract
Low-density polyethylene (LDPE) has been widely used in various applications due to its flexibility, lightness, and low production cost. However, its massive use in disposable products has raised environmental concerns, prompting the search for more sustainable alternatives. This study aims to investigate the [...] Read more.
Low-density polyethylene (LDPE) has been widely used in various applications due to its flexibility, lightness, and low production cost. However, its massive use in disposable products has raised environmental concerns, prompting the search for more sustainable alternatives. This study aims to investigate the mechanical properties achievable in a composite material utilizing low-density polyethylene (LDPE), potato starch (PS), and cellulose microfibrils (MFCA) at loadings of 0.05%, 0.15%, and 0.30%. Initially, the cellulose acetate microfibrils (MFCA) were produced via an electrospinning process. Subsequently, a dispersive mixture of the aforementioned materials was created through the extrusion and pelletizing process to form pellets. These pellets were then molded by injection molding to produce test specimens in accordance with ASTM D 638, the standard for tensile strength testing. The evaluation of the properties was conducted through mechanical tensile tests (ASTM D638), hardness tests (ASTM D 2240), melt flow index (ASTM D1238), and scanning electron microscopy (SEM). This study determined the influence of cellulose acetate microfibril loadings below 0.3% as reinforcement within a thermoplastic LDPE matrix. It was demonstrated that these microfibrils, due to their length-to-diameter ratio, contribute to an enhancement in the mechanical properties. Full article
Show Figures

Figure 1

14 pages, 1446 KiB  
Article
Assessment of Surface Roughness, Color, and Bonding Efficacy: Self-Adhesive vs. Conventional Flowable Resin
by Caroline de Farias Charamba Leal, Beatriz Barros Viana, Samille Biasi Miranda, Renally Bezerra Wanderley e Lima, Cleyton Cézar Souto Silva, Rodrigo Barros Esteves Lins, André Ulisses Dantas Batista, Ana Karina Maciel de Andrade and Marcos Antônio Japiassú Resende Montes
Polymers 2024, 16(18), 2556; https://doi.org/10.3390/polym16182556 - 10 Sep 2024
Abstract
This in vitro study aimed to analyze the surface roughness (Ra) and color stability (ΔEab, ΔE00) following simulated mechanical brushing and to evaluate the microtensile (μTBS) of self-adhering resin flowable (SARF) to dentin. The selected materials were Constic, Yflow AS, and Tetric N [...] Read more.
This in vitro study aimed to analyze the surface roughness (Ra) and color stability (ΔEab, ΔE00) following simulated mechanical brushing and to evaluate the microtensile (μTBS) of self-adhering resin flowable (SARF) to dentin. The selected materials were Constic, Yflow AS, and Tetric N flow (TNF/control). Thirty composite resin cylinders were fabricated for surface property evaluation. Ra and color were assessed both before and after simulated brushing. The thresholds of 50:50% perceptibility and acceptability of color differences in the evaluated resins were assessed. For μTBS analysis, fifteen molars were selected, sectioned to expose flat dentin surfaces, and restored according to the manufacturers’ instructions for microtensile testing. There were statistically significant differences in Ra among the groups, with Constic exhibiting the highest Ra value (0.702 µm; p < 0.05), whereas Yflow AS presented the lowest Ra value (0.184 µm). No statistically significant difference in color was observed among the groups (p > 0.05). The 50:50% perceptibility and acceptability thresholds were set at 1.2 and 2.7 for ΔEab and 0.8 and 1.8 for ΔE 00. All the results fell within the acceptable limits. The mean μTBS values of Constic, Yflow AS, and TNF were 10.649 MPa, 8.170 MPa, and 33.669 MPa, respectively. This study revealed increased Ra and comparable color stability among all the tested composite resins after abrasion. However, the SARF exhibited lower μTBS compared to conventional using an adhesive system. Full article
Show Figures

