Exploring the Possibilities of Using Recovered Collagen for Contaminants Removal—A Sustainable Approach for Wastewater Treatment
Abstract
:1. Introduction
- -
- Strength and flexibility provided by its structure [18];
- -
- Ability to interact with a large number of chemical substances due to increased number of functional groups (amino, carboxyl, hydroxyl);
- -
- No toxicity at low concentrations [19] (in the case of leaching in the treated water, will pose no health risk);
- -
- Resistance to bacteria [20];
- -
2. Collagen-Based Materials for Wastewater Treatment
2.1. Adsorption Technology
Adsorbent | Targeted Pollutant | Adsorption Capacity (at Equilibrium), mg·g−1 | Reference | |
---|---|---|---|---|
1. | CF/ZIF-7-NH2 | Hg(II) | 909.09 | [57] |
2. | Bayberry tannin-immobilized CF | Hg(II) | 198.49 | [47] |
3. | Collagen-based porous fluorescent aerogel | Cr(VI) | 103.3 | [56] |
4. | Collagen modified with oxazolidine | Cr(III) | 143 | [31] |
5. | Carboxylated CF CF | Cr(III) | 106.88 75.82 | [51] |
6. | Bovine hide collagen/tannin extract composite | Cu(II) | 14.94 | [32] |
7. | Bovine hide collagen/tannin extract/sodium alginate, (SA/BHC)@TE | Cu(II) | 140.56 | [58] |
8. | Collagen-tannin resin | Cu(II) | 16.52 | [54] |
9. | Collagen/cellulose hydrogel | Cu(II) | 67.36 | [55] |
10. | Manganite/collagen-polyurethane-chitosan hydrogel | Pb(II) | 13.22 | [34] |
11. | Collagen fibre/carbon quantum dot | Pb(II) | 183 | [48] |
12. | Persimmon tannins immobilized on collagen fibre | Ag(I) | 1947 | [59] |
13. | AgNPs/Fe crosslinked CFs (NPs—nanoparticles) | Cr(VI) Ni(II) Pb(II) | 90.734 73.82 78.19 | [5] |
14. | Zr—loaded collagen fibre | Cr(VI) V(V) | 27.55 100.86 | [50] |
15. | Fish scales | Cu(II) Ni(II) | 400 2.73 | [52] |
16. | Tannins immobilised on collagen | Cu(II) Pb(II) Cd(II) Cr(III) Zn(II) | 13.30 18.41 6.5 10.4 0.8 | [49] |
17. | CF-PEI (collagen fibres crosslinked with polyethyleneimine) | p-arsanilic acid | 285.71 | [35] |
18. | Hydrogel from (gum copal alcohols collagen)-co-poly(acrylamide) and acrylic acid | methylene blue | 1.70 | [36] |
19. | Collagen hydrolysate/polyvinyl alcohol | methylene blue | 99.9 | [37] |
20. | Black wattle tannin-immobilised mesostructured collagen | methylene blue | 46.5 | [75] |
21. | Collagen-based cryogel, isinglass-graphene oxide | rhodamine B | 120 | [72] |
22. | Fish scale | acid blue 113 | 145.3 | [62] |
23. | Composite hydrogels (collagen, guar gum and metal-organic frameworks) | methylene blue indigo carmine | 15.8 0.46 | [87] |
24. | CF-PEI | soap yellow acid red (anionic dye) | 538.2 369.7 | [38] |
25. | Tanned bovine collagen fibres | acid brown 369 acid red 131 acid blue 113 | 38.29 78.14 73.25 | [74] |
26. | Aminated collagen fibres (ACF) | acid black dye | 125.63 | [68] |
27. | Collagen-g-poly(acrylic acid-co-N-vinylpyrrolidone)/Fe3O4@SiO2 | methylene blue brilliant green rhodamine B | 207.33 212.68 221.97 | [39] |
28. | Magnetic hematitenanoparticle@collagen nanobiocomposite | methylene blue rhodamine B | 27.57 56.14 | [42] |
29. | CF | methylene blue reactive red | 80 163 | [61] |
30. | ACF—TpPa-1 | acid fuchsia reactive blue 19 | 257.98 449.54 | [70] |
31. | Zr—loaded collagen fibre Fe—loaded collagen fibre | phosphate | 87.3 79.96 | [90] |
32. | Zirconium(IV)-Impregnated CF | fluoride | 43.49 | [91] |
33. | Carbohydrate and collagen-based doubly grafted interpenetrating terpolymer hydrogel | Pb(II) Hg(II) methyl violet methylene blue vitamin C p-nitrophenol | 976.64 859.23 116.80 58.52 212.91 59.01 | [2] |
34. | Collagenic-waste/natural rubber biocomposite | Hg(II) safranine brilliant cresyl blue | 166.46 303.61 46.14 | [4] |
35. | Collagen-based hydrogel nanocomposite | Cd(II) Pb(II) methylene green crystal violet | ~120 mg/g ~120 mg/g 179 652 | [40] |
36. | Zirconium molybdopyrophosphate-functionalised CF | radioactive Cs(I) and Sr(II) | 149.52 38.99 | [85] |
37. | Ti(IV)/CF | UO22+ | 167.4 | [28] |
38. | Ti(IV)/CF | UO22+ | 372.4 | [80] |
39. | Ti(IV)/bayberry tannin/CF | UO22+ | 393.19 | [81] |
40. | Myrica rubra tannin/CF | UO22+ | 321.3 | [82] |
41. | Amidoxime/CF | UO22+ | 301.18 | [83] |
42. | nano-ZnS/alkali-activated CF | UO22+ | 359.72 | [84] |
43. | Cellulose—collagen | UO22+ | 64.94 10−3 | [79] |
44. | Prussian blue analog (PBA)/CF | Cs(I) | 175.4 | [88] |
45. | Collagen—tannin rearranged fibre | Th(IV) | 114.97 | [89] |
46. | Collagen polydimethylsiloxane (PDMS) | Silicone oil Motor oil Vegetable oil | 13.6 × 103 12.5 × 103 11.92 × 103 | [77] |
47. | Collagen polydimethylsiloxane (PDMS) modified with hexadecyl trimethyl ammonium bromide | Silicone oil Motor oil Vegetable oil | 15.9 × 103 14.0 × 103 12.0 × 103 | [78] |
48. | Olive stone | Cd(II) Pb(II) Ni(II) Cu(II) | 7.73 9.26 2.13 2.03 | [92] |
49. | Beal fruit shell | Cr(VI) | 17.27 | [93] |
50. | Biochar | Pb(II) | 46.46 | [94] |
51. | Biochar | Cd(II) | 25 | [95] |
52. | Biochar | methylene blue basic fuchsin | 99.11 78.01 | [96] |
53. | CuxO/Fe2O3/MoC | reactive red 195 A reactive yellow 84 | 61.3 93.95 | [97] |
54. | nano-MgO biochar | UO22+ | 333.11 | [98] |
55. | Recycled wool | Motor oil Vegetable oil | 15.8 × 103 13.16 × 103 | [99] |
2.2. Membrane and Column Separation
2.3. Advanced Oxidation of Chemical Contaminants
2.4. Antimicrobial Activity of Collagen-Based Materials
2.5. Bioremediation
3. Regeneration and Reuse
4. Environmental Implications
5. Challenges and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thorat, B.N.; Sonwani, R.K. Current technologies and future perspectives for the treatment of complex petroleum refinery wastewater: A review. Bioresour. Technol. 2022, 355, 127263. [Google Scholar]
- Mitra, M.; Mahapatra, M.; Dutta, A.; Roy, J.S.D.; Karmakar, M.; Deb, M.; Mondal, H.; Chattopadhyaya, P.K.; Bandyopadhyay, A.; Singha, N.R. Carbohydrate and collagen-based doubly-grafted interpenetrating terpolymer hydrogel via N–H activated in situ allocation of monomer for superadsorption of Pb(II), Hg(II), dyes, vitamin-C, and p-nitrophenol. J. Hazard. Mater. 2019, 369, 746–762. [Google Scholar] [CrossRef]
- Singha, K.; Pandit, P.; Maity, S.; Sharma, S.R. Harmful Environmental Effects for Textile Chemical Dyeing Practice. In Green Chemistry for Sustainable Textiles Modern Design and Approaches, The Textile Institute Book Series; Ibrahim, N., Hussain, C.M., Eds.; Woodhead Publishing: Duxford, UK, 2021; pp. 153–164. [Google Scholar]
- Singha, N.R.; Roy, C.; Mahapatra, M.; Dutta, A.; Roy, J.S.D.; Mitra, M.; Chattopadhyaya, P.K. Scalable Synthesis of Collagenic-Waste and Natural Rubber-Based Biocomposite for Removal of Hg(II) and Dyes: Approach for Cost-Friendly Waste Management. ACS Omega 2019, 4, 421–436. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, P.; Yu, R.; Jiang, J.; Liang, R.; Liu, G. Cost-efficient collagen fibrous aerogel cross-linked by Fe(III)/silver nanoparticle complexes for simultaneously degrading antibiotics, eliminating antibiotic-resistant bacteria, and adsorbing heavy metal ions from wastewater. Sep. Purif. Technol. 2022, 303, 122209. [Google Scholar] [CrossRef]
- Kong, W.; Li, Y.; Zhang, Y.; Mei, Y.; Tabassum, S. Biological treatment of refractory organic compounds in coal gasification wastewater: A review. J. Water Process. Eng. 2024, 60, 105255. [Google Scholar] [CrossRef]
- Chakraborty, P.; Mohamed, N.; Rajan, S.; Urbaniak, M.; Suresh, A.; Saha, S.; Pasupuleti, M.; Islam, E.; Vinod, P.G.; Hashmi, M.Z. Post-COVID-19 pandemic perspectives on the need for wastewater surveillance of pathogenic microorganisms, antibiotics, and antimicrobial resistance in South Asia. Curr. Opin. Environ. Sci. Health 2024, 39, 100553. [Google Scholar] [CrossRef]
- Jones, E.R.; Bierkens, M.F.P.; Wanders, N.; Sutanudjaja, E.H.; van Beek, L.P.H.; van Vliet, M.T.H. Current wastewater treatment targets are insufficient to protect surface water quality. Commun. Earth Environ. 2022, 3, 221. [Google Scholar] [CrossRef]
- Sick Water? The Central Role of Wastewater Management in Sustainable Development. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/9156/Sick%20Water.pdf?sequence=1&isAllowed=y (accessed on 15 May 2024).
