Preparation and Characterization of Chitosan/Starch Nanocomposites Loaded with Ampicillin to Enhance Antibacterial Activity against Escherichia coli
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Preparation and the Properties of Chitosan/Starch Nanocomposites Loaded with Ampicillin
3.2. In Vitro Loading Efficiency and Release Kinetics of Ampicillin
3.3. Effect of Ampicillin-Loaded Chitosan/Starch Nanocomposites on Antibacterial Activity against E. coli In Vitro
3.4. Effect of Ampicillin-Loaded Chitosan/Starch Nanocomposites and Incubation Time on E. coli Antibacterial Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 2018, 11, 1645–1658. [Google Scholar] [CrossRef] [PubMed]
- WHO. High Levels of Antibiotic Resistance Found Worldwide, New Data Shows. WHO, News Release. 2018. Available online: https://www.who.int/home/29-01-2018-high-levels-of-antibiotic-resistance-found-worldwide-new-data-shows (accessed on 29 January 2018).
- Li, M.; Liu, Q.; Teng, Y. The resistance mechanism of E. coli induced by ampicillin in laboratory. Infect. Drug Resist. 2019, 12, 2853–2863. [Google Scholar] [CrossRef]
- Vranic, S.M.; Uzunovic, A. Antimicrobial Resistance of E. coli strains isolated from urine at outpatient population: A single laboratory experience. Mater. Socio Medica 2016, 28, 121–124. [Google Scholar] [CrossRef] [PubMed]
- Nwobodo, D.C.; Ugwu, M.C.; Anie, C.O.; Al-Ouqaili, M.T.S.; Ikem, J.C.; Chigozie, U.V.; Saki, M. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J. Clin. Lab. Anal. 2022, 36, e24655. [Google Scholar] [CrossRef] [PubMed]
- Eleraky, N.E.; Allam, A.; Hassan, S.B.; Omar, M.M. Nanomedicine fight against antibacterial resistance: An overview of the recent pharmaceutical innovations. Pharmaceutics 2020, 12, 142. [Google Scholar] [CrossRef] [PubMed]
- Ssekatawa, K.; Byarugaba, D.K.; Kato, C.D.; Ejobi, F.; Tweyongere, R.; Lubwama, M.; Kỉabira, J.B.; Wampande, E.M. Nanotechnological solutions for controlling transmission and emergence of antimicrobial-resistant bacteria, future prospects, and challenges: A systematic review. J. Nanoparticle Res. 2020, 22, 117. [Google Scholar] [CrossRef]
- Montero, N.; Alhajj, M.J.; Mariana Sierra, M.; Oñate-Garzon, J.; Yarce, C.J.; Salamanca, C.H. Development of polyelectrolyte complex nanoparticles-PECNs loaded with ampicillin by means of polyelectrolyte complexation and ultra-high pressure homogenization (UHPH). Polymers 2020, 12, 1168. [Google Scholar] [CrossRef]
- Ke, C.L.; Deng, F.S.; Chuang, C.Y.; Lin, C.H. Antimicrobial actions and applications of chitosan. Polymers 2021, 13, 904. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Nguyen, T.T.H.; Wang, S.L.; Vo, T.T.H.; Nguyen, A.D. Preparation of chitosan nanoparticles by TPP ionic gelation combined with spray drying, and the antibacterial activity of chitosan nanoparticles and a chitosan nanoparticle–amoxicillin complex. Res. Chem. Intermed. 2017, 43, 3527–3537. [Google Scholar] [CrossRef]
- Rozman, N.A.S.; Tong, W.Y.; Leong, C.R.; Tan, W.N.; Hasanolbasori, M.A.; Abdullah, S.Z. Potential antimicrobial applications of chitosan nanoparticles (ChNP). J. Microbiol. Biotechnol. 2019, 29, 1009–1013. [Google Scholar] [CrossRef]