Figure 1

22 pages, 6216 KiB  
Article
Synthesis and Dye Adsorption Dynamics of Chitosan–Polyvinylpolypyrrolidone (PVPP) Composite
by Hilda Dinah Kyomuhimbo, Wandile McHunu, Marco Arnold, Usisipho Feleni, Nils H. Haneklaus and Hendrik Gideon Brink
Polymers 2024, 16(18), 2555; https://doi.org/10.3390/polym16182555 - 10 Sep 2024
Abstract
One major environmental issue responsible for water pollution is the presence of dyes in the aquatic environment as a result of human activity, particularly the textile industry. Chitosan–Polyvinylpolypyrrolidone (PVPP) polymer composite beads were synthesized and explored for the adsorption of dyes (Bismarck brown [...] Read more.
One major environmental issue responsible for water pollution is the presence of dyes in the aquatic environment as a result of human activity, particularly the textile industry. Chitosan–Polyvinylpolypyrrolidone (PVPP) polymer composite beads were synthesized and explored for the adsorption of dyes (Bismarck brown (BB), orange G (OG), brilliant blue G (BBG), and indigo carmine (IC)) from dye solution. The CS-PVPP beads demonstrated high removal efficiency of BB (87%), OG (58%), BBG (42%), and IC (49%). The beads demonstrated a reasonable surface area of 2.203 m2/g and were negatively charged in the applicable operating pH ranges. TGA analysis showed that the polymer composite can withstand decomposition up to 400 °C, proving high stability in harsh conditions. FTIR analysis highlighted the presence of N-H amine, O-H alcohol, and S=O sulfo groups responsible for electrostatic interaction and hydrogen bonding with the dye molecules. A shift in the FTIR bands was observed on N-H and C-N stretching for the beads after dye adsorption, implying that adsorption was facilitated by hydrogen bonding and Van der Waals forces of attraction between the hydroxyl, amine, and carbonyl groups on the surface of the beads and the dye molecules. An increase in pH increased the adsorption capacity of the beads for BB while decreasing OG, BBG, and IC due to their cationic and anionic nature, respectively. While an increase in temperature did not affect the adsorption capacity of OG and BBG, it significantly improved the removal of BB and IC from the dye solution and the adsorption was thermodynamically favoured, as demonstrated by the negative Gibbs free energy at all temperatures. Adsorption of dye mixtures followed the characteristic adsorption nature of the individual dyes. The beads show great potential for applications in the treatment of dye wastewater. Full article
(This article belongs to the Special Issue Advanced Polymers for Wastewater Treatment and Toxicant Removal)
Show Figures

