Natural-Fiber-Reinforced Polymer Composites for Furniture Applications
Abstract
:1. Introduction
2. Considerations Regarding the Requirements for Natural-Fiber-Reinforced Composites Used in Furniture Applications
- Technical (performance) requirements;
- Constructive–functional requirements;
- Ecological requirements;
- Economical requirements;
- Safety requirements.
2.1. Technical Requirements
- Limit values for resistance to various mechanical stresses, such as tensile strength, bending, impact, fatigue, creep, and abrasion resistance.
- Stiffness and elasticity, measured by the longitudinal and transverse modulus of elasticity.
- Thickness, density, swelling coefficient, and water absorption.
- Resistance to fire, frost, chemicals, and UV radiation, as well as emission of volatile organic compounds.
2.1.1. Mechanical Properties of NFR Composite Materials
- The type and characteristics of the matrix and the reinforcing fibers (material selection).
- The volumetric/gravimetric ratio between the matrix and the reinforcing fibers.
- The mechanical, physical, and chemical compatibility between the matrix and the reinforcing fibers.
- The type of bonding between the matrix and the reinforcing fibers (physical, mechanical, chemical).
- Manufacturing technology.
- Stacking sequence of plies.
2.1.1.1. Matrix
2.1.1.2. Natural Reinforcing Fibers
2.1.1.3. Fiber–Matrix Volumetric/Gravimetric Ratio
2.1.1.4. Fiber–Matrix Interface
2.1.1.5. Fiber–Matrix Interfacial Bonding Mechanisms
2.1.1.6. Manufacturing Technologies
2.1.1.7. Stacking Sequence of Plies
2.1.2. Physical Properties of Composite Materials
2.1.3. Chemical Properties of Composite Materials
2.2. Constructive–Functional Requirements
2.3. Ecological Requirements
2.3.1. Sustainability
2.3.2. Recyclability
2.3.3. Biodegradability
2.3.4. Toxicity
2.4. Economical Requirements
- Using inexpensive and readily available raw materials;
- Valorization of agricultural waste into bioplastics [281];
- Reducing raw material transport costs by sourcing locally;
- Minimizing waste in the manufacturing process;
- Recycling waste materials [16];
- Employing automated, high-productivity production lines;
- Reducing labor costs;
- Lowering maintenance costs for machinery.
2.5. Safety Requirements
2.5.1. Safety and Health at Work
2.5.2. Consumer Safety
3. Future Prospects
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Chen, J.; Yang, C.C. The Impact of the COVID-19 Pandemic on Consumers’ Preferences for Wood Furniture: An Accounting Perspective. Forests 2021, 12, 1637. [Google Scholar] [CrossRef]
- High Demand for Furniture: How to Take Advantage. Available online: https://wondersign.com/high-demand-for-furniture-how-to-take-advantage-today-and-tomorrow/ (accessed on 24 April 2023).
- The World Upholstered Furniture Market Surpassing the Pre-Pandemic Levels. Available online: https://www.worldfurnitureonline.com/news/world-upholstered-furniture-market-news/ (accessed on 26 April 2023).
- Shahruzzaman, M.; Biswas, S.; Islam, M.M.; Islam, M.S.; Rahman, M.S.; Haque, P.; Rahman, M.M. Furniture: Eco-Friendly Polymer Composites Applications. In Encyclopedia of Polymer Applications, 1st ed.; Mishra, M., Ed.; Taylor and Francis Group; CRC Press: Boca Raton, FL, USA, 2019; pp. 1517–1547. [Google Scholar]
- George, G.; Elias, L.; Luo, Z. Furniture: Polymers. In Encyclopedia of Polymer Applications, 1st ed.; Mishra, M., Ed.; Taylor and Francis Group; CRC Press: Boca Raton, FL, USA, 2019; pp. 1548–1560. [Google Scholar]
- Zakriya, M.; Govindan, R. Applications of Composites in Artefact and Furniture Making. In Natural Fibre Composites, 1st ed.; Zakriya, M., Govindan, R., Eds.; CRC Press: Boca Raton, FL, USA, 2020; imprint; pp. 107–116. [Google Scholar]
- Buck, L. Furniture Design with Composite Materials. Ph.D. Thesis, Brunel University, London, UK, 1997. Available online: https://bnu.repository.guildhe.ac.uk/id/eprint/9977/1/Buck%2C%20Lyndon.pdf (accessed on 11 January 2023).
- Stelea, L.; Filip, I.; Lisa, G.; Ichim, M.; Drobotă, M.; Sava, C.; Mureșan, A. Characterisation of Hemp Fibres Reinforced Composites Using Thermoplastic Polymers as Matrices. Polymers 2022, 14, 481. [Google Scholar] [CrossRef] [PubMed]
- Ngo, T.D. Introduction to Composite Materials. In Composite and Nanocomposite Materials—From Knowledge to Industrial Applications; Ngo, T.D., Ed.; IntechOpen: London, UK, 2020. [Google Scholar]
- Papadopoulos, A.N. Advances in Wood Composites. Polymers 2020, 12, 48. [Google Scholar] [CrossRef] [PubMed]
- Design Flexibility. Available online: https://compositeslab.com/benefits-of-composites/design-flexibility/ (accessed on 26 May 2023).
- Knight, M.; Curliss, D. Composite Materials. In Encyclopedia of Physical Science and Technology, 3rd ed.; Meyers, R.A., Ed.; Elsevier; Academic Press: Cambridge, MA, USA, 2003; pp. 455–468. [Google Scholar]
- Ciupan, E.; Ciupan, C.; Câmpean, E.M.; Stelea, L.; Policsek, C.E.; Lungu, F.; Jucan, D.C. Opportunities of Sustainable Development of the Industry of Upholstered Furniture in Romania. A Case Study. Sustainability 2018, 10, 3356. [Google Scholar] [CrossRef]
- Khalil, H.P.S.A.; Shahnaz, S.B.S.; Ratnam, M.M.; Ahmad, F.; Fuaad, N.A.N. Recycle Polypropylene (RPP)—Wood Saw Dust (WSD) Composites—Part 1: The Effect of Different Filler Size and Filler Loading on Mechanical and Water Absorption Properties. J. Reinf. Plast. Compos. 2006, 25, 1291–1303. [Google Scholar] [CrossRef]
- Nukala, S.G.; Kong, I.; Kakarla, A.B.; Tshai, K.Y.; Kong, W. Preparation and Characterisation of Wood Polymer Composites Using Sustainable Raw Materials. Polymers 2022, 14, 3183. [Google Scholar] [CrossRef] [PubMed]
- Ichim, M.; Filip, I.; Stelea, L.; Lisa, G.; Muresan, E.I. Recycling of Nonwoven Waste Resulting from the Manufacturing Process of Hemp Fiber-Reinforced Recycled Polypropylene Composites for Upholstered Furniture Products. Sustainability 2023, 15, 3635. [Google Scholar] [CrossRef]
- Glass, S.V.; Zelinka, S.L. Moisture relations and physical properties of wood. In Wood Handbook: Wood as an Engineering Material, Centennial ed.; General Technical Report FPL−GTR-190; Ross, R.J., Ed.; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2010; pp. 4.1–4.19. Available online: https://www.fpl.fs.usda.gov/documnts/fplgtr/fpl_gtr190.pdf (accessed on 3 November 2024).
- Eckelman, C.A. The Shrinking and Swelling of Wood and Its Effect on Furniture; Purdue University Cooperative Extension Service: West Lafayette, IN, USA, 1998. [Google Scholar]
- Goli, G.; Becherini, F.; Di Tuccio, M.C.; Bernardi, A.; Fioravanti, M. Thermal expansion of wood at different equilibrium moisture contents. J. Wood Sci. 2019, 65, 4. [Google Scholar] [CrossRef]
- Guo, D.; Shen, X.; Fu, F.; Yang, S.; Li, G.; Chu, F. Improving physical properties of wood–polymer composites by building stable interface structure between swelled cell walls and hydrophobic polymer. Wood Sci. Technol. 2021, 55, 1401–1417. [Google Scholar] [CrossRef]
- Hsu, W.E.; Schwald, W.; Shields, J.A. Chemical and physical changes required for producing dimensionally stable wood-based composites. Wood Sci. Technol. 1989, 23, 281–288. [Google Scholar] [CrossRef]
- Han, X.; Wang, Z.; Zhang, Q.; Pu, J. An effective technique for constructing wood composite with superior dimensional stability. Holzforschung 2020, 74, 435–443. [Google Scholar] [CrossRef]
- Advanced Wood Plastic Composite Material for the Production of Bath Furniture Resistant to Moisture and Free of Coatings. Available online: https://cordis.europa.eu/project/id/314294/reporting (accessed on 8 June 2023).