- Wastewater—Turning Problem to Solution. Available online: https://www.unep.org/resources/report/wastewater-turning-problem-solution (accessed on 15 May 2024).
- Ensure Availability and Sustainable Management of Water and Sanitation for All. Available online: https://sdgs.un.org/goals/goal6#targets_and_indicators (accessed on 15 May 2024).
- Stefan, D.S.; Bosomoiu, M.; Constantinescu, R.R.; Ignat, M. Composite Polymers from Leather Waste to Produce Smart Fertilizers. Polymers 2021, 13, 4351. [Google Scholar] [CrossRef] [PubMed]
- Stefan, D.S.; Bosomoiu, M.; Dancila, A.M.; Stefan, M. Review of Soil Quality Improvement Using Biopolymers from Leather Waste. Polymers 2022, 14, 1928. [Google Scholar] [CrossRef]
- Buljan, J.; Reich, G.; Ludvik, J. Mass Balance in Leather Processing; US/RAS/92/120; United Nations Industrial Development Organization (UNIDO): Vienna, Austria, 2000. [Google Scholar]
- Ayele, M.; Limeneh, D.Y.; Tesfaye, T.; Mengie, W.; Abuhay, A.; Haile, A.; Gebino, G. A Review on Utilization Routes of the Leather Industry Biomass. Adv. Mater. Sci. Eng. 2021, 2021, 1503524. [Google Scholar] [CrossRef]
- Davis, J.F.; Maffia, G.J. Collagen dispersions for liquid-solid separations in water treatment and sludge dewatering. Sep. Technol. 1995, 5, 147–152. [Google Scholar] [CrossRef]
- Li, R.; Zhou, J.; Liao, X.; Zhang, W.H.; Shi, B. Flocculation Behaviors of Collagen Protein—Al(III) Composite Flocculant. JALCA 2014, 109, 56–62. [Google Scholar] [CrossRef]
- Masrouri, M.; Qin, Z. Effects of terminal tripeptide units on mechanical properties of collagen triple helices. Extrem. Mech. Lett. 2023, 64, 102075. [Google Scholar] [CrossRef]
- Seo, H.S.; Kim, J.H.; Kim, S.H.; Park, M.K.; Seong, N.W.; Kang, G.H.; Kim, J.S.; Kim, S.H.; Kim, J.C.; Moon, C. Toxicity of a 90-day repeated oral dose of a collagen peptide derived from skate (Raja kenojei) skin: A rat model study. Toxicol. Res. 2023, 39, 383–398. [Google Scholar] [CrossRef] [PubMed]
- Ersanli, C.; Tzora, A.; Skoufos, I.; Voidarou, C.; Zeugolis, D.I. Recent Advances in Collagen Antimicrobial Biomaterials for Tissue Engineering Applications: A Review. Int. J. Mol. Sci. 2023, 24, 7808. [Google Scholar] [CrossRef]
- Kaing, V.; Guo, Z.; Sok, T.; Kodikara, D.; Breider, F.; Yoshimura, C. Photodegradation of biodegradable plastics in aquatic environments: Current understanding and challenges. Sci. Total Environ. 2024, 911, 168539. [Google Scholar] [CrossRef]
- Mukherjee, C.; Varghese, D.; Krishna, J.S.; Boominathan, T.; Rakeshkumar, R.; Dineshkumar, S.; Brahmananda Rao, C.V.S.; Sivaramakrishna, A. Recent advances in biodegradable polymers—Properties, applications and future prospects. Eur. Polym. J. 2023, 192, 112068. [Google Scholar] [CrossRef]
- Jafarinejad, S. Some Possible Process Configurations for Modern Wastewater Treatment Plants for Per- and Polyfluoroalkyl Substances (PFASs) Removal. Sustainability 2024, 16, 8109. [Google Scholar] [CrossRef]
- Adsorption Techniques. Available online: https://emis.vito.be/en/bat/tools-overview/sheets/adsorption-techniques (accessed on 10 October 2024).