Figure 1

16 pages, 4292 KiB  
Article
Synergistic Reinforcement with SEBS-g-MAH for Enhanced Thermal Stability and Processability in GO/rGO-Filled PC/ABS Composites
by Fatin Najwa Joynal Abedin, Ahmad Noor Syimir Fizal, Abbas F. M. Alkarkhi, Nor Afifah Khalil, Ahmad Naim Ahmad Yahaya, Md. Sohrab Hossain, Sairul Izwan Safie, Nurul Ain Ismail and Muzafar Zulkifli
Polymers 2024, 16(18), 2554; https://doi.org/10.3390/polym16182554 - 10 Sep 2024
Abstract
The integration of compatibilisers with thermoplastics has revolutionised the field of polymer composites, enhancing their mechanical, thermal, and rheological properties. This study investigates the synergistic effects of incorporating SEBS-g-MAH on the mechanical, thermal, and rheological properties of polycarbonate/acrylonitrile-butadiene-styrene/graphene oxide (PC/ABS/GO) (PAGO) and the [...] Read more.
The integration of compatibilisers with thermoplastics has revolutionised the field of polymer composites, enhancing their mechanical, thermal, and rheological properties. This study investigates the synergistic effects of incorporating SEBS-g-MAH on the mechanical, thermal, and rheological properties of polycarbonate/acrylonitrile-butadiene-styrene/graphene oxide (PC/ABS/GO) (PAGO) and the properties of polycarbonate/acrylonitrile-butadiene-styrene/graphene oxide (PC/ABS/rGO) (PArGO) composites through the melt blending method. The synergistic effects on thermal stability and processability were analysed by using thermogravimetry (TGA), melt flow index (MFI), and Fourier-transform infrared spectroscopy (FTIR). The addition of SEBS-g-MAH improved the elongation at break (EB) of PAGO and PArGO up to 33% and 73%, respectively, compared to the uncompatibilised composites. The impact strength of PAGO was synergistically enhanced by 75% with the incorporation of 5 phr SEBS-g-MAH. A thermal analysis revealed that SEBS-g-MAH improved the thermal stability of the composites, with an increase in the degradation temperature (T80%) of up to 17% for PAGO at 1 phr SEBS-g-MAH loading. The compatibilising effect of SEBS-g-MAH was confirmed by FTIR analysis, which indicated interactions between the maleic anhydride groups and the PC/ABS matrix and GO/rGO fillers. The rheological measurements showed that the incorporation of SEBS-g-MAH enhanced the melt flowability (MFI) of the composites, with a maximum increase of 38% observed for PC/ABS. These results demonstrate the potential of SEBS-g-MAH as a compatibiliser for improving the unnotched impact strength (mechanical), thermal, and rheological properties of PC/ABS/GO and PC/ABS/rGO composites, achieving a synergistic effect. Full article
Show Figures

Figure 1

14 pages, 6075 KiB  
Article
Material Performance Evaluation for Customized Orthoses: Compression, Flexural, and Tensile Tests Combined with Finite Element Analysis
by Daniela Trindade, Rachel Habiba, Cristiana Fernandes, André A. Costa, Rui Silva, Nuno Alves, Rui Martins, Cândida Malça, Ricardo Branco and Carla Moura
Polymers 2024, 16(18), 2553; https://doi.org/10.3390/polym16182553 - 10 Sep 2024
Abstract
Orthoses are commonly used for treating injuries to improve the quality of life of patients, with customized orthoses offering significant benefits. Additive manufacturing, especially fused deposition modelling, enhances these benefits by providing faster, more precise, and more comfortable orthoses. The present study evaluates [...] Read more.
Orthoses are commonly used for treating injuries to improve the quality of life of patients, with customized orthoses offering significant benefits. Additive manufacturing, especially fused deposition modelling, enhances these benefits by providing faster, more precise, and more comfortable orthoses. The present study evaluates nine polymeric materials printed in horizontal and vertical directions by assessing their performance through compressive, flexural, and tensile tests. Among all materials, polycarbonate, polylactic acid, and ULTEMTM 1010 showed the most promising results, not only because they had the highest mechanical values, but also due to their minimal or no difference in performance between printing directions, making them advantageous in orthoses fabrication. Based on this, a finite element model of an ankle–foot orthosis was developed to simulate the deformation, strain, and stress fields under static conditions. The findings aim to optimize material selection for orthotic fabrication, where ULTEMTM 1010 is presented as the material with improved performance and durability. Full article
Show Figures