- Karlsson, H.M. Technical Cost Modelling and Efficient Design of Lightweight Composites in Structural Applications. Ph.D. Thesis, KTH School of Engineering Sciences, Stockholm, Sweden, 2019. [Google Scholar]
- Khalid, M.Y.; Al Rashid, A.; Arif, Z.U.; Ahmed, W.; Arshad, H.; Zaidi, A.A. Natural fiber reinforced composites: Sustainable materials for emerging applications. Results Eng. 2021, 11, 100263. [Google Scholar] [CrossRef]
- Kamarudin, S.H.; Mohd Basri, M.S.; Rayung, M.; Abu, F.; Ahmad, S.; Norizan, M.N.; Osman, S.; Sarifuddin, N.; Desa, M.S.Z.M.; Abdullah, U.H.; et al. A Review on Natural Fiber Reinforced Polymer Composites (NFRPC) for Sustainable Industrial Applications. Polymers 2022, 14, 3698. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.; Cown, D.J. Wood quality variability—What is it, what are the consequences and what can we do about it? N. Z. J. For. 2015, 59, 3–9. [Google Scholar]
- Tiitta, M.; Tiitta, V.; Gaal, M.; Heikkinen, J.; Lappalainen, R.; Tomppo, L. Air-coupled ultrasound detection of natural defects in wood using ferroelectret and piezoelectric sensors. Wood Sci. Technol. 2020, 54, 1051–1064. [Google Scholar] [CrossRef]
- Schimleck, L.; Dahlen, J.; Apiolaza, L.A.; Downes, G.; Emms, G.; Evans, R.; Moore, J.; Pâques, L.; Van den Bulcke, J.; Wang, X. Non-Destructive Evaluation Techniques and What They Tell Us about Wood Property Variation. Forests 2019, 10, 728. [Google Scholar] [CrossRef]
- Lopez, Y.M.; Gonçalves, F.G.; Paes, J.B.; Gustave, D.; Theodoro Nantet, A.C.; Sales, T.J. Resistance of wood plastic composite produced by compression to termites Nasutitermes corniger (Motsch.) and Cryptotermes brevis (Walker). Int. Biodeter. Biodegr. 2020, 152, 104998. [Google Scholar] [CrossRef]
- Suhaily, S.S.; Jawaid, M.; Abdul Khalil, H.P.S.; Mohamed, A.R.; Ibrahim, F. A review of oil palm biocomposites for furniture design and applications: Potential and challenges. BioRes 2012, 7, 4400–4423. [Google Scholar] [CrossRef]
- Bravo, A.; Vieira, D. Design and Manufacturing of Sustainable Composites. In Handbook of Composites from Renewable Materials; Thakur, V.K., Thakur, M.K., Kessler, M.R., Eds.; Scrivener Publishing: Beverly, MA, USA, 2017; pp. 533–602. [Google Scholar]
- AL-Oqla, F.M.; Sapuan, S.M. Natural fiber reinforced polymer composites in industrial applications: Feasibility of date palm fibers for sustainable automotive industry. J. Clean. Prod. 2014, 66, 347–354. [Google Scholar] [CrossRef]
- Rosentrater, K.A.; Otieno, A.W. Considerations for Manufacturing Bio-Based Plastic Products. J. Polym. Environ. 2006, 14, 335–346. [Google Scholar] [CrossRef]
- Benatar, A.; Marcus, M. Ultrasonic welding of plastics and polymeric composites. In Power Ultrasonics, 2nd ed.; Gallego-Juárez, J., Graff, K., Lucas, M., Eds.; Woodhead Publishing: Cambridge, UK, 2023; pp. 205–225. [Google Scholar] [CrossRef]
- Vaes, D.; Van Puyvelde, P. Semi-crystalline feedstock for filament-based 3D printing of polymers. Prog. Polym. Sci. 2021, 118, 101411. [Google Scholar] [CrossRef]
- Wakeman, M.D.; Månson, J. Composites manufacturing—Thermoplastics. In Design and Manufacture of Textile Composites; Long, A.C., Ed.; Woodhead Publishing: Cambridge, UK, 2005; pp. 197–241. [Google Scholar] [CrossRef]
- Gupta, M.K. Composites: Natural Fibers Reinforced. In Encyclopedia of Polymer Applications; Mishra, M., Ed.; CRC Press: Boca Raton, FL, USA, 2019; pp. 543–570. [Google Scholar]
- Ray, D.; Pérez-Martín, H. Resins for structural composites. In Design and Manufacture of Structural Composites; Harper, L., Clifford, M., Eds.; Woodhead Publishing: Cambridge, UK, 2023; pp. 35–81. [Google Scholar]
- Azman, M.A.; Asyraf, M.R.M.; Khalina, A.; Petrů, M.; Ruzaidi, C.M.; Sapuan, S.M.; Wan Nik, W.B.; Ishak, M.R.; Ilyas, R.A.; Suriani, M.J. Natural Fiber Reinforced Composite Material for Product Design: A Short Review. Polymers 2021, 13, 1917. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, M.; Oleiwi, J.K.; Mohammed, A.M.; Jawad, A.J.M.; Osman, A.F.; Adam, T.; Betar, B.O.; Gopinath, S.C. A Review on the Advancement of Renewable Natural Fiber Hybrid Composites: Prospects, Challenges, and Industrial Applications. J. Renew. Mater. 2024, 12, 1237–1290. [Google Scholar] [CrossRef]
- Kumari, N.; Meena, S.; Chaparia, M.; Choudhury, S.P.; Choubey, R.K.; Dwivedi, U.K. Natural Fibre Reinforced Composites for Industrial Applications. In Polymer Composites; Moharana., S., Sahu, B.B., Nayak, A.K., Tiwari, S.K., Eds.; Springer: Singapore, 2024; pp. 301–327. [Google Scholar] [CrossRef]
- Shebaz Ahmed, J.P.; Satyasree, K.; Rohith Kumar, R.; Meenakshisundaram, O.; Shanmugavel, S. A comprehensive review on recent developments of natural fiber composites synthesis, processing, properties, and characterization. Eng. Res. Express 2023, 5, 032001. [Google Scholar] [CrossRef]
- Manaia, J.P.; Manaia, A.T.; Rodriges, L. Industrial Hemp Fibers: An Overview. Fibers 2019, 7, 106. [Google Scholar] [CrossRef]
- Elfaleh, I.; Abbassi, F.; Habibi, M.; Ahmad, F.; Guedri, M.; Nasri, M.; Garnier, C. A comprehensive review of natural fibers and their composites: An eco-friendly alternative to conventional materials. Results Eng. 2023, 19, 101271. [Google Scholar] [CrossRef]
- Djafari Petroudy, S.R. Physical and mechanical properties of natural fibers. In Advanced High Strength Natural Fibre Composites in Construction; Fan, M., Fu, F., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 59–83. [Google Scholar] [CrossRef]
- Decker, A.; Tritter, A.; Sarazin, V.; Drean, J.Y.; Harzalla, O.A. Effect of the Cultivar on the Development Hemp Stem and Textile Fiber in the East of France. In Proceedings of the Second International Conference of Innovative Textiles and Developed Materials-ITDM’2, Monastir, Tunisia, 5–6 May 2023; Abdessalem, S.B., Hamdaoui, M., Baffoun, A., Elamri, A., Eds.; Springer: Singapore, 2024; pp. 97–106. [Google Scholar] [CrossRef]
- Leoni, M.; Musio, S.; Croci, M.; Tang, K.; Magagnini, G.M.; Thouminot, C.; Müssig, J.; Amaducci, S. The effect of agronomic management of hemp (Cannabis sativa L.) on stem processing and fibre quality. Ind. Crops Prod. 2022, 188, 115520. [Google Scholar] [CrossRef]
- Visković, J.; Zheljazkov, V.D.; Sikora, V.; Noller, J.; Latković, D.; Ocamb, C.M.; Koren, A. Industrial Hemp (Cannabis sativa L.) Agronomy and Utilization: A Review. Agronomy 2023, 13, 931. [Google Scholar] [CrossRef]
- Gregoire, M.; De Luycker, E.; Bar, M.; Musio, S.; Amaducci, S.; Ouagne, P. Study of solutions to optimize the extraction of hemp fibers for composite materials. SN Appl. Sci. 2019, 1, 1293. [Google Scholar] [CrossRef]
- Amel, B.A.; Paridah, M.T.; Sudin, R.; Anwar, U.M.K.; Hussein, A.S. Effect of fiber extraction methods on some properties of kenaf bast fiber. Ind. Crops Prod. 2013, 46, 117–123. [Google Scholar] [CrossRef]
- Sawpan, M.A.; Pickering, K.L.; Fernyhough, A. Effect of various chemical treatments on the fibre structure and tensile properties of industrial hemp fibres. Compos. Part A Appl. Sci. Manuf. 2011, 42, 888–895. [Google Scholar] [CrossRef]
- Palanikumar, K.; Natarajan, E.; Markandan, K.; Ang, C.K.; Franz, G. Targeted Pre-Treatment of Hemp Fibers and the Effect on Mechanical Properties of Polymer Composites. Fibers 2023, 11, 43. [Google Scholar] [CrossRef]
- Gieparda, W.; Rojewski, S.; Przybylak, M.; Doczekalska, B. Effect of Modification of Flax Fibers with Silanes and Polysiloxanes on the Properties of PLA-Based Composites. J. Nat. Fibers. 2023, 20, 2280042. [Google Scholar] [CrossRef]
- Barrera-Fajardo, I.; Rivero-Romero, O.; Unfried-Silgado, J. Investigation of the Effect of Chemical Treatment on the Properties of Colombian Banana and Coir Fibers and Their Adhesion Behavior on Polylactic Acid and Unsaturated Polyester Matrices. Fibers 2024, 12, 6. [Google Scholar] [CrossRef]