- Jain, M.; Majumder, A.; Ghosal, P.S.; Gupta, A.K. A review on treatment of petroleum refinery and petrochemical plant wastewater: A special emphasis on constructed wetlands. J. Environ. Manag. 2020, 272, 111057. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, Y.; Wang, Z.; Ye, X. Fabrication of nanocomposites by collagen templated synthesis of layered double hydroxides assisted by an acrylic silane coupling agent. Appl. Surf. Sci. 2009, 255, 4497–4502. [Google Scholar] [CrossRef]
- Deng, D.; Liao, X.; Shi, B. Synthesis of Porous Carbon Fibers from Collagen Fiber. Chemsuschem 2008, 1, 298–301. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.M.; Sun, X.; Liao, X.; Shi, B. Adsorptive Recovery of Uranium from Nuclear Fuel Industrial Wastewater by Titanium Loaded Collagen Fiber. Sep. Sci. Eng. Chin. J. Chem. Eng. 2011, 19, 592–597. [Google Scholar] [CrossRef]
- Lieberman, M.; Sasaki, T. Iron(II) organizes a synthetic peptide into three-helix bundles. J. Am. Chem. Soc. 1991, 113, 1470–1471. [Google Scholar] [CrossRef]
- Koide, T.; Yuguchi, M.; Kawakita, M.; Konno, H. Metal-Assisted Stabilization and Probing of Collagenous Triple Helices. J. Am. Chem. Soc. 2002, 124, 9388–9389. [Google Scholar] [CrossRef]
- Luo, Z.; Zhang, X.; Fan, H.; Liu, Y.; Shi, B. Modification of Collagen for High Cr(III) Adsorption. JALCA 2009, 104, 149–155. [Google Scholar]
- Zhao, F.; Yang, S.; Xiao, X.; Chen, L.; Wang, Y.; Li, Y.; Tao, E. Bovine hide collagen/tannin extract composite: A revelation of the selective structure-activity relationship between phenolic hydroxyls and Cu(II) and study on adsorption properties. Colloids Surf. A Physicochem. Eng. Asp. 2024, 682, 132886. [Google Scholar] [CrossRef]
- Reyes-Ruiz, I.; Castañeda-Calzoncit, C.E.; Claudio Rizo, J.A.; Flores-Guía, T.E.; Cabrera-Munguía, D.A.; Cano-Salazar, L.F.; Becerra-Rodriguez, J.J. Evaluation of Collagen-Polyurethane-Chitosan Hydrogels for Lead Ions Removal from Water. Mediterr. J. Basic Appl. Sci. 2020, 4, 93–104. [Google Scholar]
- Claudio-Rizo, J.A.; Burciaga-Montemayor, N.G.; Cano-Salazar, L.F.; Flores-Guía, T.E.; Cabrera-Munguía, D.A.; Herrera-Guerrero, A.; Soriano-Corral, F. Novel Collagen-Chitosan Based Hydrogels Reinforced with Manganite as Potential Adsorbents of Pb2+ Ions. J. Polym. Environ. 2020, 28, 2864–2879. [Google Scholar] [CrossRef]
- Ye, X.; Lin, H.; Chi, R.; Guo, Z.; Lv, Y.; Lin, C.; Liu, Y.; Luo, W. Effectively remove p-arsanilic acid from water over amphiphilic amino modified collagen fiber. Chemosphere 2022, 288, 132542. [Google Scholar] [CrossRef]
- Kaur, S.; Jindal, R. Synthesis of interpenetrating network hydrogel from (gum copal alcohols-collagen)-co-poly(acrylamide) and acrylic acid: Isotherms and kinetics study for removal of methylene blue dye from aqueous solution. Mater. Chem. Phys. 2018, 220, 75–86. [Google Scholar] [CrossRef]
- Sitab, A.A.; Tujjohra, F.; Rashid, T.U.; Rahman, M.M. Thermally crosslinked electrospun nanofibrous mat from chrome-tanned solid wastes for cationic dye adsorption in wastewater treatment. Clean. Eng. Technol. 2023, 13, 100621. [Google Scholar] [CrossRef]
- Luo, W.; Chi, R.; Zeng, F.; Wu, Y.; Chen, Y.; Liu, S.; Lin, W.; Lin, H.; Ye, X.; Chen, J. Multilayer Structure Ammoniated Collagen Fibers for Fast Adsorption of Anionic Dyes. ACS Omega 2021, 6, 27070–27079. [Google Scholar] [CrossRef] [PubMed]
- Nakhjiri, M.T.; Marandi, G.B.; Kurdtabar, M. Adsorption of Methylene Blue, Brilliant Green and Rhodamine B from Aqueous Solution Using Collagen-g-p(AA-co-NVP)/Fe3O4@SiO2 Nanocomposite Hydrogel. J. Polym.Environ. 2019, 27, 581–599. [Google Scholar] [CrossRef]
- Kurdtabar, M.; Peyvand Kermani, Z.; Bagheri Marandi, G. Synthesis and characterization of collagen-based hydrogel nanocomposites for adsorption of Cd2+, Pb2+, methylene green and crystal violet. Iran Polym. J. 2015, 24, 791–803. [Google Scholar] [CrossRef]
- Qiang, T.; Zhu, R. Bio-templated synthesis of porous silica nano adsorbents to wastewater treatment inspired by a circular economy. Sci. Total Environ. 2022, 819, 152929. [Google Scholar] [CrossRef]
- Roy, C.; Chowdhury, D.; Sanfui, M.D.H.; Roy, J.S.D.; Mitra, M.; Dutta, A.; Chattopadhyay, P.K.; Singha, N.R. Solid waste collagen-associated fabrication of magnetic hematite nanoparticle@collagen nanobiocomposite for emission-adsorption of dyes. Int. J. Biol. Macromol. 2023, 242, 124774. [Google Scholar] [CrossRef]
- Liao, X.; Lu, Z.; Zhang, M.; Liu, X.; Shi, B. Adsorption of Cu(II) from aqueous solutions by tannins immobilized on collagen. J. Chem. Technol. Biotechnol. 2004, 79, 335–342. [Google Scholar] [CrossRef]
- Wang, R.; Liao, X.; Shi, B. Adsorption behaviors of Pt(II) and Pd(II) on collagen fiber immobilized bayberry tannin. Ind. Eng. Chem. Res. 2005, 44, 4221–4226. [Google Scholar] [CrossRef]
- Kaur, S.; Jindal, R. Exploring the heavy metal ion sequestration ability of gum copal-collagen hybrid based interpenetrating polymer network: Kinetics, isotherms, and biodegradation studies. SPE Polym. 2020, 1, 26–35. [Google Scholar] [CrossRef]
- Liao, X.; Zhang, M.; Shi, B. Collagen-Fiber-Immobilized Tannins and Their Adsorption of Au(III). Ind. Eng. Chem. Res. 2004, 43, 2222–2227. [Google Scholar] [CrossRef]
- Huang, X.; Liao, X.; Shi, B. Hg(II) removal from aqueous solution by bayberry tannin-immobilized collagen fiber. J. Hazard. Mater. 2009, 170, 1141–1148. [Google Scholar] [CrossRef] [PubMed]
- Jing, L.; Ding, Q.; Li, X.; Lou, J.; Liu, Z.; Jiang, Y.; Han, W.; Cheng, Z. Bifunctional collagen fiber/carbon quantum dot fluorescent adsorbent for efficient adsorption and detection of Pb2+. Sci. Total Environ. 2023, 871, 161989. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.U.; Kim, K.H.; Chang, Y.Y.; Lee, S.M.; Yang, J.K. Heavy metal removal from aqueous solution by tannins immobilized on collagen. Desalin. Water Treat. 2012, 48, 1–8. [Google Scholar] [CrossRef]
- Liao, X.P.; Tang, W.; Zhou, R.Q.; Shi, B. Adsorption of metal anions of vanadium(V) and chromium(VI) on Zr(IV)-impregnated collagen fiber. Adsorption 2008, 14, 55–64. [Google Scholar] [CrossRef]
- Qiang, T.; Bu, Q.; Ren, L.; Wang, X. Adsorption Behaviors of Cr(III) on Carboxylated Collagen Fiber. J. Appl. Polym. Sci. 2014, 131, 40285. [Google Scholar] [CrossRef]
- Shourije, S.M.J.S.; Dehghan, P.; Bahrololoom, M.E.; Cobley, A.J.; Vitry, V.; Azar, G.T.P.; Kamyab, H.; Mesbah, M. Using fish scales as a new biosorbent for adsorption of nickel and copper ions from wastewater and investigating the effects of electric and magnetic fields on the adsorption process. Chemosphere 2023, 317, 137829. [Google Scholar] [CrossRef] [PubMed]
- Sreeram, K.J.; Saravanabhavan, S.; Rao, J.R.; Nair, B.U. Use of Chromium-Collagen Wastes for the Removal of Tannins from Wastewaters. Ind. Eng. Chem. Res. 2004, 43, 5310–5317. [Google Scholar] [CrossRef]