Figure 1

18 pages, 6063 KiB  
Article
Study on Thermal Oxygen Aging Characteristics and Degradation Kinetics of PMR350 Resin
by Yadan Wu, Wenchen Zhao, Yang Liu, Haitao Liu, Minglong Yang and Xun Sun
Polymers 2024, 16(18), 2552; https://doi.org/10.3390/polym16182552 - 10 Sep 2024
Abstract
The thermal stability and aging kinetics of polyimides have garnered significant research attention. As a newly developed class of high thermal stability polyimide, the thermal aging characteristics and degradation kinetics of phenylene-capped polyimide prepolymer (PMR350) have not yet been reported. In this article, [...] Read more.
The thermal stability and aging kinetics of polyimides have garnered significant research attention. As a newly developed class of high thermal stability polyimide, the thermal aging characteristics and degradation kinetics of phenylene-capped polyimide prepolymer (PMR350) have not yet been reported. In this article, the thermo-oxidative stability of PMR350 was investigated systematically. The thermal degradation kinetics of PMR350 resin under different atmospheres were also analyzed using the Flynn–Wall–Ozawa method, the Kissinger–Akahira–Sunose method, and the Friedman method. Thermogravimetric analysis (TGA) results revealed that the 5% thermal decomposition temperature (Td5%) of PMR350 in a nitrogen atmosphere was 29 °C higher than that in air, and the maximum thermal degradation rate was 0.0025%/°C, which is only one-seventh of that observed in air. Isothermal oxidative aging results indicated that the weight loss rate of PMR350 and the time-dependence relationship follow a first-order exponential growth function. PMR350 resin thermal decomposition reaction under air atmosphere includes one stage, with a degradation activation energy of approximately 57 kJ/mol. The reaction model g(α) fits the F2 model, and the integral form is given by g(α) = 1/(1 − α). In contrast, the thermal decomposition reaction under a nitrogen atmosphere consists of two stages, with degradation activation energies of 240 kJ/mol and 200 kJ/mol, respectively. The reaction models g(α) correspond to the A2 and D3 models, with the integral forms represented as g(α) = [−ln(1 − α)]2 and g(α) = [1 − (1 − α)1/3]2 due to the oxygen accelerating thermal degradation from multiple perspectives. Moreover, PMR350 resin maintained high hardness and modulus even after thermal aging at 350 °C for 300 h. The results indicate that the resin exhibits excellent resistance to thermal and oxygen aging. This study represents the first systematic analysis of the thermal stability characteristics of PMR350 resin, offering essential theoretical insights and data support for understanding the mechanisms of thermal stability modification in PMR350 and its engineering applications. Full article
Show Figures

Figure 1

12 pages, 3136 KiB  
Article
Suitability of Test Procedures for Determining the Compatibility of Seal Materials with Ionic Hydraulic Fluids
by Darko Lovrec and Vito Tič
Polymers 2024, 16(18), 2551; https://doi.org/10.3390/polym16182551 - 10 Sep 2024
Abstract
The compatibility of seal materials with the working fluid is crucial for the flawless, energy-saving, environmentally sustainable, and safe operation of any technical system. This is especially true for hydraulic systems operating under high operating pressure. The problem of materials compatibility comes into [...] Read more.
The compatibility of seal materials with the working fluid is crucial for the flawless, energy-saving, environmentally sustainable, and safe operation of any technical system. This is especially true for hydraulic systems operating under high operating pressure. The problem of materials compatibility comes into play when either a new type of seal material or a new type of fluid comes into use. The paper discusses the research findings regarding material compatibility testing of new high-tech ionic hydraulic fluids with commonly used seal materials. Due to the completely different chemical composition of these new fluids compared to the classical mineral-based oil, for these fluids, there are no standardized testing procedures. In these cases, we can only lean on the Standards that apply to classical fluids, which can lead to incorrect results. In the forefront of the paper is the discrepancy between the results obtained by the standardized test, and the test under real operating conditions. FKM, an excellent material for seals, proved to be the most suitable in the case of using ionic hydraulic fluid, according to a standardized test. However, it failed in the comparison test under real operating conditions, as the cylinder leaked. NBR seals proved to be a better solution. Full article
Show Figures