- Wang, C.; Ren, Z.; Li, S.; Yi, X. Effect of Ramie Fabric Chemical Treatments on the Physical Properties of Thermoset Polylactic Acid (PLA) Composites. Aerospace 2018, 5, 93. [Google Scholar] [CrossRef]
- Flores, A.L.L.; Kairytė, A.; Šeputytė-Jucikė, J.; Makowska, S.; Lavoratti, A.; de Avila Delucis, R.; Amico, S.C. Effect of Chemical Treatments on the Mechanical Properties of Jute/Polyester Composites. Materials 2024, 17, 2320. [Google Scholar] [CrossRef]
- Killi, F.; Örnek, S. Effects on Fiber Quality of Storage Times in Mechanically Harvested Seed Cotton. J. Sci. Eng. Res. 2016, 3, 33–38. [Google Scholar]
- Resch-Fauster, K.; Klein, A.; Pertegás, S.; Schledjewski, R. Design and Manufacturing of High-Performance Green Composites Based on Renewable Materials. In Handbook of Composites from Renewable Materials Design and Manufacturing; Thakur, V.K., Thakur, M.K., Kessler, M., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 1–24. [Google Scholar] [CrossRef]
- De Assis, T.; Pawlak, J.; Pal, L.; Jameel, H.; Venditti, R.; Reisinger, L.W.; Kavalew, D.; Gonzalez, R.W. Comparison of wood and non-wood market pulps for tissue paper application. Bioresources 2019, 14, 6781–6810. [Google Scholar] [CrossRef]
- Awais, H.; Nawab, Y.; Amjad, A.; Anjang, A.; Md Akil, H.; Zainol Abidin, M.S. Environmental benign natural fibre reinforced thermoplastic composites: A review. Compos. C Open Access 2021, 4, 100082. [Google Scholar] [CrossRef]
- Van Quy, H.; Nguyen, S.T.T. Experimental Analysis of Coir Fiber Sheet Reinforced Epoxy Resin Composite. IOP Conf. Ser. Mater. Sci. Eng. 2019, 642, 012007. [Google Scholar] [CrossRef]
- Li, X.; Wang, S.; Du, G.; Wu, Z.; Meng, Y. Variation in physical and mechanical properties of hemp stalk fibers along height of stem. Ind. Crops Prod. 2013, 42, 344–348. [Google Scholar] [CrossRef]
- Ichim, M. Tehnologii Industriale—Fire; Performantica: Iasi, Romania, 2024; pp. 9–24. [Google Scholar]
- Anand, P.B.; Lakshmikanthan, A.; Gowdru Chandrashekarappa, M.P.; Selvan, C.P.; Pimenov, D.Y.; Giasin, K. Experimental Investigation of Effect of Fiber Length on Mechanical, Wear, and Morphological Behavior of Silane-Treated Pineapple Leaf Fiber Reinforced Polymer Composites. Fibers 2022, 10, 56. [Google Scholar] [CrossRef]
- Ramesh, G.; Subramanian, K.; Sathiyamurthy, S.; Jayabal, S. Study on influence of fiber length and fiber weight proportion in mechanical behavior of Calotropis gigantea fiber-Epoxy composites. Polym. Compos. 2020, 41, 4899–4906. [Google Scholar] [CrossRef]
- Bourmaud, A.; Fazzini, M.; Renouard, N.; Behlouli, K.; Ouagne, P. Innovating routes for the reused of PP-flax and PP-glass nonwoven composites: A comparative study. Polym. Degrad. Stab. 2018, 152, 259–271. [Google Scholar] [CrossRef]
- Lasikun, A.D.; Surojo, E.; Triyono, J. Effect of fiber orientation on tensile and impact properties of Zalacca Midrib fiber-HDPE composites by compression molding. In Proceedings of the 3rd International Conference on Industrial, Mechanical, Electrical, and Chemical Engineering, Surakarta, Indonesia, 13–14 September 2017; AIP Publishing: Melville, NY, USA, 2018; p. 030060. [Google Scholar] [CrossRef]
- Gowtham, S.; Jeevanantham, T.; Emelda, J.; Edric, J. Investigation on effect of fibre orientation on mechanical behaviour of polymer matrix natural fibre reinforced composite material. Mater. Today Proc. 2024, in press. [Google Scholar] [CrossRef]
- Abdollahiparsa, H.; Shahmirzaloo, A.; Teuffel, P.; Blok, R. A review of recent developments in structural applications of natural fiber-Reinforced composites (NFRCs). Compos. Adv. Mater. 2023, 32, 26349833221147540. [Google Scholar] [CrossRef]
- Zuhudi, N.Z.M.; Zulkifli, A.F.; Ishak, F.A.; Aris, K.D.M. Selecting the appropriate method for the void and moisture content measurement of fibre reinforced composites: A review. AIP Conf. Proc. 2023, 2582, 020001. [Google Scholar] [CrossRef]
- Li, Y.; Li, Q.; Ma, H. The voids formation mechanisms and their effects on the mechanical properties of flax fiber reinforced epoxy composites. Compos. Part A Appl. Sci. Manuf. 2015, 72, 40–48. [Google Scholar] [CrossRef]
- Mehdikhani, M.; Gorbatikh, L.; Verpoest, I.; Lomov, S.V. Voids in fiber-reinforced polymer composites: A review on their formation, characteristics, and effects on mechanical performance. J. Compos. Mater. 2019, 53, 1579–1669. [Google Scholar] [CrossRef]
- Sirsat, A.; Padhee, S. Effect of Volume Fraction and Fiber Distribution on Stress Transfer in a Stochastic Framework of Continuous Fiber Composite: A Micromechanical Study. arXiv 2022, arXiv:2209.09801. [Google Scholar]
- Pan, N. Theoretical Determination of the Optimal Fiber Volume Fraction and Fiber-Matrix Property Compatibility of Short Fiber Composites. Polym. Compos. 1993, 14, 85–93. [Google Scholar] [CrossRef]
- Somashekhar, S.; Shanthakumar, G.C.; Nagamadhu, M. Influence of Fiber content and screw speed on the Mechanical characterization of Jute fiber reinforced Polypropylene composite using Taguchi Method. Mater. Today Proc. 2020, 24, 2366–2374. [Google Scholar] [CrossRef]
- Hargitai, H.; Rácz, I.; Anandjiwala, R. Development of Hemp Fibre Reinforced Polypropylene Composite. J. Thermoplast. Compos. Mater. 2008, 21, 165–174. [Google Scholar] [CrossRef]
- Kazi, A.M.; Ramasastry, D.V.A. Effect of fibre content on physical properties of short roselle fibre epoxy composites. Mater. Today Proc. 2022, 54, 814–817. [Google Scholar] [CrossRef]
- Haddar, M.; Elloumi, A.; Bradai, C.; Koubaa, A. Characterization of Posidonia oceanica Fibers High-Density Polyethylene Composites: Reinforcing Potential and Effect of Coupling Agent. J. Compos. Sci. 2024, 8, 236. [Google Scholar] [CrossRef]
- Singh, D.K.; Vaidya, A.; Thomas, V.; Theodore, M.; Kore, S.; Vaidya, U. Finite Element Modeling of the Fiber-Matrix Interface in Polymer Composites. J. Compos. Sci. 2020, 4, 58. [Google Scholar] [CrossRef]
- AhmadvashAghbash, S.; Verpoest, I.; Swolfs, Y.; Mehdikhani, M. Methods and models for fibre–matrix interface characterisation in fibre-reinforced polymers: A review. Int. Mater. Rev. 2023, 68, 1245–1319. [Google Scholar] [CrossRef]
- Faruk, O.; Bledzki, A.K.; Fink, H.P.; Sain, M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]
- Karaduman, Y.; Ozdemir, H.; Karaduman, N.S.; Ozdemir, G. Interfacial Modification of Hemp Fiber–Reinforced Composites. In Natural and Artificial Fiber-Reinforced Composites as Renewable Sources; Günay, E., Ed.; InTech: London, UK, 2018. [Google Scholar]
- Hao, J.; Bardon, J.; Mertz, G.; Fuentes, C.A.; Van Vuure, A.W. Effect of plasma treatment on hygrothermal creep behaviour of flax fibre composite. Compos. Part A Appl. Sci. Manuf. 2024, 185, 108322. [Google Scholar] [CrossRef]
- Ragoubi, M.; George, B.; Molina, S.; Bienaimé, D.; Merlin, A.; Hiver, J.-M.; Dahoun, A. Effect of corona discharge treatment on mechanical and thermal properties of composites based on miscanthus fibres and polylactic acid or polypropylene matrix. Compos. Part A Appl. Sci. Manuf. 2012, 43, 675–685. [Google Scholar] [CrossRef]
- Ndiaye, D.; Tidjani, A. Physical changes associated with gamma doses on Wood/Polypropylene Composites. IOP Conf. Ser. Mater. Sci. Eng. 2014, 62, 012025. [Google Scholar] [CrossRef]
- Huq, T.; Khan, A.; Hossain, F.M.J.; Akter, T.; Zaman, H.U.; Aktar, N.; Tuhin, M.; Islam, T.; Khan, R. Gamma-irradiated jute/polypropylene composites by extrusion molding. Compos. Interfaces 2013, 20, 93–105. [Google Scholar] [CrossRef]
