Methylene Blue Solid Alginate Gels for Photodynamic Therapy: The Peculiarities of Production and Controlled Release of the Dye
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mixing Method
2.3. Immersion Method
2.4. Study of the Kinetics of MB Release into the External Medium
2.5. Study of the Structural and Physicochemical Features of the Formed Films
3. Results and Discussion
3.1. Supramolecular Structure of Alginate Matrices Obtained by Different Methods
3.2. Kinetics of MB Release from Alginate Films of Different Structures into Water and Buffer Solutions
3.3. Spectral Properties of MB in Solid Alginate Gel Matrices
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Escalante, J.; McQuade, R.M.; Stojanovska, V.; Nurgali, K. Impact of chemotherapy on gastrointestinal functions and the enteric nervous system. Maturitas 2017, 105, 23–29. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, M.; Mellotte, G.; Ryan, B.; O’Connor, A. Gastrointestinal side effects of cancer treatments. Ther. Adv. Chronic Dis. 2020, 11, 2040622320970354. [Google Scholar] [CrossRef] [PubMed]
- Truong, N.T.H.; Gargett, T.; Brown, M.P.; Ebert, L.M. Effects of Chemotherapy Agents on Circulating Leukocyte Populations: Potential Implications for the Success of CAR-T Cell Therapies. Cancers 2021, 13, 2225. [Google Scholar] [CrossRef] [PubMed]
- Usuda, J.; Kato, H.; Okunaka, T.; Furukawa, K.; Tsutsui, H.; Yamada, K.; Suga, Y.; Honda, H.; Nagatsuka, Y.; Ohira, T.; et al. Photodynamic Therapy (PDT) for Lung Cancers. Thorac. Oncol. 2006, 1, 489–493. [Google Scholar] [CrossRef]
- Filonenko, E.V.; Vashakhmadze, L.A.; Kirillov, N.V. Intraoperative photodynamic therapy in the surgical treatment of gastric cancer. Sib. J. Oncol. 2012, 2, 84–89. (In Russian) [Google Scholar]
- Hamblin, M.R.; Hasan, T. Photodynamic therapy: A new antimicrobial approach to infectious disease? Photochem. Photobiol. Sci. 2004, 3, 436–450. Available online: https://pubmed.ncbi.nlm.nih.gov/15122361/ (accessed on 12 February 2004). [CrossRef]
- Lapchenko, A.S. Photodynamic therapy. The fields of applications and prospects for the further development in otorhinolaryngology. Vestn. Otorinolaringol. 2015, 80, 4–9. [Google Scholar] [CrossRef]
- Lapchenko, A.S.; Kryukov, A.I.; Gurov, A.V.; Order, R.Y. Prospects for the use of antimicrobial photodynamic therapy in otorhinolaryngology. Russ. Bull. Otorhinolaryngol. 2019, 84, 73–76. (In Russian) [Google Scholar] [CrossRef]
- Shishkina, O.E.; Butakova, L.Y.; Ivanchenko, Y.O.; Antonov, S.S. Microbiological substantiation of the effectiveness of photosensitizers in photodynamic therapy. Laser Med. 2013, 17, 35–37. (In Russian) [Google Scholar]
- Rudenko, T.G.; Shekhter, A.B.; Guller, A.E.; Aksenova, N.A.; Glagolev, N.N.; Ivanov, A.V.; Aboyants, R.K.; Kotova, S.L.; Solovieva, A.B. Specific Features of the Wound Healing Process Occurring against the Background of Phootodynamic Therapy Using Fotoditazin Photosensitizer-Amphiphilic Polymer Complexes. Photochem. Photobiol. 2014, 90, 1413–1422. Available online: https://pubmed.ncbi.nlm.nih.gov/25185511/ (accessed on 20 October 2014). [CrossRef]
- Solovieva, A.B.; Spokoiny, A.L.; Rudenko, T.G.; Shekhter, A.B.; Glagolev, N.N.; Aksenova, N.A.; Baranov, A.V. The influence of water-soluble polymers on the activity of photoditazine during photodynamic therapy of purulent soft tissue wounds in an experiment. Clin. Pract. 2016, 2, 45–49. (In Russian) [Google Scholar]