- La, T.K.N.; Phung, M.L.; Wang, S.L.; Nguyen, A.D. Preparation of chitosan nanoparticles by spray drying, and their antibacterial activity. Res. Chem. Intermed. 2014, 40, 2165–2175. [Google Scholar]
- Banoub, N.G.; Saleh, S.E.; Helal, H.S.; Aboshanab, K.M. Antibiotics combinations and chitosan nanoparticles for combating multidrug resistance Acinetobacter baumannii. Infect. Drug Resist. 2021, 14, 3327–3339. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Wang, T.; Chen, X.; Liu, Y. Applications of chitosan-based biomaterials: A focus on dependent antimicrobial properties. Mar. Life Sci. Technol. 2020, 2, 398–413. [Google Scholar] [CrossRef]
- Costa, E.M.; Silva, S.; Veiga, M.; Tavaria, F.K.; Pintado, M.M. Exploring chitosan nanoparticles as effective inhibitors of antibiotic resistant skin microorganisms—From in vitro to ex vitro testing. Carbohydr. Res. 2018, 201, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, H.M.; El-Bisi, M.K.; Taha, G.M.; El-Alfy, A.E. Preparation of biocompatible chitosan nanoparticles loaded by tetracycline, gentamycin and ciprofloxacin as novel drug delivery system for improvement the antibacterial properties of cellulose based fabrics. Int. J. Biol. Macromol. 2020, 161, 1247–1260. [Google Scholar]
- Sohail, R.; Abbas, S.R. Evaluation of amygdalin-loaded alginate-chitosan nanoparticles as biocompatible drug delivery carriers for anticancerous efficacy. Int. J. Biol. Macromol. 2020, 153, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Ehyaeirad, N.; Babolanimogadam, N.; Dadkhah, M.; Shirmard, L.R. Polylactic acid films incorporated with nanochitosan, nanocellulose, and Ajwain essential oil: Synthesis, characterizations, with in-vitro and in-vivo antimicrobial properties for infected wound healing. Carbohydr. Polym. Technol. Appl. 2024, 7, 100425. [Google Scholar] [CrossRef]
- Marta, H.; Rizki, D.I.; Mardawati, E.; Djali, M.; Mohammad, M.; Cahyana, Y. Starch nanoparticles: Preparation, properties and applications. Polymers 2023, 15, 1167. [Google Scholar] [CrossRef]
- Gheorghita, R.; Anchidin-Norocel, L.; Filip, R.; Dimian, M.; Covasa, M. Applications of biopolymers for drugs and probiotics delivery. Polymers 2021, 13, 2729. [Google Scholar] [CrossRef]
- Hemamalini, T.; Giri Dev, V.R. Comprehensive review on electro spinning of starch polymer for biomedical applications. Int. J. Biol. Macromol. 2018, 106, 712–718. [Google Scholar] [CrossRef]
- Wang, B.; Sui, J.; Yu, B.; Yuan, C.; Guo, L.; Abd El-Aty, A.M.; Cui, B. Physicochemical properties and antibacterial activity of corn starch-based films incorporated with Zanthoxylum bungeanum essential oil. Carbohydr. Polym. 2021, 254, 117314. [Google Scholar] [CrossRef] [PubMed]
- Alwaan, I.M.; Ahmed, M.; Al-Kelaby, K.K.A.; Allebban, Z.S.M. Starch-chitosan modified blend as long term controlled drug release for cancer therapy. Pak. J. Biotechnol. 2018, 15, 947–955. [Google Scholar]
- Balmayor, E.R.; Tuzlakoglu, K.; Azevedo, H.S.; Reis, R.L. Preparation and characterization of starch-poly-ε-caprolactone microparticles incorporating bioactive agents for drug delivery and tissue engineering applications. Acta Biomater. 2009, 5, 1035–1045. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, I.; Margalit, R. Liposome-encapsulated ampicillin: Physicochemical and antibacterial properties. J. Pharm. Sci. 1997, 86, 635–641. [Google Scholar] [CrossRef]