- Zhou, Y.; Fan, M.; Chen, L. Interface and bonding mechanisms of plant fibre composites: An overview. Compos. B Eng. 2016, 101, 31–45. [Google Scholar] [CrossRef]
- Prabhakar, C.G.; Reddy, M.S.; Rajendrachari, S.; Mahale, R.S.; Mahesh, V.; Pandith, A. The Behavior of Banyan (B)/Banana (Ba) Fibers Reinforced Hybrid Composites Influenced by Chemical Treatment on Tensile, Bending and Water Absorption Behavior: An Experimental and FEA Investigation. J. Compos. Sci. 2024, 8, 31. [Google Scholar] [CrossRef]
- Soni, P.; Sinha, S. Synergistic effect of alkali and silane treatment on mechanical, flammability, and thermal degradation of hemp fiber/epoxy composite. Polym. Compos. 2022, 43, 6204–6215. [Google Scholar] [CrossRef]
- Kar, S.; Jena, I.; Bhoi, S.; Pattnaik, S.; Sutar, M.K. Impact of distinct alkaline treatment on natural plant fibre reinforced polymer composites. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2023, 237, 5951–5962. [Google Scholar] [CrossRef]
- Ezeamaku, U.L.; Nnanwube, I.A.; Eze, I.O.; Onukwuli, O.D. Effects of acetylation treatment on pineapple leaf fiber (Ananas comosus) reinforced with tapioca bio-based resin (cassava starch). Cogent Eng. 2023, 10, 2229109. [Google Scholar] [CrossRef]
- Tserki, V.; Zafeiropoulos, N.E.; Simon, F.; Panayiotou, C. A study of the effect of acetylation and propionylation surface treatments on natural fibres. Compos. Part A Appl. Sci. Manuf. 2005, 36, 1110–1118. [Google Scholar] [CrossRef]
- Thamarai Selvi, S.; Sunitha, R.; Ammayappan, L.; Prakash, C. Impact of Chemical Treatment on Surface Modification of Agave Americana Fibres for Composite Application—A Futuristic Approach. J. Nat. Fibers 2023, 20, 2142726. [Google Scholar] [CrossRef]
- Md Nor, S.S.; Abdul Patah, M.F.; Mat Salleh, M. Surface modification of bio-based composites via silane treatment: A short review. J. Adhes. Sci. Technol. 2023, 37, 801–816. [Google Scholar] [CrossRef]
- Barczewski, M.; Matykiewicz, D.; Szostak, M. The effect of two-step surface treatment by hydrogen peroxide and silanization of flax/cotton fabrics on epoxy-based laminates thermomechanical properties and structure. J. Mater. Res. Technol. 2020, 9, 13813–13824. [Google Scholar] [CrossRef]
- Kavitha, S.A.; Priya, R.K.; Arunachalam, K.P.; Avudaiappan, S.; Saavedra Flores, E.I.; Blanco, D. Experimental investigation on strengthening of Zea mays root fibres for biodegradable composite materials using potassium permanganate treatment. Sci. Rep. 2024, 14, 12754. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Fu, R.; Deng, Q.; Wang, X.; Wang, Y.; Zhang, Z.; Xian, G. Surface Modification of Flax Fibers with Isocyanate and Its Effects on Fiber/Epoxy Interfacial Properties. Fibers Polym. 2020, 21, 2888–2895. [Google Scholar] [CrossRef]
- Mohammed, M.; Rasidi, M.; Mohammed, A.; Rahman, R.; Osman, A.; Adam, T.; Betar, B.O.; Dahham, O.S. Interfacial bonding mechanisms of natural fibre-matrix composites: An overview. Bioresources 2022, 17, 7031–7090. [Google Scholar] [CrossRef]
- Da Silveira, P.H.P.M.; Santos, M.C.C.d.; Chaves, Y.S.; Ribeiro, M.P.; Marchi, B.Z.; Monteiro, S.N.; Gomes, A.V.; Tapanes, N.d.L.C.O.; Pereira, P.S.d.C.; Bastos, D.C. Characterization of Thermo-Mechanical and Chemical Properties of Polypropylene/Hemp Fiber Biocomposites: Impact of Maleic Anhydride Compatibilizer and Fiber Content. Polymers 2023, 15, 3271. [Google Scholar] [CrossRef] [PubMed]
- Güney, O.; Bilici, İ.; Doğan, D.; Metin, A.Ü. Mechanical and thermal properties of recycled polyethylene/surface treated hemp fiber bio-composites. Polym. Compos. 2023, 44, 4976–4992. [Google Scholar] [CrossRef]
- Ahmad Kamal, A.A.; Noriman, N.Z.; Sam, S.T.; Al-Rashdi, A.A.; Johari, I.; Razlan, Z.M.; Shahriman, A.B.; Zunaidi, I.; Khairunizam, W. Tensile Properties and Impact Strength of RHDPE/BF Composites: The Effects of Chemical Treatment. IOP Conf. Ser. Mater. Sci. Eng. 2019, 557, 012041. [Google Scholar] [CrossRef]
- Latiff, A.S.M.; Ishak, M.R.; Mazlan, N.; Ya’acob, A.M. Mechanical Properties of Benzoylation Treated Sugar Palm Fiber and Its Composite. Int. J. Recent Technol. Eng. 2020, 8, 4248–4252. [Google Scholar] [CrossRef]
- Zahari, W.Z.W.; Badri, R.N.R.L.; Ardyananta, H.; Kurniawan, D.; Nor, F.M. Mechanical Properties and Water Absorption Behavior of Polypropylene/Ijuk Fiber Composite by Using Silane Treatment. Procedia Manuf. 2015, 2, 573–578. [Google Scholar] [CrossRef]
- Mohanty, S.; Nayak, S.K.; Verma, S.K.; Tripathy, S.S. Effect of MAPP as Coupling Agent on the Performance of Sisal–PP Composites. J. Reinf. Plast. Compos. 2004, 23, 2047–2063. [Google Scholar] [CrossRef]
- Rachtanapun, P.; Sawangrat, C.; Kanthiya, T.; Thipchai, P.; Kaewapai, K.; Suhr, J.; Worajittiphon, P.; Tanadchangsaeng, N.; Wattanachai, P.; Jantanasakulwong, K. Effect of Plasma Treatment on Bamboo Fiber-Reinforced Epoxy Composites. Polymers 2024, 16, 938. [Google Scholar] [CrossRef] [PubMed]
- Campomori, J.B.; Hugen, L.N.; de Andrade Silva, F.; Toledo Filho, R.D.; Guimarães, T.C.; Bufalino, L.; Sanadi, A.R.; Barsberg, S.; Ferreira, S.R.; Tonoli, G.H.D. Effect of hot water and corona discharge treatments on the bonding behavior of jute fibers in polyester matrix. Discov. Mater. 2024, 4, 14. [Google Scholar] [CrossRef]
- Park, S.J.; Seo, M.K. Composite Characterization. In Interface Science and Composites; Park, S.J., Seo, M.K., Eds.; Academic Press; Elsevier: Cambridge, MA, USA, 2011; pp. 631–738. [Google Scholar] [CrossRef]
- Amiandamhen, S.O.; Meincken, M.; Tyhoda, L. Natural Fibre Modification and Its Influence on Fibre-matrix Interfacial Properties in Biocomposite Materials. Fiber Polym. 2020, 21, 677–689. [Google Scholar] [CrossRef]
- Ebnesajjad, S. Theories of Adhesion. In Surface Treatment of Materials for Adhesive Bonding; William Andrew; Elsevier: Oxford, UK, 2014; pp. 77–91. [Google Scholar] [CrossRef]
- Xie, Y.; Xiao, Z.; Militz, H.; Hao, X. Silane Coupling Agents Used in Natural Fiber/Plastic Composites. In Handbook of Composites from Renewable Materials; Thakur, V.K., Thakur, M.K., Kessler, M., Eds.; Wiley: Hoboken, NJ, USA, 2017; pp. 407–430. [Google Scholar] [CrossRef]
- Comyn, J. What are adhesives and sealants and how do they work? In Adhesive Bonding, 2nd ed.; Adams, R., Ed.; Woodhead Publishing: Cambridge, UK, 2021; pp. 41–78. [Google Scholar]
- Puglia, D.; Sarasini, F.; Santulli, C.; Kenny, J.M. Manufacturing of Natural Fiber/Agrowaste Based Polymer Composites. In Green Biocomposites. Green Energy and Technology; Jawaid, M., Sapuan, S., Alothman, O., Eds.; Springer: New York, NY, USA, 2017; pp. 125–147. [Google Scholar]
- Medina, L.; Schledjewski, R.; Schlarb, A.K. Process related mechanical properties of press molded natural fiber reinforced polymers. Compos. Sci. Technol. 2009, 69, 1404–1411. [Google Scholar] [CrossRef]
- Ball, P. Manufacturing processes. In Handbook of Polymer Composites for Engineers; Hollaway, L., Ed.; Woodhead Publishing: Cambridge, UK, 1994; pp. 73–98. [Google Scholar] [CrossRef]
- Brooks, R. Forming technology for thermoplastic composites. In Composites Forming Technologies; Long, A.C., Ed.; Woodhead Publishing: Cambridge, UK, 2007; pp. 256–276. [Google Scholar] [CrossRef]
- Mazumdar, S. Composites Manufacturing. Materials, Product, and Process Engineering, 1st ed.; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar] [CrossRef]
- Zaman, H. Chemically modified coir fiber reinforced polypropylene composites for furniture applications. Int. Res. J. Mod. Eng. Technol. Sci. 2020, 2, 975–982. [Google Scholar]
- White, S.R. Processing-Induced Residual Stresses in Composites. In Processing of Composites; Davé, R.S., Loos, A.C., Eds.; Carl Hanser Verlag: München, Germany, 2000; pp. 239–271. [Google Scholar] [CrossRef]