Figure 1

16 pages, 2608 KiB  
Article
Size Effects in Climatic Aging of Epoxy Basalt Fiber Reinforcement Bar
by Anna A. Gavrilieva, Oleg V. Startsev, Mikhail P. Lebedev, Anatoly S. Krotov, Anatoly K. Kychkin and Irina G. Lukachevskaya
Polymers 2024, 16(18), 2550; https://doi.org/10.3390/polym16182550 - 10 Sep 2024
Abstract
The purpose of this study was to obtain information on the influence of the size factor on the climatic aging of circular fiber plastics produced by pultrusion. The kinetics of moisture transfer was obtained in humidification and drying modes at 60 °C in [...] Read more.
The purpose of this study was to obtain information on the influence of the size factor on the climatic aging of circular fiber plastics produced by pultrusion. The kinetics of moisture transfer was obtained in humidification and drying modes at 60 °C in samples of epoxy basalt fiber reinforcement bars: after 28 months of exposure in the extremely cold climate of Yakutsk and 30 months of exposure in the moderately warm climate of Gelendzhik. It was shown that the 2D Langmuir model adequately describes the kinetics. The diffusion coefficients in the reinforcement direction for bars with diameters of 6, 8, 10, 16 and 20 mm turned out to be significantly higher than in the radial direction. To clarify the aging mechanism of the bars and the tensile, compressive and bending strength, the coefficient of linear thermal expansion and the glass transition temperature of the epoxy matrix of the bars with a diameter of 6, 8 and 10 mm after 51 months of exposure in Yakutsk and 54 months of exposure in Gelendzhik were measured. It was shown that after climatic exposure, the deformability of the bars decreased with increasing diameter of the bar; the glass transition temperature increased more significantly in the bar with a smaller diameter. In 6 mm diameter bars, the compressive and bending strength limits decreased by 10–25 % due to the plasticizing effect of moisture. With the same depth of moisture penetration into the volume of the samples, its effect on the strength of thin bars was significant, and for thick bars, it was insignificant. An increase in the glass transition temperature by 6 °C, associated with the additional curing of the polymer matrix, occurred in the surface layer of the epoxy basalt fiber reinforcement bars and was revealed in bars with a smaller diameter. Full article
(This article belongs to the Special Issue Advanced Epoxy-Based Materials, 5th Edition)
Show Figures

Figure 1

18 pages, 5551 KiB  
Article
Use of Recycled Additive Materials to Promote Efficient Use of Resources While Acting as an Effective Toughness Modifier of Wood–Polymer Composites
by Luísa Rosenstock Völtz, Linn Berglund and Kristiina Oksman
Polymers 2024, 16(18), 2549; https://doi.org/10.3390/polym16182549 - 10 Sep 2024
Abstract
Wood–polymer composites (WPCs) with polypropylene (PP) matrix suffer from low toughness, and fossil-based impact modifiers are used to improve their performance. Material substitution of virgin fossil-based materials and material recycling are key aspects of sustainable development and therefore recycled denim fabric, and elastomer [...] Read more.
Wood–polymer composites (WPCs) with polypropylene (PP) matrix suffer from low toughness, and fossil-based impact modifiers are used to improve their performance. Material substitution of virgin fossil-based materials and material recycling are key aspects of sustainable development and therefore recycled denim fabric, and elastomer were evaluated to replace the virgin elastomer modifier commonly used in commercial WPCs. Microtomography images showed that the extrusion process fibrillated the denim fabric into long, thin fibers that were well dispersed within the WPC, while the recycled elastomer was found close to the wood fibers, acting as a soft interphase between the wood fibers and PP. The fracture toughness (KIC) of the WPC with recycled denim fabric matched the commercial WPC which was 1.4 MPa m1/2 and improved the composite tensile strength by 18% and E-modulus by 54%. Recycled elastomer resulted in slightly lower KIC, 1.1 MPa m1/2, as well as strength and modulus while increasing elongation and contributing to toughness. The results of this study showed that recycled materials can potentially be used to replace virgin fossil-based elastomeric modifiers in commercial WPCs, thereby reducing the CO2 footprint by 23% and contributing to more efficient use of resources. Full article
(This article belongs to the Special Issue Polymer Composites: Structure, Properties and Processing)
Show Figures

Figure 1

Previous Issue
Back to TopTop