- Asadpoor, M.; Varasteh, S.; Pieters, R.J.; Folkerts, G.; Braber, S. Differential effects of oligosaccharides on the effectiveness of ampicillin against Escherichia coli in vitro. PharmaNutrition 2021, 16, 100264. [Google Scholar] [CrossRef]
- Wan Mat Khalir, W.K.A.; Shameli, K.; Miyake, M.; Nor, A.O. Efficient one-pot biosynthesis of silver nanoparticles using Entada spiralis stem powder extraction. Res. Chem. Intermed. 2018, 44, 7013–7028. [Google Scholar] [CrossRef]
- Hussein-Al-Ali, S.H.; El Zowalaty, M.E.; Hussein, M.Z.; Geilich, B.M.; Webster, T.J. Synthesis, characterization, and antimicrobial activity of an ampicillin-conjugated magnetic nanoantibiotic for medical applications. Int. J. Nanomed. 2014, 9, 3801–3814. [Google Scholar] [CrossRef]
- Abdel-Hakeem, M.A.; Maksoud, A.I.A.; Aladhadh, M.A.; Almuryif, K.A.; Elsanhoty, R.M.; Elebeedy, D. Gentamicin–Ascorbic acid encapsulated in chitosan nanoparticles improved in vitro antimicrobial activity and minimized cytotoxicity. Antibiotics 2022, 11, 1530. [Google Scholar] [CrossRef]
- Abdelmalek, I.; Svahn, I.; Mesli, S.; Simonneaux, G.; Mesli, A. Formulation, evaluation and microbiological activity of ampicillin and amoxicillin microspheres. J. Mater. Environ. Sci. 2014, 5, 1799–1807. [Google Scholar]
- Ibrahim, H.M.; El-Bisi, M.K.; Taha, G.M.; El-Alfy, E.A. Chitosan nanoparticles loaded antibiotics as drug delivery biomaterial. J. Appl. Pharm. Sci. 2015, 5, 85–90. [Google Scholar] [CrossRef]
- Fan, P.; Ma, Z.; Partow, A.J.; Kim, M.; Grace, M.; Shoemaker, G.M.; Tan, R.; Tong, Z.; Nelson, C.D.; Jang, Y.; et al. A novel combination therapy for multidrug resistant pathogens using chitosan nanoparticles loaded with β-lactam antibiotics and β-lactamase inhibitors. Int. J. Biol. Macromol. 2022, 195, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Murei, A.; Ayinde, W.B.; Gitari, M.W.; Samie, A. Functionalization and antimicrobial evaluation of ampicillin, penicillin and vancomycin with Pyrenacantha grandiflora Baill and silver nanoparticles. Sci. Rep. 2020, 10, 11596. [Google Scholar] [CrossRef] [PubMed]
- Nairi, V.; Medda, L.; Monduzzi, M.; Salis, A. Adsorption and release of ampicillin antibiotic from ordered mesoporous silica. J. Colloid Interface Sci. 2017, 497, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, A.H.D.; Chalimah, S.; Primadona, I.; Hanantyo, M.H.G. Physical and chemical properties of corn, cassava, and potato starch. IOP Conf. Ser. Earth Environ. Sci. 2018, 160, 012003. [Google Scholar] [CrossRef]
- Hong, T.; Yin, J.Y.; Nie, S.P.; Xie, M.Y. Applications of infrared spectroscopy in polysaccharide structural analysis: Progress, challenge and perspective. Food Chem. X 2021, 12, 100168. [Google Scholar] [CrossRef]
- Lustriane, C.; Dwivany, F.M.; Suendo, V.; Reza, M. Effect of chitosan and chitosan-nanoparticles on post-harvest quality of banana fruits. J. Plant Biotechnol. 2018, 45, 36–44. [Google Scholar] [CrossRef]
- Queiroz, M.F.; Melo, K.R.T.; Sabry, D.A.; Sassaki, G.L.; Rocha, H.A.O. Does the use of chitosan contribute to oxalate kidney stone formation. Mar. Drugs 2015, 13, 141–158. [Google Scholar] [CrossRef]