- Koffi, A.; Koffi, D.; Toubal, L. Mechanical properties and drop-weight impact performance of injection-molded HDPE/birch fiber composites. Polym. Test. 2021, 93, 106956. [Google Scholar] [CrossRef]
- Pacheco, A.; Evangelista-Osorio, A.; Muchaypiña-Flores, K.G.; Marzano-Barreda, L.A.; Paredes-Concepción, P.; Palacin-Baldeón, H.; Dos Santos, M.S.N.; Tres, M.V.; Zabot, G.L.; Olivera-Montenegro, L. Polymeric Materials Obtained by Extrusion and Injection Molding from Lignocellulosic Agroindustrial Biomass. Polymers 2023, 15, 4046. [Google Scholar] [CrossRef]
- Shahani, S.; Gao, Z.; Qaisrani, M.A.; Ahmed, N.; Yaqoob, H.; Khoshnaw, F.; Sher, F. Preparation and Characterisation of Sustainable Wood Plastic Composites Extracted from Municipal Solid Waste. Polymers 2021, 13, 3670. [Google Scholar] [CrossRef]
- Khawale, V.R.; Jadhav, V.D.; Satishkumar, P.; Vijayan, D.S.; Saminathan, R. Mechanical characterization of extruded sisal-polypropylene composites with optimized compounding parameters. Interactions 2024, 245, 177. [Google Scholar] [CrossRef]
- Chandekar, H.; Chaudhari, V. Flexural creep behaviour of jute polypropylene composites. IOP Conf. Ser. Mater. Sci. Eng. 2016, 149, 012107. [Google Scholar] [CrossRef]
- Misra, M.; Ahankari, S.S.; Mohanty, A.K.; Nga, A.D. Creep and fatigue of natural fibre composites. In Interface Engineering of Natural Fibre Composites for Maximum Performance, 1st ed.; Zafeiropoulos, N., Ed.; Woodhead Publishing: Cambridge, UK, 2011; pp. 289–340. [Google Scholar]
- Bouafif, H.; Koubaa, A.; Perré, P.; Cloutier, A. Creep behaviour of HDPE/wood particle composites. Int. J. Microstruct. Mater. Prop. 2013, 8, 225. [Google Scholar] [CrossRef]
- Stanciu, M.D.; Teodorescu Draghicescu, H.; Tamas, F.; Terciu, O.M. Mechanical and Rheological Behaviour of Composites Reinforced with Natural Fibres. Polymers 2020, 12, 1402. [Google Scholar] [CrossRef] [PubMed]
- Ciupan, E.; Lăzărescu, L.; Filip, I.; Ciupan, C.; Câmpean, E.; Cionca, I.; Pop, E. Characterization of a thermoforming composite material made from hemp fibers and polypropylene. MATEC Web Conf. 2017, 137, 08003. [Google Scholar] [CrossRef]
- Saw, S.K.; Akhtar, K.; Yadav, N.; Singh, A.K. Hybrid Composites Made from Jute/Coir Fibers: Water Absorption, Thickness Swelling, Density, Morphology, and Mechanical Properties. J. Nat. Fibers 2014, 11, 39–53. [Google Scholar] [CrossRef]
- Alvy, M.S.A.; Hossain, M.F.; Rana, M.S.; Rahman, M.M.; Ferdous, M.S. Influence of stacking sequences of woven jute-carbon hybrid composites: Diffusion mechanism and mechanical characterization. Heliyon 2024, 10, e36632. [Google Scholar] [CrossRef]
- Mahmud, S.H.; Akram, M.W.; Ferdous, S.M.R.; Islam, D.; Fatema, K.; Chowdhury, M.S.A.; Das, A.; Ovi, S.M. Fabrication and mechanical performance investigation of jute/glass fiber hybridized polymer composites: Effect of stacking sequences. Next Mater. 2024, 5, 100236. [Google Scholar] [CrossRef]
- Bhuiyan, A.H.; Hossain, M.F.; Rana, M.S.; Ferdous, M.S. Impact of fiber orientations, stacking sequences and ageing on mechanical properties of woven jute-kevlar hybrid composites. Results Mater. 2023, 20, 100477. [Google Scholar] [CrossRef]
- ISO 527-1:2019; Plastics—Determination of Tensile Properties. Part 1: General Principles. ed. 3; International Organization for Standardization: Geneva, Switzerland, 2019.
- ISO 527-2:2012; Plastics—Determination of Tensile Properties. Part 2: Test Conditions for Moulding and Extrusion Plastics. ed. 2; International Organization for Standardization: Geneva, Switzerland, 2012.
- ISO 527-3:2018; Plastics—Determination of Tensile Properties. Part 3: Test Conditions for Films and Sheets. ed. 2; International Organization for Standardization: Geneva, Switzerland, 2018.
- ISO 527-4:2023; Plastics—Determination of Tensile Properties. Part 4: Test Conditions for Isotropic and Orthotropic fibre-Reinforced Plastic Composites. ed. 3; International Organization for Standardization: Geneva, Switzerland, 2023.
- ISO 527-5:2021; Plastics—Determination of Tensile Properties. Part 5: Test Conditions for Unidirectional Fibre-Reinforced Plastic Composites. ed. 3; International Organization for Standardization: Geneva, Switzerland, 2021.
- ISO 14125:1998; Fibre-Reinforced Plastic Composites—Determination of Flexural Properties. ed. 1; International Organization for Standardization: Geneva, Switzerland, 1998.
- ISO 179-1:2023; Plastics—Determination of Charpy Impact Properties. Part 1: Non-Instrumented Impact Test. ed. 3; International Organization for Standardization: Geneva, Switzerland, 2023.
- ISO 179-2:2020; Plastics—Determination of Charpy Impact Properties. Part 2: Instrumented Impact Test. ed. 2; International Organization for Standardization: Geneva, Switzerland, 2020.
- ISO 180:2023; Plastics—Determination of Izod Impact Strength. ed. 5; International Organization for Standardization: Geneva, Switzerland, 2023.
- ISO 604:2002; Plastics—Determination of Compressive Properties. ed. 3; International Organization for Standardization: Geneva, Switzerland, 2002.
- ISO 14126:2023; Fibre-Reinforced Plastic Composites—Determination of Compressive Properties in the in-Plane Direction. ed. 2; International Organization for Standardization: Geneva, Switzerland, 2023.
- ISO 13003:2003; Fibre-Reinforced Plastics—Determination of Fatigue Properties under Cyclic Loading Conditions. ed. 1; International Organization for Standardization: Geneva, Switzerland, 2003.
- ISO 899-1:2017; Plastics—Determination of Creep Behaviour. Part 1: Tensile creep. ed. 3; International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 899-2:2024; Plastics—Determination of Creep Behaviour. Part 2: Flexural Creep by Three-Point Loading. ed. 3; International Organization for Standardization: Geneva, Switzerland, 2024.
- ISO 15310:1999; Fibre-reinforced Plastic Composites—Determination of the in-Plane Shear Modulus by the Plate Twist Method. ed. 1; International Organization for Standardization: Geneva, Switzerland, 1999.
- ISO 868:2003; Plastics and Ebonite—Determination of Indentation Hardness by Means of a Durometer (Shore Hardness). ed. 3; International Organization for Standardization: Geneva, Switzerland, 2003.
- ISO 2039-1:2001; Plastics—Determination of Hardness. Part 1: Ball Indentation Method. ed. 3; International Organization for Standardization: Geneva, Switzerland, 2001.
- ISO 2039-2:1987; Plastics—Determination of Hardness. Part 2: Rockwell Hardness. ed. 2; International Organization for Standardization: Geneva, Switzerland, 1987.
- ISO 291:2008; Plastics—Standard Atmospheres for Conditioning and Testing. ed. 4; International Organization for Standardization: Geneva, Switzerland, 2008.
- ISO 293:2023; Plastics—Compression Moulding of Test Specimens of Thermoplastic Materials. ed. 4; International Organization for Standardization: Geneva, Switzerland, 2023.
- ISO 1268-1:2001; Fibre-Reinforced Plastics—Methods of Producing Test Plates. Part 1: General conditions. ed. 1; International Organization for Standardization: Geneva, Switzerland, 2001.
- ISO 294-4:2018; Plastics—Injection Moulding of Test Specimens of Thermoplastic Materials. Part 4: Determination of moulding shrinkage. ed. 3; International Organization for Standardization: Geneva, Switzerland, 2018.
- ISO 294-5:2017; Plastics—Injection Moulding of Test Specimens of Thermoplastic Materials. Part 5: Preparation of standard specimens for investigating anisotropy. ed. 3; International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 295:2004; Plastics—Compression Moulding of Test Specimens of Thermosetting Materials. ed. 3; International Organization for Standardization: Geneva, Switzerland, 2004.