- Sun, X.; Huang, X.; Liao, X.P.; Shi, B. Adsorptive removal of Cu(II) from aqueous solutions using collagen-tannin resin. J. Hazard. Mater. 2011, 186, 1058–1063. [Google Scholar] [CrossRef]
- Wang, J.; Wei, L.; Ma, Y.; Li, K.; Li, M.; Yu, Y.; Wang, L.; Qiu, H. Collagen/cellulose hydrogel beads reconstituted from ionic liquid solution for Cu(II) adsorption. Carbohydr. Polym. 2013, 98, 736–743. [Google Scholar] [CrossRef]
- Jing, L.; Yang, S.; Li, X.; Jiang, Y.; Lou, J.; Liu, Z.; Ding, Q.; Han, W. Effective adsorption and sensitive detection of Cr6+ by degradable collagen-based porous fluorescent aerogel. Ind. Crops Prod. 2022, 182, 114882. [Google Scholar] [CrossRef]
- Ye, X.; Zheng, Z.; Zhu, J.; Chen, J.; Zhou, J.; Shi, B. ZIF-7-NH2 functionalized collagen fibers for effective and selective mercury ion capture. Sep. Purif. Technol. 2025, 353, 128354. [Google Scholar] [CrossRef]
- Zhao, F.; Yang, S.; Wang, Y.; Peng, C.; Chen, L.; Li, Y.; Tao, E. Synthesis of novel collagen-based aerogel with slit-shaped pore structure: Study on its adsorption mechanism on copper ions. Sep. Purif. Technol. 2025, 353, 128456. [Google Scholar] [CrossRef]
- Liu, F.; Wang, Z.; Li, G. Adsorption of Ag+ by persimmon tannins immobilized on collagen fiber. Desalin. Water Treat. 2014, 52, 7172–7179. [Google Scholar] [CrossRef]
- Huang, X.; Jiao, L.; Liao, X.; Shi, B. Adsorptive removal of As(III) from aqueous solution by Zr(IV)-loaded collagen fiber. Ind. Eng. Chem. Res. 2008, 47, 5623–5628. [Google Scholar] [CrossRef]
- Oliveira, L.; Goncalves, M.; Oliveira, D.; Guerreiro, M.C.; Guilherme, L.; Dallago, R.M. Solid waste from leather industry as adsorbent of organic dyes in aqueous medium. J. Hazard. Mater. 2007, 141, 344–347. [Google Scholar] [CrossRef] [PubMed]
- Ooi, J.; Lee, L.Y.; Hiew, B.Y.Z.; Thangalazhy-Gopakumar, S.; Lim, S.S.; Gan, S. Assessment of fish scales waste as a low cost and eco-friendly adsorbent for removal of an azo dye: Equilibrium, kinetic and thermodynamic studies. Bioresour. Technol. 2017, 245A, 656–664. [Google Scholar] [CrossRef]
- Pinheiro, N.S.C.; Perez-Lopez, O.W.; Gutterres, M. Solid leather wastes as adsorbents for cationic and anionic dye removal. Environ. Technol. 2020, 2, 1–12. [Google Scholar]
- Qiang, T.; Luo, M.Q.; Bu, Q.; Wang, X.C. The preparation of aminated collagen fiber and its study on adsorption of dyes. Adv. Mater. Res. 2012, 347–353, 1259–1263. [Google Scholar] [CrossRef]
- Vieira, E.F.S.; Cestari, A.R.; Carvalho, W.A.; dos Oliveira, S.C.; Chagas, R.A. The use of freshwater fish scale of the species Leporinus elongatus as adsorbent for anionic dyes. J. Therm. Anal. Calorim. 2012, 109, 1407–1412. [Google Scholar] [CrossRef]
- Chowdhury, S.; Das Saha, P.; Ghosh, U.K. Fish (Labeo rohita) scales as potential low-cost biosorbent for removal of malachite green from aqueous solutions. Biorem. J. 2012, 16, 235–242. [Google Scholar] [CrossRef]
- Gu, Y.C.; Liao, X.P.; Huang, Y.J.; Shi, B. Adsorption of anionic dyes on Fe(III)-loaded collagen fibre from aqueous solution. Int. J. Environ. Pollut. 2008, 34, 111–121. [Google Scholar] [CrossRef]
- Qiang, T.; Luo, M.; Bu, Q.; Wang, X. Adsorption of an acid dye on hyperbranched aminated collagen fibers. Chem. Eng. J. 2012, 197, 343–349. [Google Scholar] [CrossRef]
- Wang, X.; Bu, Q.; Qiang, T.; Min, L. Study on the adsorption behavior of acid dyes on collagen fiber. Mater. Sci. Forum 2013, 744, 759–767. [Google Scholar] [CrossRef]
- Han, Y.-X.; Li, J.; He, B.; Li, L. Preparation and characterization of a novel ACFTpPa-1 composite for dye adsorption. J. Eng. Fibers Fabr. 2021, 16, 3. [Google Scholar]
- Tang, Y.; Zhao, J.; Zhang, Y.; Zhou, J.; Shi, B. Conversion of tannery solid waste to an adsorbent for high-efficiency dye removal from tannery wastewater: A road to circular utilization. Chemosphere 2021, 263, 127987. [Google Scholar] [CrossRef]
- Azadi, S.; Esmkhani, M.; Javanshir, S. New collagen-based cryogel as bio-sorbent materials for Rhodamine B removal from aqueous environments. J. Sol Gel Sci. Technol. 2022, 103, 405–415. [Google Scholar] [CrossRef]
- Chowdhury, S.; Showrov, S.I.; Santo, H.R.; Uddin, E. A breakthrough approach with collagen-graphene oxide nanocomposite: Sustainable solution for dye wastewater. In Proceedings of the 7th International Conference on Civil Engineering for Sustainable Development, Khulna, Bangladesh, 7–9 February 2024. [Google Scholar]
- Karmakar, M.; Mahapatra, M.; Dutta, A.; Chattopadhyay, P.K.; Singha, N.R. Fabrication of semisynthetic collagenic materials for mere/synergistic adsorption: A model approach of determining dye allocation by systematic characterization and optimization. Int. J. Biol. Macromol. 2017, 102, 438–456. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Liu, J.; Qin, Z.; Wang, L.; Li, L.; Tang, K.; Pei, Y. Black wattle tannin immobilized mesostructured collagen as a promising adsorbent for cationic organic dyes (methylene blue) removal in batch and continuous fixed-bed systems. J. Appl. Polym. Sci. 2022, 139, e52452. [Google Scholar] [CrossRef]
- Geng, K.; He, T.; Liu, R.; Dalapati, S.; Tan, K.T.; Li, Z.; Tao, S.; Gong, Y.; Jiang, Q.; Jiang, D. Covalent Organic Frameworks: Design, Synthesis, and Functions. Chem. Rev. 2020, 120, 8814–8933. [Google Scholar] [CrossRef]
- Du, W.; Han, X.; Li, Z.; Li, Y.; Li, L.; Wang, K. Oil sorption behaviors of porous polydimethylsiloxane modified collagen fiber matrix. J. Appl. Polym. Sci. 2015, 132, 42727. [Google Scholar] [CrossRef]
- Du, W.; Dai, G.; Wang, B.; Li, Z.; Li, L. Biodegradable porous organosilicone modified collagen fiber matrix: Synthesis and high oil absorbency. J. Appl. Polym. Sci. 2018, 135, 46264. [Google Scholar] [CrossRef]
- Sharma, H.; Kaith, B.S.; Kumar, R.; Mehra, R.; Bhatti, M.S. Fabrication of cellulose-collagen based biosorbent as eco-friendly scavengers for uranyl ions. Int. J. Biol. Macromol. 2024, 266, 131400. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, J.; Guo, J.; Liao, X.; Shi, B. Irradiation-stable hydrous titanium oxide-immobilized collagen fibers for uranium removal from radioactive wastewater. J. Environ. Manag. 2021, 283, 112001. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Yu, C.; Zhu, W.; He, G.; Wei, Y.; Zhou, J. Hydrous titanium oxide and bayberry tannin co-immobilized nano collagen fibrils for uranium extraction from seawater and recovery from nuclear wastewater. Chemosphere 2022, 286, 131626. [Google Scholar] [CrossRef]