- Wiegand, C.; Heinze, T.; Hipler, U.-C. Comparative in vitro study on cytotoxicity, antimicrobial activity, and binding capacity for pathophysiological factors in chronic wounds of alginate and silver-containing alginate. Wound Rep. Reg. 2009, 17, 511–521. [Google Scholar] [CrossRef]
- Andersson, M. Chitosan Composition. Patent RU-2482133-C2, 20 May 2013. [Google Scholar]
- Tozaki, H.; Komoike, J.; Tada, C.; Maruyama, T.; Terabe, A.; Suzuki, T.; Yamamoto, A.; Muranishi, S. Chitosan capsules for colon-specific drug delivery: Improvement of insulin absorption from the rat colon. J. Pharm. Sci. 1997, 86, 1016–1021. [Google Scholar] [CrossRef]
- Dobrodeeva, L.K. Medicinal preparations of algal origin. Arkhangelsk 1997, 24. [Google Scholar]
- Yusova, A.A.; Gusev, I.V.; Lipatova, I.M. Properties of hydrogels based on mixtures of sodium alginate with other polysaccharides of natural origin. Chem. Plant Mater. 2014, 4, 59–66. (In Russian) [Google Scholar]
- Demezon, N.; Ryuo, O.; Ogyust, S. Bandage with Prolonged Detection of Active Substances. Patent RU-2641031-C2, 15 January 2018. [Google Scholar]
- Oliynyk, A.P.; Pereyaslov, A.A. Bandage for the prevention of purulent-septic complications of a postoperative wound. Infect. Surg. 2014, 12, 45–47. (In Russian) [Google Scholar]
- Oltarzhevskaya, N.D.; Korovina, M.A.; Krichevsky, G.E.; Shchedrina, M.A.; Egorova, E.A. The opportunities of using polysaccharides for the wound treatment. Wounds Wound Infect. Prof. B.M. Kostyuchenok J. 2019, 6, 24–31. (In Russian) [Google Scholar] [CrossRef]
- Usov, A.I. Alginic acids and alginates: Analytical methods used for their estimation and characterization of composition and primary structure. Russ. Chem. Rev. 1999, 68, 957–966. [Google Scholar] [CrossRef]
- Haug, A.; Larsen, B.; Smidsrod, O. A Study of the Constitution of Alginic Acid by Partial Acid Hydrolysis. Acta Chem. Scand. 1966, 20, 183–190. [Google Scholar] [CrossRef]
- Moe, S.T.; Draget, K.I.; Break, G.S.; Smidsrod, O. Food Polysaccharides and Their Applications; Stephen, A.M., Ed.; Marcel Dekker: New York, NY, USA, 1995; p. 245. [Google Scholar]
- Kuryanova, A.S.; Kardumyan, V.V.; Kaplin, V.S.; Aksenova, N.A.; Chernyak, A.V.; Timofeeva, V.A.; Glagolev, N.N.; Timashev, P.S.; Solovieva, A.B. Effect of amphiphilic polymers and sodium alginate on the activity of methylene blue in photogeneration of singlet oxygen 1O2. Laser Phys. 2023, 33, 095601. [Google Scholar] [CrossRef]
- Kopylov, A.S.; Aksenova, N.A.; Shershnev, I.V.; Timofeeva, V.A.; Savko, M.A.; Cherkasova, A.V.; Zarkhina, T.S.; Timashev, P.S.; Solovieva, A.B. Alginate-chitosan polyelectrolyte complexes as carriers for fluorinated tetraphenylporphyrin in photosensitizing systems of singlet oxygen generation. Russ. J. Phys. Chem. A 2023, 97, 2792–2800. [Google Scholar] [CrossRef]
- Bajas, D.; Vlase, G.; Mateescu, M.; Grad, O.A.; Bunoiu, M.; Vlase, T.; Avram, C. Formulation and Characterization of Alginate-Based Membranes for the Potential Transdermal Delivery of Methotrexate. Polymers 2021, 13, 161. [Google Scholar] [CrossRef] [PubMed]
- Sime, W.J. Food Gels; Harris, P., Ed.; Elsevier: London, UK, 1990; p. 53. [Google Scholar]