- Taib, M.N.A.M.; Julkapli, N.M. Dimensional stability of natural fiber-based and hybrid composites. In Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites; Jawaid, M., Thariq, M., Saba, N., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 61–79. [Google Scholar] [CrossRef]
- Saadati, Y.; Chatelain, J.F.; Lebrun, G.; Beauchamp, Y. Comparison of density measurement methods for unidirectional flax-epoxy polymer composites. In Proceedings of the European Conference on Multifunctional Structures EMuS 2019, Barcelona, Spain, 11–12 June 2019; Martinez, X., Schippers, H., Eds.; International Centre for Numerical Methods in Engineering (CIMNE): Barcelona, Spain, 2019. [Google Scholar]
- Kumar, S.; Mahakur, V.K.; Bhowmik, S. Physico-mechanical and Tribological Characteristics of Flax–Ramie Fiber Reinforced Green Composites and Anticipation of Fabricated Composites Under Different Loading with Sliding Constraint. Arab. J. Sci. Eng. 2024, 49, 2463–2482. [Google Scholar] [CrossRef]
- Awad, S.A.; Jawaid, M.; Ismail, A.S.; Khalaf, E.M.; Abu-Jdayil, B. Dimension stability, tensile and thermomechanical properties of bamboo/oil palm fibre reinforced bio-epoxy hybrid biocomposites. J. Mater. Res. Technol. 2024, 30, 7440–7446. [Google Scholar] [CrossRef]
- Uzay, Ç.; Çetin, A.; Geren, N. Physical and mechanical properties of laminar composites depending on the production methods: An experimental investigation. Sādhanā 2022, 47, 262. [Google Scholar] [CrossRef]
- Ramezani Kakroodi, A.; Kazemi, Y.; Rodrigue, D. Mechanical, rheological, morphological and water absorption properties of maleated polyethylene/hemp composites: Effect of ground tire rubber addition. Compos. B Eng. 2013, 51, 337–344. [Google Scholar] [CrossRef]
- Raghu, M.J.; Goud, G. Effect of Water Absorption on Mechanical Properties of Calotropis Procera Fiber Reinforced Polymer Composites. J. Appl. Agric. Sci. Technol. 2020, 4, 3–11. [Google Scholar] [CrossRef]
- Mohammed, M.; Jawad, A.J.M.; Mohammed, A.M.; Oleiwi, J.K.; Adam, T.; Osman, A.F.; Dahham, O.S.; Betar, B.O.; Gopinath, S.C.B.; Jaafar, M. Challenges and advancement in water absorption of natural fiber-reinforced polymer composites. Polym. Test. 2023, 124, 108083. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, T.; Wang, X.; Zheng, Y.; Zheng, J.; Song, G.; Liu, S. Recent Progress on Moisture Absorption Aging of Plant Fiber Reinforced Polymer Composites. Polymers 2023, 15, 4121. [Google Scholar] [CrossRef] [PubMed]
- Le Moigne, N.; Otazaghine, B.; Corn, S.; Angellier-Coussy, H.; Bergeret, A. Surfaces and Interfaces in Natural Fibre Reinforced Composites; Springer Publishing: New York, NY, USA, 2018; pp. 1–22. [Google Scholar]
- Azmah Hanim, M.A.; Hashmi, M.S.J.; Brabazon, D. Voids in biocomposites and their hybrids: Origin, effect on moisture absorption, and optical analysis. In Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites; Jawaid, M., Thariq, M., Saba, N., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 193–213. [Google Scholar]
- Sanjeevi, S.; Shanmugam, V.; Kumar, S.; Ganesan, V.; Sas, G.; Johnson, D.J.; Shanmugam, M.; Ayyanar, A.; Naresh, K.; Neisiany, R.E.; et al. Effects of water absorption on the mechanical properties of hybrid natural fibre/phenol formaldehyde composites. Sci. Rep. 2021, 11, 13385. [Google Scholar] [CrossRef]
- Halip, J.A.; Hua, L.S.; Ahaari, Z.; Tahir, P.M.; Chen, L.W.; Anwar Uyup, M.K. Effect of treatment on water absorption behavior of natural fiber–reinforced polymer composites. In Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites; Jawaid, M., Thariq, M., Saba, N., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 141–156. [Google Scholar] [CrossRef]
- Sreekumar, P.A.; Thomas, S.P.; Saiter, J.M.; Joseph, K.; Unnikrishnan, G.; Thomas, S. Effect of fiber surface modification on the mechanical and water absorption characteristics of sisal/polyester composites fabricated by resin transfer molding. Compos. Part A Appl. Sci. Manuf. 2009, 40, 1777–1784. [Google Scholar] [CrossRef]
- Thirumalaisamy, R.; Senthil Kumar, S.; Chelladurai, S.J.S.; Gnanasekaran, S.; Sivananthan, S.; Geetha, N.K.; Ramesh, A.; Assefa, G.B. Study on Water Absorption Characteristics, Various Chemical Treatments, and Applications of Biological Fiber-Reinforced Polymer Matrix Composites. J. Nanomater. 2023, 2023, 9903119. [Google Scholar] [CrossRef]
- Salem, I.A.S.; Rozyanty, A.R.; Betar, B.O.; Adam, T.; Mohammed, M.; Mohammed, A.M. Study of the effect of surface treatment of kenaf fiber on chemical structure and water absorption of kenaf filled unsaturated polyester composite. J. Phys. Conf. Ser. 2017, 908, 012001. [Google Scholar] [CrossRef]
- Pang, A.L.; Ismail, H.; Abu Bakar, A. Effects of Kenaf Loading on Processability and Properties of Linear Low-Density Polyethylene/Poly (Vinyl Alcohol)/Kenaf Composites. Bioresources 2015, 10, 7302. [Google Scholar] [CrossRef]
- Jha, K.; Maurya, H.O.; Bisaria, H.; Tyagi, Y.K. Behavior of Water Absorption Characteristics of Non-Biodegradable and Biodegradable Polymeric NFRC’s. JBAER 2016, 3, 132–136. [Google Scholar]
- Mokhothu, T.H.; John, M.J. Bio-based coatings for reducing water sorption in natural fibre reinforced composites. Sci. Rep. 2017, 7, 13335. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M. Investigations on jute fibre-reinforced polyester composites: Effect of alkali treatment and poly(lactic acid) coating. J. Ind. Text. 2020, 49, 923–942. [Google Scholar] [CrossRef]
- Xie, Y.; Hill, C.A.S.; Xiao, Z.; Militz, H.; Mai, C. Silane coupling agents used for natural fiber/polymer composites: A review. Compos. Part A Appl. Sci. Manuf. 2010, 41, 806–819. [Google Scholar] [CrossRef]
- Jeevetha, T.; Sivakumar, A. Effect of Silane Treatment on Accelerated Ageing Conditions of Recycled Plastic Foam and Areca Nut Fibre Reinforced Vinyl Ester Composite. Silicon 2024, 16, 3073–3084. [Google Scholar] [CrossRef]
- Matykiewicz, D.; Dudziec, B.; Skórczewska, K.; Sałasińska, K. The Effect of Silanes Treatments on Thermal and Mechanical Properties of Nettle Fibre/Bio Epoxy Composites. J. Nat. Fibers 2024, 21, 2332913. [Google Scholar] [CrossRef]
- Gupta, M.K.; Ramesh, M.; Thomas, S. Effect of hybridization on properties of natural and synthetic fiber-reinforced polymer composites (2001–2020): A review. Polym. Compos. 2021, 42, 4981–5010. [Google Scholar] [CrossRef]
- Salman, S.D. Partial replacement of synthetic fibres by natural fibres in hybrid composites and its effect on monotonic properties. J. Ind. Text. 2021, 51, 258–276. [Google Scholar] [CrossRef]
- Sahu, P.; Gupta, M. Water absorption behavior of cellulosic fibres polymer composites: A review on its effects and remedies. J. Ind. Text. 2022, 51 (Suppl. S5), 7480S–7512S. [Google Scholar] [CrossRef]
- Wu, Y.; Xia, C.; Cai, L.; Shi, S.Q.; Cheng, J. Water-resistant hemp fiber-reinforced composites: In-situ surface protection by polyethylene film. Ind. Crops. Prod. 2018, 112, 210–216. [Google Scholar] [CrossRef]
- ISO 1183-1:2019; Plastics—Methods for Determining the Density of Non-Cellular Plastics. Part 1: Immersion method, liquid pycnometer method and titration method. ed. 3; International Organization for Standardization: Geneva, Switzerland, 2019.
- ISO 1183-2:2019; Plastics—Methods for Determining the Density of Non-Cellular Plastics. Part 2: Density gradient column method. ed. 2; International Organization for Standardization: Geneva, Switzerland, 2019.
- ISO 1183-3:1999; Plastics—Methods for Determining the Density of Non-Cellular Plastics. Part 3: Gas Pyknometer Method. ed. 1; International Organization for Standardization: Geneva, Switzerland, 1999.
- ISO 62:2008; Plastics—Determination of Water Absorption. ed. 3; International Organization for Standardization: Geneva, Switzerland, 2008.
- ISO 3146:2022; Plastics—Determination of Melting Behaviour (Melting Temperature or Melting Range) of Semi-Crystalline Polymers by Capillary Tube and Polarizing-Microscope Methods. ed. 4; International Organization for Standardization: Geneva, Switzerland, 2022.
- ISO 11357-1:2023; Plastics—Differential Scanning Calorimetry (DSC). Part 1: General Principles. ed. 4; International Organization for Standardization: Geneva, Switzerland, 2023.
- ISO 11357-2:2020; Plastics—Differential Scanning Calorimetry (DSC). Part 2: Determination of Glass Transition Temperature and Step Height. ed. 3; International Organization for Standardization: Geneva, Switzerland, 2020.
- ISO 11357-3:2018; Plastics—Differential Scanning Calorimetry (DSC). Part 3: Determination of Temperature and Enthalpy of Melting and Crystallization. ed. 3; International Organization for Standardization: Geneva, Switzerland, 2018.
- ISO 1133-1:2022; Plastics—Determination of the Melt Mass-Flow Rate (MFR) and Melt Volume-Flow Rate (MVR) of Thermoplastics. Part 1: Standard Method. ed. 2; International Organization for Standardization: Geneva, Switzerland, 2022.
- ISO 11357-4:2021; Plastics—Differential Scanning Calorimetry (DSC). Part 4: Determination of Specific heat Capacity. ed. 3; International Organization for Standardization: Geneva, Switzerland, 2021.