- Liao, X.; Lu, Z.; Du, X.; Liu, X.; Shi, B. Collagen Fiber Immobilized Myrica rubra Tannin and Its Adsorption to UO2 2+. Environ. Sci. Technol. 2004, 38, 324–328. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, J.; Luo, W.; Liao, X.; Shi, B. In situ chemical oxidation-grafted amidoxime-based collagen fibers for rapid uranium extraction from radioactive wastewater. Sep. Purif. Technol. 2023, 307, 122826. [Google Scholar] [CrossRef]
- Yang, L.; Zeng, X.; Tang, J.H.; Sun, H.Y.; Liu, J.T.; Yan-Ling Guo, Y.L.; Wei-Zhen Liu, W.Z.; Feng, M.L.; Huang, X.Y. Rapid and selective uranium adsorption by a low-cost, eco-friendly, and in-situ prepared nano-ZnS/alkali-activated collagen fiber composite. Sep. Purif. Technol. 2024, 333, 125856. [Google Scholar] [CrossRef]
- Peng, L.; Zhang, X.; Guo, L.; Li, J.; Zhang, W.; Shi, B. Rapid removal and easy separation recovery of Cs+ and Sr2+ by zirconium molybdopyrophosphate-functionalized collagen fibers. J. Clean. Prod. 2023, 414, 137653. [Google Scholar] [CrossRef]
- Liao, H.; Yu, J.; Zhu, W.; Kuang, M.; Duan, T.; Zhang, Y.; Lin, X.; Luo, X.; Zhou, J. Nano-zero-valent Fe/Ni particles loaded on collagen fibers immobilized by bayberry tannin as an effective reductant for uranyl in aqueous solutions. Appl. Surf. Sci. 2020, 507, 145075. [Google Scholar] [CrossRef]
- Caldera-Villalobos, M.; Cabrera-Munguía, D.A.; Flores-Guía, T.E.; Viramontes-Gamboa, G.; Vargas-Correa, J.A.; Cano-Salazar, L.F.; Claudio-Rizo, J.A. Removal of water pollutants using composite hydrogels comprised of collagen, guar gum, and metal-organic frameworks. J. Polym. Res. 2021, 28, 395. [Google Scholar] [CrossRef]
- Peng, L.; Guo, L.; Li, J.; Zhang, W.; Shi, B.; Liao, X. Rapid and highly selective removal of cesium by Prussian blue analog anchored on porous collagen fibers. Sep. Purif. Technol. 2023, 307, 122858. [Google Scholar] [CrossRef]
- Zeng, Y.; Liao, X.; He, Q.; Shi, B. Recovery of Th(IV) from aqueous solution by reassembled collagen-tannin fiber adsorbent. J. Radioanal. Nucl. Chem. 2009, 280, 91–98. [Google Scholar] [CrossRef]
- Liao, X.P.; Ding, Y.; Wang, B.; Shi, B. Adsorption Behavior of Phosphate on Metal-Ions-Loaded Collagen Fiber. Ind. Eng. Chem. Res. 2006, 45, 3896–3901. [Google Scholar] [CrossRef]
- Liao, X.-P.; Shi, B. Adsorption of fluoride on zirconium(IV)-impregnated collagen fiber. Environ. Sci. Technol. 2005, 39, 4628–4632. [Google Scholar] [CrossRef]
- Fiol, N.; Villaescusa, I.; Martínez, M.; Miralles, N.; Poch, J.; Serarols, J. Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste. Sep. Purif. Technol. 2006, 50, 132–140. [Google Scholar] [CrossRef]
- Anandkumar, J.; Mandal, B. Removal of Cr (VI) from aqueous solution using Bael fruit (Aegle marmelos Correa) shell as an adsorbent. J. Hazard. Mater. 2009, 168, 633–640. [Google Scholar] [CrossRef]
- Park, J.-H.; Ok, Y.S.; Kim, S.-H.; Cho, J.-S.; Heo, J.-S.; Delaune, R.D.; Seo, D.-C. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere 2016, 142, 77–83. [Google Scholar] [CrossRef]
- Yap, M.W.; Mubarak, N.M.; Sahu, J.N.; Abdullah, E.C. Microwave induced synthesis of magnetic biochar from agricultural biomass for removal of lead and cadmium from wastewater. J. Ind. Eng. Chem. 2017, 45, 287–295. [Google Scholar] [CrossRef]
- El-Shafie, A.S.; Rahman, E.; GadelHak, Y.; Mahmoud, R.; El-Azazy, M. Techno-economic assessment of waste mandarin biochar as a green adsorbent for binary dye wastewater effluents of methylene blue and basic fuchsin: Lab- and large-scale investigations. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024, 306, 123621. [Google Scholar] [CrossRef]
- Bastami, T.R.; Khaknahad, S.; Malekshahi, M. Sonochemical versus reverse-precipitation synthesis of CuxO/Fe2O3/MoC nano-hybrid: Removal of reactive dyes and evaluation of smartphone for colorimetric detection of organic dyes in water media. Environ. Sci. Pollut. Res. 2020, 27, 9364–9381. [Google Scholar] [CrossRef]
- Hu, H.; Gao, M.; Wang, T.; Jiang, L. Efficient uranium adsorption and mineralization recycle by nano-MgO biochar with super-hydrophilic surface. J. Environ. Chem. Eng. 2023, 11, 110542. [Google Scholar] [CrossRef]
- Radetic, M.; Ilic, V.; Radojevic, D.; Miladinovic, R.; Jocic, D.; Jovancic, P. Efficiency of recycled wool-based nonwoven material for the removal of oils from water. Chemosphere 2008, 70, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Wintgens, T.; Melin, T. Removing endocrine-disrupting compounds from wastewater. Membr. Technol. 2001, 2001, 11–12. [Google Scholar] [CrossRef]
- Li, J.; Zhu, Y.; Zhou, Y.; Zhu, J.; Chen, G. Fe3+-modified polyamide membrane with a porous network structure: Rapid permeation and efficient interception of trace organic compounds. Sep. Purif. Technol. 2025, 353, 128294. [Google Scholar] [CrossRef]
- Sadare, O.O.; Oke, D.; Olawuni, O.A.; Olayiwola, I.A.; Moothi, K. Modelling and optimization of membrane process for removal of biologics (pathogens) from water and wastewater: Current perspectives and challenges. Heliyon 2024, 10, e29864. [Google Scholar] [CrossRef]
- Oluwoye, I.; Tanaka, S.; Okuda, K. Pilot-scale performance of gravity-driven ultra-high flux fabric membrane systems for removing small-sized microplastics in wastewater treatment plant effluents. J. Environ. Manag. 2024, 363, 121438. [Google Scholar] [CrossRef]
- Hube, S.; Veronelli, S.; Li, T.; Burkhardt, M.; Brynjolfsson, S.; Wu, B. Microplastics affect membrane biofouling and microbial communities during gravity-driven membrane filtration of primary wastewater. Chemosphere 2024, 353, 141650. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Wang, H.; Chi, M.; Matsuyama, H.; Guo, Y.; Li, Y.; Liu, R.; Wouters, C.; Chen, Y.; et al. One-pot fabrication of highly permeable P84/UiO-66-NH2-PEI membrane for the efficient removal of heavy metals from wastewater. Sep. Purif. Technol. 2025, 354, 129022. [Google Scholar] [CrossRef]
- Padrón-Páez, J.I.; De-León Almaraz, S.; Román-Martínez, A. Sustainable wastewater treatment plants design through multiobjective optimization. Comput. Chem. Eng. 2020, 140, 106850. [Google Scholar] [CrossRef]
- Ye, X.; Zheng, Z.; Chi, R.; Liu, J.; Chen, J.; Luo, W. Waste for Waste: Interface-Intensified Durable Superhydrophilic−Superoleophobic Collagen Fiber Membrane for Efficient Separation of Cationic Surfactant-Stabilized Oil-in-Water Emulsions. Langmuir 2023, 39, 18815–18824. [Google Scholar] [CrossRef]
- Ye, X.; Lin, X.; Chi, R.; Liu, J.; Huang, J.; Chen, J. Aminated superhydrophilic/underwater superoleophobic collagen fiber membrane for efficient separation of anionic surfactant-stabilized oil-in-water emulsions. Process Saf. Environ. Prot. 2024, 183, 1186–1197. [Google Scholar] [CrossRef]
- Ye, X.; Huang, R.; Zheng, Z.; Juan Liu, J.; Chen, J.; Lv, Y. Anti-abrasion collagen fiber-based membrane functionalized by UiO-66-NH2 with ultra-high efficiency and stability for oil-in-water emulsions separation. Chin. J. Chem. Eng. 2024, 66, 285–297. [Google Scholar] [CrossRef]