- Braccini, I.; Pérez, S. Molecular basis of Ca2+-induced gelation in alginates andpectins: The egg-box model revisited. Biomacromolecules 2001, 2, 1089–1096. [Google Scholar] [CrossRef] [PubMed]
- Grant, G.T. Biological interactions between polysaccharides and divalent cations: The egg-box model. FEBS Lett. 1973, 32, 195–198. [Google Scholar] [CrossRef]
- Bergstorm, E.; Goodall, D.M.; Norton, I.T. Gams Stabilisers for the Food Industry; Phillips, G.O., Williams, P.A., Wedlock, D.J., Eds.; IRL Press: Oxford, UK, 1990; p. 501. [Google Scholar]
- Selvam, S.; Sarkar, I. Bile salt induced solubilization of methylene blue: Study on methylene blue fluorescence properties and molecular mechanics calculation. Pharm. Anal. 2017, 7, 71–75. [Google Scholar] [CrossRef]
Bands | Assignment |
---|---|
1727 | COOH |
1638; 1589−1596; 1405−1418 | COO− |
1200−1420 | CO, OH, CH |
Sample | Sample Number | 50% Release | k × 103, s−1 |
---|---|---|---|
Mixing | |||
AAG/MB | 1 | 7 days | 0.8 |
CAG/MB | 2 | 2 min | 10.0 |
AAG/PVP/MB | 3 | 180 min | 1.3 |
CAG/PVP/MB | 4 | 2 min | 7.7 |
Immersion | |||
AAG/MB | 5 | No release | |
CAG/MB | 6 | No release | |
AAG/PVP/MB | 7 | No release | |
CAG/PVP/MB | 8 | 30 min | 1.2 |
Sample | Sample Number | 50% Release | k × 103, s−1 |
---|---|---|---|
Mixing | |||
AAG/MB | 9 | 20 min | 0.7 |
CAG/MB | 10 | 3 min | 8.2 |
AAG/PVP/MB | 11 | 40 min | 0.8 |
CAG/PVP/MB | 12 | 3 min | 6.9 |
Immersion | |||
AAG/MB | 13 | 5 min | 1.2 |
CAG/MB | 14 | 5 min | 7.9 |
AAG/PVP/MB | 15 | 25 min | 0.6 |
CAG/PVP/MB | 16 | 30 min | 0.5 |
Sample | Sample Number | 50% Release | k × 103, s−1 |
---|---|---|---|
Mixing | |||
AAG/MB | 17 | 180 min | 0.8 |
CAG/MB | 18 | 5 min | 10.0 |
AAG/PVP/MB | 19 | 3 min | 9.0 |
CAG/PVP/MB | 20 | 15 min | 10.0 |
Immersion | |||
AAG/MB | 21 | 5 min | 4.9 |
CAG/MB | 22 | 5 min | 5.9 |
AAG/PVP/MB | 23 | 5 min | 7.0 |
CAG/PVP/MB | 24 | 12 min | 6.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solovieva, A.; Kopylov, A.; Cherkasova, A.; Shershnev, I.; Kaplin, V.; Timofeeva, V.; Akovantseva, A.; Savko, M.; Gulin, A.; Zarkhina, T.; et al. Methylene Blue Solid Alginate Gels for Photodynamic Therapy: The Peculiarities of Production and Controlled Release of the Dye. Polymers 2024, 16, 2819. https://doi.org/10.3390/polym16192819
Solovieva A, Kopylov A, Cherkasova A, Shershnev I, Kaplin V, Timofeeva V, Akovantseva A, Savko M, Gulin A, Zarkhina T, et al. Methylene Blue Solid Alginate Gels for Photodynamic Therapy: The Peculiarities of Production and Controlled Release of the Dye. Polymers. 2024; 16(19):2819. https://doi.org/10.3390/polym16192819
Chicago/Turabian StyleSolovieva, Anna, Alexander Kopylov, Anastasiya Cherkasova, Ilya Shershnev, Vladislav Kaplin, Victoriya Timofeeva, Anastasiya Akovantseva, Marina Savko, Alexander Gulin, Tatyana Zarkhina, and et al. 2024. "Methylene Blue Solid Alginate Gels for Photodynamic Therapy: The Peculiarities of Production and Controlled Release of the Dye" Polymers 16, no. 19: 2819. https://doi.org/10.3390/polym16192819
APA StyleSolovieva, A., Kopylov, A., Cherkasova, A., Shershnev, I., Kaplin, V., Timofeeva, V., Akovantseva, A., Savko, M., Gulin, A., Zarkhina, T., Aksenova, N., & Timashev, P. (2024). Methylene Blue Solid Alginate Gels for Photodynamic Therapy: The Peculiarities of Production and Controlled Release of the Dye. Polymers, 16(19), 2819. https://doi.org/10.3390/polym16192819