- ISO 11357-8:2021; Plastics—Differential Scanning Calorimetry (DSC). Part 8: Determination of Thermal Conductivity. ed. 1; International Organization for Standardization: Geneva, Switzerland, 2021.
- Madyaratri, E.W.; Ridho, M.R.; Aristri, M.A.; Lubis, M.A.R.; Iswanto, A.H.; Nawawi, D.S.; Antov, P.; Kristak, L.; Majlingová, A.; Fatriasari, W. Recent Advances in the Development of Fire-Resistant Biocomposites—A Review. Polymers 2022, 14, 362. [Google Scholar] [CrossRef]
- ISO 8191-1:1987; Furniture—Assessment of the Ignitability of Upholstered Furniture. Part 1: Ignition Source: Smouldering Cigarette. ed. 1; International Organization for Standardization: Geneva, Switzerland, 1987.
- ISO 8191-2:1988; Furniture—Assessment of Ignitability of Upholstered Furniture. Part 2: Ignition Source: Match-Flame Equivalent. ed. 1; International Organization for Standardization: Geneva, Switzerland, 1988.
- Dalfi, H.K.; Jan, K.; Al-Badri, A.; Peerzada, M.; Yousaf, Z.; Parnell, W.; Morrison, N.; Bari, K. Enhancing the fire-resistance performance of composite laminates via multi-scale hybridisation: A review. J. Ind. Text. 2024, 54, 15280837241226988. [Google Scholar] [CrossRef]
- Tawfik, S.Y. Flame Retardants: Additives in Plastic Technology. In Polymers and Polymeric Composites: A Reference Series; Kar, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–27. [Google Scholar] [CrossRef]
- Sahoo, D.R.; Biswal, T. Fire retardant additives of polymer based composites. OAIJSE 2021, 6, 84–90. [Google Scholar]
- Villamil Watson, D.A.; Schiraldi, D.A. Biomolecules as Flame Retardant Additives for Polymers: A Review. Polymers 2020, 12, 849. [Google Scholar] [CrossRef] [PubMed]
- Saeb, M.R.; Vahabi, H. Sustainable Flame-Retardant Additives for Polymers: Future Perspectives. Polymers 2023, 15, 1469. [Google Scholar] [CrossRef] [PubMed]
- Pornwannachai, W.; Ebdon, J.R.; Kandola, B.K. Fire-resistant natural fibre-reinforced composites from flame retarded textiles. Polym. Degrad. Stab. 2018, 154, 115–123. [Google Scholar] [CrossRef]
- Peng, S.Y.; Wen, S.Y.; Xin, P.Z.; Jegachandra, S.; Fouladi, M.H.; Shamel, M.M.; Hwa, C.C.; Namasivayam, S.N.; Ghassem, M.; Nor, M.J.M. Improvement of Fire Retardant Property of Natural Fiber. Appl. Mech. Mater. 2013, 471, 261–266. [Google Scholar] [CrossRef]
- Sonnier, R.; Taguet, A.; Ferry, L.; Lopez-Cuesta, J.M. Towards Bio-Based Flame Retardant Polymers; Springer: Cham, Switzerland, 2018; pp. 73–98. [Google Scholar] [CrossRef]
- Maksym, L.; Prabhakar, M.N.; Jung-il, S. Preparation of a novel bio-flame-retardant liquid for flame retardancy of natural fibers and their composites. J. Ind. Text. 2022, 51 (Suppl. S4), 7153S–7171S. [Google Scholar] [CrossRef]
- Malucelli, G. Bio-Sourced Flame Retardants for Textiles: Where We Are and Where We Are Going. Molecules 2024, 29, 3067. [Google Scholar] [CrossRef]
- Brendlé, C.; El Hage, R.; Clément, J.-L.; Rouif, S.; Sonnier, R.; Otazaghine, B. Flame Retardancy of Short Flax Fibers Modified by Radiation-Induced Grafting of Phosphonated Monomers: Comparison between Pre- and Simultaneous Irradiation Grafting. Molecules 2024, 29, 1176. [Google Scholar] [CrossRef]
- Kang, F.; Han, H.; Wang, H.; He, D.; Zhou, M. Construction of a flame retardant three-dimensional network structure in sisal/polypropylene composites. Ind. Crops. Prod. 2024, 209, 117973. [Google Scholar] [CrossRef]
- Yu, X.; He, L.; Zhang, X.; Bao, G.; Zhang, R.; Jin, X.; Qin, D. Eco-friendly flame-retardant bamboo fiber/polypropylene composite based on the immobilization of halloysite nanotubes by tannic acid-Fe3+ complex. Int. J. Biol. Macromol. 2024, 265, 130894. [Google Scholar] [CrossRef] [PubMed]
- Mohd Sabee, M.M.S.; Itam, Z.; Beddu, S.; Zahari, N.M.; Mohd Kamal, N.L.; Mohamad, D.; Zulkepli, N.A.; Shafiq, M.D.; Abdul Hamid, Z.A. Flame Retardant Coatings: Additives, Binders, and Fillers. Polymers 2022, 14, 2911. [Google Scholar] [CrossRef] [PubMed]
- Li, F.-F. Comprehensive Review of Recent Research Advances on Flame-Retardant Coatings for Building Materials: Chemical Ingredients, Micromorphology, and Processing Techniques. Molecules 2023, 28, 1842. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Yu, Q.; Yu, B.; Zhou, F. New Progress in the Application of Flame-Retardant Modified Epoxy Resins and Fire-Retardant Coatings. Coatings 2023, 13, 1663. [Google Scholar] [CrossRef]
- Hasan, K.M.F.; Horváth, P.G.; Kóczán, Z.; Bak, M.; Bejó, L.; Alpár, T. Flame-retardant hybrid composite manufacturing through reinforcing lignocellulosic and carbon fibers reinforced with epoxy resin (F@LC). Cellulose 2023, 30, 4337–4352. [Google Scholar] [CrossRef]
- Raja, T.; Yuvarajan, D.; Ali, S.; Dhanraj, G.; Kaliappan, N. Fabrication of glass/madar fibers reinforced hybrid epoxy composite: A comprehensive study on the material stability. Sci. Rep. 2024, 14, 8374. [Google Scholar] [CrossRef]
- Jeencham, R.; Suppakarn, N.; Jarukumjorn, K. Effect of flame retardants on flame retardant, mechanical, and thermal properties of sisal fiber/polypropylene composites. Compos. B Eng. 2014, 56, 249–253. [Google Scholar] [CrossRef]
- Ching, Y.C.; Gunathilake, T.U.; Ching, K.Y.; Chuah, C.H.; Sandu, V.; Singh, R.; Liou, N.-S. Effects of high temperature and ultraviolet radiation on polymer composites. In Durability and Life Prediction in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites; Jawaid, M., Thariq, M., Saba, N., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 407–426. [Google Scholar] [CrossRef]
- Gijsman, P. A review on the mechanism of action and applicability of Hindered Amine Stabilizers. Polym. Degrad. Stab. 2017, 145, 2–10. [Google Scholar] [CrossRef]
- Celebi, M.; Altun, M.; Ovali, S. The effect of UV additives on thermo-oxidative and color stability of pistachio shell reinforced polypropylene composites. Polym. Polym. Compos. 2022, 30, 096739112210817. [Google Scholar] [CrossRef]
- Costa, T.; Sampaio-Marques, B.; Neves, N.M.; Aguilar, H.; Fraga, A.G. Antimicrobial properties of hindered amine light stabilizers in polymer coating materials and their mechanism of action. Front. Bioeng. Biotechnol. 2024, 12, 1–16. [Google Scholar] [CrossRef]
- Xing, J.; Yuan, D.; Xie, H.; Wang, N.; Liu, H.; Yang, L.; Xu, Y.; Liu, Z. Preparation of Efficient Ultraviolet-Protective Transparent Coating by Using a Titanium-Containing Hybrid Oligomer. ACS Appl. Mater. Interfaces 2021, 13, 5592–5601. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Wang, W.; Wang, Q.; Zhang, Z.; Sui, S.; Zhang, Y. Effects of pigments on the UV degradation of wood-flour/HDPE composites. J. Appl. Polym. Sci. 2010, 118, 1068–1076. [Google Scholar] [CrossRef]
- Rasouli, D.; Dintcheva, N.T.; Faezipour, M.; La Mantia, F.P.; Mastri Farahani, M.R.; Tajvidi, M. Effect of nano zinc oxide as UV stabilizer on the weathering performance of wood-polyethylene composite. Polym. Degrad. Stab. 2016, 133, 85–91. [Google Scholar] [CrossRef]
- Durmaz, S.; Keles, O.O.; Aras, U.; Erdil, Y.Z.; Mengeloglu, F. The effect of zinc oxide nanoparticles on the weathering performance of wood-plastic composites. Color Technol. 2023, 139, 430–440. [Google Scholar] [CrossRef]
- Durmaz, S.; Ozgenc Keles, O.; Aras, U.; Avci, E.; Atar, I. Improvement of weathering and thermal resistance of wood-plastic composites with iron oxide nanoparticles. J. Thermoplast. Compos. Mater. 2024, 37, 1050–1066. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Fu, F.; Qian, Y.; Xiao, Y.; Yang, D.; Qiu, X. Controlled preparation of lignin/titanium dioxide hybrid composite particles with excellent UV aging resistance and its high value application. Int. J. Biol. Macromol. 2020, 150, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Zhong, B.; Tang, Y.; Chen, Y.; Luo, Y.; Jia, Z.; Jia, D. Improvement of UV aging resistance of PBAT composites with silica-immobilized UV absorber prepared by a facile method. Polym. Degrad. Stab. 2023, 211, 110337. [Google Scholar] [CrossRef]