- Obotey Ezugbe, E.; Rathilal, S. Membrane Technologies in Wastewater Treatment: A Review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef]
- Alomar, T.; Hameed, B.H.; Al-Ghouti, M.A.; Almomani, F.A.; Han, D.S. A review on recent developments and future prospects in the treatment of oily petroleum refinery wastewater by adsorption. J. Water Process Eng. 2024, 64, 105616. [Google Scholar] [CrossRef]
- Singha, W.J.; Deka, H. Ecological and human health risk associated with heavy metals (HMs) contaminant sourced from petroleum refinery oily sludge. J. Hazard. Mater. 2024, 476, 135077. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Hao, B.; Wang, Y.; Wang, Y.; Xiao, H.; Li, H.; Huang, X.; Shi, B. Insights into Regional Wetting Behaviors of Amphiphilic Collagen for Dual Separation of Emulsions. ACS Appl. Mater. Interfaces 2021, 13, 18209–18217. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Xiao, H.; Wang, Y.; Ke, L.; Luo, W.; Huang, X.; Shi, B. Efficient separation of viscous emulsion through amphiprotic collagen nanofibers-based membrane. J. Membr. Sci. 2019, 588, 117209. [Google Scholar] [CrossRef]
- Xiao, H.; Cui, Y.; Wang, Y.; Li, H.; Chen, G.; Huang, X.; Shi, B. Synergistic combination of the capillary effect of collagen fibers and size-sieving merits of metal–organic frameworks for emulsion separation with high flux. Ind. Eng. Chem. Res. 2020, 59, 14925–14934. [Google Scholar] [CrossRef]
- Li, H.; Zheng, W.; Xiao, H.; Hao, B.; Wang, Y.; Huang, X.; Shi, B. Collagen fiber membrane-derived chemically and mechanically durable superhydrophobic membrane for high-performance emulsion separation. J. Leather Sci. Eng. 2021, 3, 20. [Google Scholar] [CrossRef]
- Cao, Y.; Xiao, H.; Wan Zheng, W.; Wang, Y.; Wang, Y.; Huang, X.; Shi, B. Green synthesis of environmentally benign collagen fibers-derived hierarchically structured amphiphilic composite fibers for high-flux dual separation of emulsion. J. Environ. Chem. Eng. 2022, 10, 107067. [Google Scholar] [CrossRef]
- Lu, X.; Shen, L.; Chen, C.; Yu, W.; Wang, B.; Kong, N.; Zeng, Q.; Chen, S.; Huang, X.; Wang, Y.; et al. Advance of self-cleaning separation membranes for oil-containing wastewater treatment. Environ. Func. Mater. 2024, in press. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, Y.; Hao, B.; Xiao, H.; Huang, X.; Shi, B. Water-oil dual-channels enabled exceptional anti-fouling performances for separation of emulsified oil pollutant. J. Hazard. Mater. 2023, 449, 131012. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Zheng, W.; Pu, H.; Xiong, J.; Liu, H.; Shi, Y.; Huang, X. Intertwisted superhydrophilic and superhydrophobic collagen fibers enabled anti-fouling high-performance separation of emulsion wastewater. J. Hazard. Mater. 2024, 473, 134653. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Wang, Y.; Ke, L.; Cui, Y.; Luo, W.; Wang, X.; Huang, X.; Shi, B. Competitive adsorption for simultaneous removal of emulsified water and surfactants from mixed surfactant-stabilized emulsions with high flux. J. Mater. Chem. A 2018, 6, 14058–14064. [Google Scholar] [CrossRef]
- Chen, G.; Wang, Y.; Wang, Y.; Xiao, H.; Huang, X.; Shi, B. Collagen fibers with tuned wetting properties for dual separation of oil-in-water and water-in-oil emulsion. J. Mater. Chem. A 2020, 8, 24388–24392. [Google Scholar] [CrossRef]
- Xiao, P.; Li, X.; Li, L.; Liu, F.; Wang, Y.; Li, J. Bio-functional collagen/casein/chitosan scaffolds regulated porous TFC membrane for acid recovery. Desalination 2023, 558, 116627. [Google Scholar] [CrossRef]
- Matebese, F.; Mosai, A.K.; Tutu, H.; Tshentu, Z.R. Mining wastewater treatment technologies and resource recovery techniques: A review. Heliyon 2024, 10, e24730. [Google Scholar] [CrossRef]
- Rawat, A.; Srivastava, A.; Bhatnagar, A.; Gupta, A.K. Technological advancements for the treatment of steel industry wastewater: Effluent management and sustainable treatment strategies. J. Clean. Prod. 2023, 383, 135382. [Google Scholar] [CrossRef]
- Dai, G.H.; Zhang, Z.; Du, W.; Li, Z.; Gao, W.; Li, L. Conversion of skin collagen fibrous material waste to an oil sorbent with pH-responsive switchable wettability for high-efficiency separation of oil/water emulsions. J. Clean. Prod. 2019, 226, 18–27. [Google Scholar] [CrossRef]
- Thanikaivelan, P.; Narayanan, N.T.; Pradhan, B.K.; Ajayan, P.M. Collagen based magnetic nanocomposites for oil removal applications. Sci. Rep. 2012, 2, 230. [Google Scholar] [CrossRef]
- Chemical Oxidation Techniques. Available online: https://emis.vito.be/en/bat/tools-overview/sheets/chemical-oxidation-techniques (accessed on 10 October 2024).
- Iyyappan, J.; Gaddala, B.; Gnanasekaran, R.; Gopinath, M.; Yuvaraj, D.; Kumar, V. Critical review on wastewater treatment using photo catalytic advanced oxidation process: Role of photocatalytic materials, reactor design and kinetics. CSCEE 2024, 9, 100599. [Google Scholar] [CrossRef]
- Assanvo, E.F.; Nagaraj, S.; Boa, D.; Thanikaivelan, P. Hybrid collagen–cellulose–Fe3O4@TiO2 magnetic bio-sponges derived from animal skin waste and Kenaf fibers for wastewater remediation. Nat. Sci. Rep. 2023, 13, 13365. [Google Scholar] [CrossRef] [PubMed]
- Deng, D.; Tang, R.; Liao, X.; Shi, B. Using collagen fiber as a template to synthesize hierarchical mesoporous alumina fiber. Langmuir 2008, 24, 368–370. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Liao, X.P.; Liu, X.; Shi, B. Collagen fiber immobilized Fe(III): A novel catalyst for photo-assisted degradation of dyes. Chem. Commun. 2005, 47, 5882–5884. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Tang, R.; He, Q.; Liao, X.; Shi, B. Fe(III)-loaded collagen fiber as a heterogeneous catalyst for the photo-assisted decomposition of Malachite Green. J. Hazard. Mater. 2010, 174, 687–693. [Google Scholar] [CrossRef]
- Nagaraj, S.; Cheirmadurai, K.; Thanikaivelan, P. Visible-light active collagen-TiO2 nanobio-sponge for water remediation: A sustainable approach. Clean. Mater. 2021, 1, 100011. [Google Scholar] [CrossRef]
- Zhou, H.; Zhou, J.; Wang, T.; Zeng, J.; Liu, L.; Jian, J.; Zhou, Z.; Zeng, L.; Liu, Q.; Liu, G. In-situ preparation of silver salts/collagen fiber hybrid composites and their photocatalytic and antibacterial activities. J. Hazard. Mater. 2018, 359, 274–280. [Google Scholar] [CrossRef]
- Liu, X.; Tang, R.; He, Q.; Liao, X.; Shi, B. Fe(III)-Immobilized Collagen Fiber: A Renewable Heterogeneous Catalyst for the Photoassisted Decomposition of Orange II. Ind. Eng. Chem. Res. 2009, 48, 1458–1463. [Google Scholar] [CrossRef]
- Alatawi, N.M.; Ben Saad, L.; Soltane, L.; Moulahi, A.; Mjejri, I.; Sediri, F. Enhanced solar photocatalytic performance of Cu-doped nanosized ZnO. Polyhedron 2021, 197, 115022. [Google Scholar] [CrossRef]