- Duceac, L.D.; Calin, G.; Eva, L.; Marcu, C.; Goroftei, E.R.B.; Dabija, M.G.; Mitrea, G.; Luca, A.C.; Hanganu, E.; Gutu, C.; et al. Third-generation cephalosporin-loaded chitosan used to limit microorganisms resistance. Materials 2020, 13, 4792. [Google Scholar] [CrossRef]
- Najafi, S.H.M.; Baghaie, M.; Ashori, A. Preparation and characterization of acetylated starch nanoparticles as drug carrier: Ciprofloxacin as a model. Int. J. Biol. Macromol. 2016, 87, 48–54. [Google Scholar] [CrossRef]
- Sivamaruthi, B.S.; Nallasamy, P.K.; Suganthy, N.; Kesika, P.; Chaiyasut, C. Pharmaceutical and biomedical applications of starch-based drug delivery system: A review. J. Drug Deliv. Sci. Technol. 2022, 77, 103890. [Google Scholar] [CrossRef]
- Fazeli, M.; Lipponen, J. Developing self-assembled starch nanoparticles in starch nanocomposite films. ACS Omega 2022, 7, 44962–44971. [Google Scholar] [CrossRef] [PubMed]
Samples Data | C100 | C1S1 | C1S2 | C1S3 | S100 | C100 + Amp | C1S1 + Amp | C1S2 + Amp | C1S3 + Amp | S100 + Amp |
---|---|---|---|---|---|---|---|---|---|---|
Size distribution (nm) | 200–1300 | 150–600 | 100–500 | 100–400 | 70–400 | 250–1500 | 250–900 | 150–900 | 120–600 | 180–500 |
Mean Size (nm) | 816.9 ± 24.5 | 372.4 ± 17.4 | 281.0 ± 12.3 | 190.0 ± 2.87 | 133.2 ± 4.32 | 1020.8 ± 32.4 a | 583.9 ± 25.2 b | 566.4 ± 20.5 b | 418.0 ± 17.8 c | 312.4 ± 15.4 d |
Zeta potential value (mV) | 67.6 ± 0.93 | 80.3 ± 0.95 | 71.4 ± 1.01 | 54.4 ± 1.27 | −19.7 ± 0.21 | 64.7 ± 1.42 a | 63.2 ± 0.91 a | 61.3 ± 0.97 a | 37.3 ± 1.34 b | −6.3 ± 0.29 c |
Recovery yield (%) | 75.4 ± 0.35 | 75.1 ± 0.06 | 75.0 ± 0.08 | 75.1 ± 0.14 | 75.2 ± 1.78 | 72.8 ± 0.34 | 72.5 ± 0.95 | 71.1 ± 1.75 | 72.1 ± 0.96 | 72.0 ± 1.45 |
Loading efficiency (%) | - | - | - | - | - | 65.8 ± 2.87 b | 75.5 ± 3.21 a | 77.3 ± 2.97 a | 75.3 ± 3.15 a | 59.9 ± 3.68 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, V.N.; Wang, S.-L.; Nguyen, T.H.; Nguyen, V.B.; Doan, M.D.; Nguyen, A.D. Preparation and Characterization of Chitosan/Starch Nanocomposites Loaded with Ampicillin to Enhance Antibacterial Activity against Escherichia coli. Polymers 2024, 16, 2647. https://doi.org/10.3390/polym16182647
Nguyen VN, Wang S-L, Nguyen TH, Nguyen VB, Doan MD, Nguyen AD. Preparation and Characterization of Chitosan/Starch Nanocomposites Loaded with Ampicillin to Enhance Antibacterial Activity against Escherichia coli. Polymers. 2024; 16(18):2647. https://doi.org/10.3390/polym16182647
Chicago/Turabian StyleNguyen, Vinh Nghi, San-Lang Wang, Thi Huyen Nguyen, Van Bon Nguyen, Manh Dung Doan, and Anh Dzung Nguyen. 2024. "Preparation and Characterization of Chitosan/Starch Nanocomposites Loaded with Ampicillin to Enhance Antibacterial Activity against Escherichia coli" Polymers 16, no. 18: 2647. https://doi.org/10.3390/polym16182647
APA StyleNguyen, V. N., Wang, S. -L., Nguyen, T. H., Nguyen, V. B., Doan, M. D., & Nguyen, A. D. (2024). Preparation and Characterization of Chitosan/Starch Nanocomposites Loaded with Ampicillin to Enhance Antibacterial Activity against Escherichia coli. Polymers, 16(18), 2647. https://doi.org/10.3390/polym16182647