- Singh, A.; Singh, D.; Ahmed, B.; Ojha, A.K. Sun/UV-light driven photocatalytic degradation of rhodamine B dye by Zn doped CdS nanostructures as photocatalyst. Mater. Chem. Phys. 2022, 277, 125531. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, N.; Wu, J.; Liu, J.; Wang, H.; Pang, D.; Zheng, J. Constructing p-n heterojunction in CoO@TiO2 photocatalytic material to enhance the performance of catalytic degradation of Rhodamine, B. Chem. Phys. Lett. 2024, 855, 141568. [Google Scholar] [CrossRef]
- Mahmoodi, V.; Ahmadpour, A.; Bastami, T.R.; Mousavian, M.T.H. Facile Synthesis of BiOI Nanoparticles at Room Temperature and Evaluation of their Photoactivity Under Sunlight Irradiation. Photochem. Photobiol. 2018, 94, 4–16. [Google Scholar] [CrossRef]
- Wang, K.; Yan, D.; Chen, X.; Xu, Z.; Cao, W.; Li, H. New insight to the enriched microorganisms driven by pollutant concentrations and types for industrial and domestic wastewater via distinguishing the municipal wastewater treatment plants. Environ. Pollut. 2024, 361, 124789. [Google Scholar] [CrossRef]
- Kaur, B.; Choudhary, R.; Sharma, G.; Kaur Brar, L. Sustainable and effective microorganisms method for wastewater treatment. Desalin. Water Treat. 2024, 319, 100419. [Google Scholar] [CrossRef]
- Rendón-Castrillón, L.; Ramírez-Carmona, M.; Ocampo-López, C.; González-López, F.; Cuartas-Uribe, B.; Mendoza-Roca, J.A. Efficient bioremediation of indigo-dye contaminated textile wastewater using native microorganisms and combined bioaugmentation-biostimulation techniques. Chemosphere 2024, 353, 141538. [Google Scholar] [CrossRef] [PubMed]
- Zhan, J.; Xu, S.; Zhu, Y.; Han, Y.; Li, L.; Liu, J.; Guo, X. Potential pathogenic microorganisms in rural wastewater treatment process: Succession characteristics, concentration variation, source exploration, and risk assessment. Water Res. 2024, 254, 121359. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Kumar Verma, A.; Patel, R. Collagen extraction and recent biological activities of collagen peptides derived from sea-food waste: A review. Sustain. Chem. Pharm. 2020, 18, 100315. [Google Scholar] [CrossRef]
- Cavalcante Loureiro, K.; Carvalho Barbosa, T.; Nery, M.; Vinicius Chaud, M.; Ferreira da Silva, C.; Nalone Andrade, L.; Bani Corrêa, C.; Jaguer, A.; Ferreira Padilha, F.; Cordeiro Cardoso, J.; et al. Antibacterial activity of chitosan/collagen membranes containing red propolis extract. Pharmazie 2020, 75, 75–81. [Google Scholar]
- Xu, Z.; Chang, J.; Zhang, P.; Guan, X.; Chen, Y.; Fan, H. Collagen modified with epoxidized safrole for improving antibacterial activity. RSC Adv. 2017, 7, 50300. [Google Scholar] [CrossRef]
- Zhou, T.; Sui, B.; Mo, X.; Sun, J. Multifunctional and biomimetic fish collagen/bioactive glass nanofibers: Fabrication, antibacterial activity and inducing skin regeneration in vitro and in vivo. Int. J. Nanomed. 2017, 12, 3495–3507. [Google Scholar] [CrossRef]
- Sun, Z.; Fan, C.; Tang, X.; Zhao, J.; Song, Y.; Shao, Z.; Xu, L. Characterization and antibacterial properties of porous fibers containing silver ions. Appl. Surf. Sci. 2016, 387, 828–838. [Google Scholar] [CrossRef]
- Subbiah, N.; Palanisamy, T. Collagen-Supported Amino-Functionalized Ag@SiO2 Core−Shell Nanoparticles for Visible-Light-Driven Water Remediation. ACS Appl. Nano Mater. 2022, 5, 14408–14424. [Google Scholar] [CrossRef]
- Zou, L.; Li, Z.; Sun, T.; Zhu, X.; Li, J.; Cui, Y.; Zhao, B.; Zhang, Q.; Song, Y. Inactivating microorganisms in water by using a novel Ag/CuS/carbon cloth composite for photo-electrocatalytic performance. Chem. Phys. Impact 2024, 8, 100426. [Google Scholar] [CrossRef]
- Zhang, M.; Sun, T.; Wang, X.Y.; Xue, B. Photo-crosslinked composite hydrogels with silver-deposited polymeric carbon nitride for boosting antibacterial activity. Colloids Surf. A Physicochem. Eng. Asp. 2024, 680, 132668. [Google Scholar] [CrossRef]
- Yu, R.; Wang, H.; Wang, R.; Zhao, P.; Chen, Y.; Liu, G.; Liao, X. Polyphenol modified natural collagen fibrous network towards sustainable and antibacterial microfiltration membrane for efficient water disinfection. Water Res. 2022, 218, 118469. [Google Scholar] [CrossRef]
- Truchado, P.; Gil, M.I.; Lopez, C.; Garre, A.; Lopez-Aragon, R.F.; Bohme, K.; Allende, A. New standards at European Union level on water reuse for agricultural irrigation: Are the Spanish wastewater treatment plants ready to produce and distribute reclaimed water within the minimum quality requirements? Int. J. Food Microbiol. 2021, 356, 109352. [Google Scholar] [CrossRef]
- Khosravi, Z.; Kharaziha, M.; Goli, R.; Karimzadeh, F. Antibacterial adhesive based on oxidized tannic acid-chitosan for rapid hemostasis. Carbohydr. Polym. 2024, 333, 121973. [Google Scholar] [CrossRef]
- He, L.; Lan, W.; Cen, L.; Chen, S.; Liu, S.; Liu, Y.; Ao, X.; Yang, Y. Improving catalase stability by its immobilization on grass carp (Ctenopharyngodon idella) scale collagen self-assembly films. Mater. Sci. Eng. C 2019, 105, 110024. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Lan, W.; Zhao, Y.; Chen, S.; Liu, S.; Cen, L.; Cao, S.; Dong, L.; Jin, R.; Liu, Y. Characterization of biocompatible pig skin collagen and application of collagen-based films for enzyme immobilization. RSC Adv. 2020, 10, 7170. [Google Scholar] [CrossRef]
- Lim, J.; Mohamad, Z. Enzymes immobilized polymeric supports for wastewater treatment application: A short review. Mater. Today Proc. 2022, 65, 2946–2952. [Google Scholar] [CrossRef]
- Kaushal, J.; Mehandia, S.; Singh, G.; Raina, A.; Arya, S.K. Catalase enzyme: Application in bioremediation and food industry. Biocatal. Agric. Biotechnol. 2018, 16, 192–199. [Google Scholar] [CrossRef]
- Abdalbagemohammedabdalsadeg, S.; Xiao, B.L.; Ma, X.X.; Li, Y.Y.; Wei, J.S.; Moosavi-Movahedi, A.A.; Yousefi, R.; Hong, J. Catalase immobilization: Current knowledge, key insights, applications, and future prospects—A review. Int. J. Biol. Macromol. 2024, 276, 133941. [Google Scholar] [CrossRef] [PubMed]
- Gan, J.S.; Ashraf, S.S.; Muhammad Bilal, M.; Iqbal, H.M.N. Biodegradation of environmental pollutants using catalase-based biocatalytic systems. Environ. Res. 2022, 214, 113914. [Google Scholar] [CrossRef] [PubMed]
- Song, N.; Chen, S.; Huang, X.; Liao, X.; Shi, B. Immobilization of catalase by using Zr(IV)-modified collagen fiber as the supporting matrix. Process Biochem. 2011, 46, 2187–2193. [Google Scholar] [CrossRef]
- Bae, H.; Choi, M.; Lee, C.; Chung, Y.C.; Yo, Y.J.; Lee, S. Enrichment of ANAMMOX bacteria from conventional activated sludge entrapped in poly(vinyl alcohol)/sodium alginate gel. Chem. Eng. J. 2015, 28, 531–540. [Google Scholar] [CrossRef]
- Quan, L.M.; Khanh, D.P.; Hira, D.; Fujii, T.; Furukawa, K. Reject water treatment by improvement of whole cell anammox entrapment using polyvinyl alcohol/alginate gel. Biodegradation 2011, 22, 1155–1167. [Google Scholar] [CrossRef]
- Ye, X.; Liu, J.; Chen, X.; Chen, D.; Qian, Z.; Chen, J.; Lin, C. Effective uranium extraction from seawater through immobilization of conjugated microporous polymers on collagen fiber membrane. Chem. Eng. Sci. 2024, 295, 120160. [Google Scholar] [CrossRef]
Filtration Material/ Membrane | Targeted Pollutant | Separation Efficiency % | Filtrate Flux L·m−2·h−1 * | Reference | |
---|---|---|---|---|---|
1. | Amphiphilic composite fibres—tannic acid onto collagen fibres (ACFs) | Heptane/Water Kerosene/Water Dodecane/Water Octane/Water (SDBS) Water/Heptane (Span80) Water/Kerosene (Span80) Water/Dodecane (Span80) Water/Octane (Span80) | >99.99 | 1911 (W) 1745 (W) 1822 (W) 1720 (W) 2166 (O) 2471 (O) 1936 (O) 2408 (O) | [117] |
2. | Collagen(I) Fibres (CF) | n-Dodecane/Water Kerosene/Water Petroleum ether/Water Water/n-Dodecane (Span80) Water/Kerosene (Span80) Water/Petroleum ether (Span80) | >99.99 99.987 99.989 >99.99 | 257.3 (W) 313.4 (W) 262.4 (W) 2929.9 (O) 2738.5 (O) 3337.6 (O) | [113] |
3. | Zr4+ supported on Collagen(I) fibres | Dodecane/Water Olive oil/Water Pump oil/Water Water/Dodecane Water/Kerosene Water/Petroleum ether | >99.99 | 3031 (W) 2407.6 (W) 2598.7 (W) 2331.2 (O) 2751.6 (O) 2216.6 (O) | [122] |
4. | CFs-PPFs (PPF—polypropylene fibres, dual-channels) Simple collagen fibres | Dodecane/Water Dodecane/Water | >99 99.4 | 2844 (W) 434 (W) | [119] |
5. | SCFs-DC (superwetting collagen fibres with water-oil dual-channels) Simple collagen fibres | Dodecane/Water Kerosene/Water Hexadecane/Water Octane/Water Dodecane/Water | 98.99 99.10 99.04 96.22 99.45 | 666 (W) 587 (W) 487 (W) 796 (W) 477 (W) | [120] |
6. | CFM-PMDA-TiO2 (CFM—collagen fibre membrane; PMDA—pyromellitic dianhydride) | Dodecane/Water (CTAB) Heptane/Water (CTAB) Octane/Water Dodecane/Water (CPB) | 98.35 98.70 99.86 97.28 | 600 (W) 900 (W) 1436.40 (W) 1100 (W) | [107] |
7. | CFM-PEI-TiO2 | Dodecane/Water Hexane/Water (SDS) Dodecane/Water (SDBS) Hexane/Water (SDBS) Heptane/Water (SDS) Heptane/Water (SDBS) | 99.93 98.79 99.83 99.73 99.94 99.68 | 988.90 (W) 880.75 (W) 1351.92 (W) 1346.09 (W) 1148.58 (W) 1458.50 (W) | [108] |
8. | UiO-66-NH2 membrane incorporating MOFs | Nanoemulsions Dodecane/Water (SDS) n-Hexane/Water (SDS) n-Octane/Water (SDS) n-Hexadecane/Water (SDS) Microemulsions Dodecane/Water (SDBS) n-Hexane/Water (SDBS) n-Octane/Water (SDBS) n-Hexadecane/Water (SDBS) | >99.8 >99.7 | 217.25 (W) 242.12 (W) 210.86 (W) 308.46 (W) 200.66 (W) 225.01 (W) 370.05 (W) 291.87 (W) | [109] |
9. | CFM/UiO-66/PDMS (PDMS—polydimethylsiloxane) | Nanoemulsions Water/Dodecane (SDBS) Water/Dodecane (CTAB) Water/n-octane (SDBS) Water/n-heptane (SDS) Microemulsions Water/Dodecane (SDS) Water/Dodecane (CTAB) | >99.99 | 540.4 (O) 504.6 (O) 969.8 (O) 973.3 (O) 545.4 (O) 351.1 (O) | [116] |
10. | CF/ZIF-8/PDMS, (ZIF—zinc-based MOFs) | Nanoemulsions Water/Dodecane (SDBS) Water/Dodecane (CTAB) | >99.99 | 1982 (O) 1809 (O) | [115] |
11. | MWCNTs/CFM (MWCNTs—multiple-walled carbon nanotubes) | Water/Heptane | >99.99 | 1051 (O) | [121] |
12. | Commercial PTFE (polytetrafluoro ethylene) | Nanoemulsions Water/Dodecane (SDBS) Water/n-heptane (SDS) | >99.99 | 77.6 (O) 305.6 (O) | [116] |
13. | Commercial double-sided polyvinylidene fluoride (PVDF) Commercial PTFE | Water/Dodecane (SDBS) Water/Dodecane (SDBS) | >99.99 | 51 (O) 95 (O) | [115] |
14. | Commercial polyamide Commercial PTFE | Water/Heptane | >99.99 | 64 (O) 35 (O) | [121] |
Photocatalyst | Targeted Pollutant | Removal Degree (%) | Degradation Time (min) | Light Source | Reference | |
---|---|---|---|---|---|---|
1. | Collagen-cellulose-Fe3O4/TiO2 | Crystal violet | 91.2 86.6 | 180 180 | H2O2, Visible light (200 W Hg (Xe)) H2O2, direct sunlight irradiation | [130] |
2. | CFs-TiO2 | Rhodamine B | 95 73 100 | 130 130 300 | H2O2,Visible light (200 W Hg (Xe)) H2O2, direct sunlight irradiation | [134] |
3. | Fe(III)/CFs (CFs-collagen fibres) | Orange II p-nitrophenol | ~100 95 | 20 20 | H2O2, UVC irradiation (254 nm, 8 W or 4 W) | [132] |
4. | Fe(III)/CFs | Orange II | 73.8 | 90 | H2O2, UVC irradiation (254 nm, 10 W) | [136] |
5. | Fe(III)/CFs | Malachite green | 55 | 120 | H2O2, UVA irradiation (365 nm, 10 W) | [133] |
6. | AgCl/CFs | Methyl orange | 80 >90 | 210 30 | UV light (370 nm, 36 W) visible light (500 W Xe lamp) | [135] |
7. | AgNPs/Fe crosslinked CFs (NPs—nanoparticles) | Mixture of antibiotics (Tetracycline hydrochloride, sulfamethoxazole, ciprofloxacin, vancomycin and levofloxacin) | >90 | 30 | H2O2, direct sunlight | [5] |
8. | Cu-doped nanosized ZnO | Methylorange | 85 | 200 | Direct sunlight | [137] |
9. | Zn-doped CdS | Rhodamine B | 93 | 135 | Visible light | [138] |
10. | CoO/TiO2 | Rhodamine B | 97 | 120 | Infrared light irradiation | [139] |
11 | BiOI (bismuth oxyhalide) | Reactive blue 19 | 95 | 120 | Direct sunlight | [140] |
Material | Microorganisms | Removal Degree (%) | Inactivation Time (min) | Light Source | Reference | |
---|---|---|---|---|---|---|
1. | AgNPs/Fe crosslinked CFs (NPs—nanoparticles) | Tetracycline resistant E. coli Methicillin-resistant Staphylococcus aureus | 99.99 99.99 | 60 60 | H2O2, direct sunlight | [5] |
2. | Ag-SiO2/amino-functionalised collagen | Tannery wastewater disinfection E. coli containing wastewater | 100 100 | 20 15 | Visible light (200 W Hg (Xe)) | [150] |
3. | Ag/CuS/carbon cloth | Bacillus subtilis | 99.99 | 22.5 | Visible light (500 W, Xe) | [151] |
4. | Ag/polymeric carbon nitride | E. coli | 95.5 | 120 | Visible light | [152] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dancila, A.M.; Bosomoiu, M. Exploring the Possibilities of Using Recovered Collagen for Contaminants Removal—A Sustainable Approach for Wastewater Treatment. Polymers 2024, 16, 2923. https://doi.org/10.3390/polym16202923
Dancila AM, Bosomoiu M. Exploring the Possibilities of Using Recovered Collagen for Contaminants Removal—A Sustainable Approach for Wastewater Treatment. Polymers. 2024; 16(20):2923. https://doi.org/10.3390/polym16202923
Chicago/Turabian StyleDancila, Annette Madelene, and Magdalena Bosomoiu. 2024. "Exploring the Possibilities of Using Recovered Collagen for Contaminants Removal—A Sustainable Approach for Wastewater Treatment" Polymers 16, no. 20: 2923. https://doi.org/10.3390/polym16202923
APA StyleDancila, A. M., & Bosomoiu, M. (2024). Exploring the Possibilities of Using Recovered Collagen for Contaminants Removal—A Sustainable Approach for Wastewater Treatment. Polymers, 16(20), 2923. https://doi.org/10.3390/polym16202923