- Akindoyo, J.O.; Beg, M.D.H.; Ghazali, S.; Heim, H.P.; Feldmann, M.; Mariatti, M. Oxidative induction and performance of oil palm fiber reinforced polypropylene composites—Effects of coupling agent and UV stabilizer. Compos. Part A Appl. Sci. Manuf. 2019, 125, 105577. [Google Scholar] [CrossRef]
- Hao, R.; Xue, S.; Sun, H.; Yang, T.; Wang, H. Emission Characteristics and the Environmental Impact of VOCs from Typical FRP Manufacture Industry. Atmosphere 2022, 13, 1274. [Google Scholar] [CrossRef]
- Xiong, J.; Chen, F.; Sun, L.; Yu, X.; Zhao, J.; Hu, Y.; Wang, Y. Characterization of VOC emissions from composite wood furniture: Parameter determination and simplified model. Build. Environ. 2019, 161, 106237. [Google Scholar] [CrossRef]
- Wolff, S.; Rüppel, A.; Rida, H.A.; Heim, H.-P. Emission and Mechanical Properties of Glass and Cellulose Fiber Reinforced Bio-Polyamide Composites. Polymers 2023, 15, 2603. [Google Scholar] [CrossRef] [PubMed]
- Chaussoy, N.; Brandt, D.; Gérard, J.F. Formaldehyde-Free and Phenol-Free Non-toxic Phenolic Resins with High Thermostability. ACS Appl. Polym. Mater. 2023, 5, 5630–5640. [Google Scholar] [CrossRef]
- Rebei, M.; Mahun, A.; Walterová, Z.; Trhlíková, O.; Donato, R.K.; Beneš, H. VOC-free tricomponent reaction platform for epoxy network formation mediated by a recyclable ionic liquid. Polym. Chem. 2022, 13, 5380–5388. [Google Scholar] [CrossRef]
- Kim, K.W.; Lee, B.H.; Kim, S.; Kim, H.J.; Yun, J.H.; Yoo, S.E.; Sohn, J.R. Reduction of VOC emission from natural flours filled biodegradable bio-composites for automobile interior. J. Hazard. Mater. 2011, 187, 37–43. [Google Scholar] [CrossRef]
- Mensah, R.A.; Shanmugam, V.; Narayanan, S.; Renner, J.S.; Babu, K.; Neisiany, R.E.; Försth, M.; Sas, G.; Das, O. A review of sustainable and environment-friendly flame retardants used in plastics. Polym. Test. 2022, 108, 107511. [Google Scholar] [CrossRef]
- Oliviero, M.; Stanzione, M.; D’Auria, M.; Sorrentino, L.; Iannace, S.; Verdolotti, L. Vegetable Tannin as a Sustainable UV Stabilizer for Polyurethane Foams. Polymers 2019, 11, 480. [Google Scholar] [CrossRef]
- Chollakup, R.; Smitthipong, W.; Suwanruji, P. Environmentally Friendly Coupling Agents for Natural Fibre Composites. In Natural Polymers; John, M., Thomas, S., Eds.; RSC Publishing: Cambridge, UK, 2012; pp. 161–182. [Google Scholar] [CrossRef]
- Li, Z.; Wei, X.; Liu, J.; Han, H.; Jia, H.; Song, J. Mechanical Properties and VOC Emission of Hemp Fibre Reinforced Polypropylene Composites: Natural Freezing-mechanical Treatment and Interface Modification. Fiber Polym. 2021, 22, 1050–1062. [Google Scholar] [CrossRef]
- Jawaid, M.; Khalil, H.P.S.A.; Bakar, A.A. Hybrid composites of oil palm empty fruit bunches/woven jute fiber: Chemical resistance, physical, and impact properties. J. Compos. Mater. 2011, 45, 2515–2522. [Google Scholar] [CrossRef]
- ISO 4589-1:2017; Plastics—Determination of Burning Behaviour by Oxygen Index. Part 1: General Requirements. ed. 2; International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 4589-2:2017; Plastics—Determination of Burning Behaviour by Oxygen Index. Part 2: Ambient-Temperature Test. ed. 2; International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 4589-3:2017; Plastics—Determination of Burning Behaviour by Oxygen Index. Part 3: Elevated-Temperature test. ed. 2; International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 5660-1:2015; Reaction-to-Fire Tests—Heat Release, Smoke Production and Mass Loss Rate. Part 1: Heat Release Rate (Cone Calorimeter Method) and Smoke Production Rate (Dynamic Measurement). ed. 3; International Organization for Standardization: Geneva, Switzerland, 2015.
- ISO/TS 5660-3:2012; Reaction-to-Fire Tests—Heat Release, Smoke Production and Mass Loss Rate. Part 3: Guidance on Measurement. ed. 1; International Organization for Standardization: Geneva, Switzerland, 2012.
- ISO/TS 5658-1:2006; Reaction to Fire Tests—Spread of Flame. Part 1: Guidance on Flame Spread. ed. 1; International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 5658-4:2001; Reaction to Fire Tests—Spread of Flame. Part 4: Intermediate-Scale Test of Vertical Spread of Flame with Vertically Oriented Specimen. ed. 1; International Organization for Standardization: Geneva, Switzerland, 2001.
- ISO 4892-1:2016; Plastics—Methods of Exposure to Laboratory Light Sources. Part 1: General Guidance and Requirements. ed. 4; International Organization for Standardization: Geneva, Switzerland, 2016.
- ISO 4892-2:2013; Plastics—Methods of Exposure to Laboratory Light Sources. Part 2: Xenon-arc Lamps. ed. 3; International Organization for Standardization: Geneva, Switzerland, 2013.
- ISO 4892-3:2024; Plastics—Methods of Exposure to Laboratory Light Sources. Part 3: Fluorescent UV Lamps. ed. 5; International Organization for Standardization: Geneva, Switzerland, 2024.
- ISO 4892-4:2013; Plastics—Methods of Exposure to Laboratory Light Sources. Part 4: Open-Flame Carbon-arc Lamps. ed. 3; International Organization for Standardization: Geneva, Switzerland, 2013.
- ISO 16000-9:2024; Part 9: Determination of the Emission of Volatile Organic Compounds from Samples of Building Products and furnishing—Emission Test Chamber Method, ed2. International Organization for Standardization: Geneva, Switzerland, 2024.
- ISO 175:2010; Plastics—Methods of Test for the Determination of the Effects of Immersion in Liquid Chemicals. ed. 3; International Organization for Standardization: Geneva, Switzerland, 2010.
- Gardner, D.J.; Han, Y.; Wang, L. Wood–Plastic Composite Technology. Curr. For. Rep. 2015, 1, 139–150. [Google Scholar] [CrossRef]
- Ozili, P.K. Sustainability and Sustainable Development Research around the World. Manag. Glob. Transit. 2022, 20, 259–293. [Google Scholar] [CrossRef]
- A New Circular Economy Action Plan for a Cleaner and More Competitive Europe. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0098 (accessed on 21 June 2024).
- Forrest, A.; Hilton, M.; Ballinger, A.; Whittaker, D. Circular Economy Opportunities in the Furniture Sector; Brussels, Belgium. 2017. Available online: https://eunomia.eco/reports/circular-economy-opportunities-in-the-furniture-sector/ (accessed on 18 August 2024).
- Innocenti, F.D. Biodegradability and Compostability. In Biodegradable Polymers and Plastics; Chiellini, E., Solaro, R., Eds.; Springer: Boston, MA, USA, 2003; pp. 33–45. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Zuhri, M.Y.M.; Aisyah, H.A.; Asyraf, M.R.M.; Hassan, S.A.; Zainudin, E.S.; Sapuan, S.M.; Sharma, S.; Bangar, S.P.; Jumaidin, R.; et al. Natural Fiber-Reinforced Polylactic Acid, Polylactic Acid Blends and Their Composites for Advanced Applications. Polymers 2022, 14, 202. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.A.; Islam, M.M.; Yang, C.; Wodag, A.F.; Wang, R.; Chen, W.; Zhou, B.; Gao, S.; Xu, F. Development of three dimensional (3D) woven flax/PLA composites with high mechanical and thermal properties using braided yarns. Ind. Crops. Prod. 2024, 222, 119580. [Google Scholar] [CrossRef]
- Gamiz-Conde, A.K.; Burelo, M.; Franco-Urquiza, E.A.; Martínez-Franco, E.; Luna-Barcenas, G.; Bravo-Alfaro, D.A.; Treviño-Quintanilla, C. Development and properties of bio-based polymer composites using PLA and untreated agro-industrial residues. Polym. Test. 2024, 139, 108576. [Google Scholar] [CrossRef]
- ’Atiqah Abdul Azam, F.; Tharazi, I.; Bakar Sulong, A.; Che Omar, R.; Muhamad, N. Mechanical durability and degradation characteristics of long kenaf-reinforced PLA composites fabricated using an eco-friendly method. Eng. Sci. Technol. Int. J. 2024, 57, 101820. [Google Scholar] [CrossRef]
- Charca, S.; Jiao-Wang, L.; Loya, J.A.; Martínez, M.A.; Santiuste, C. High cycle fatigue life analysis of unidirectional flax/PLA composites through infrared thermography. Compos. Struct. 2024, 344, 118370. [Google Scholar] [CrossRef]
- Brunšek, R.; Kopitar, D.; Schwarz, I.; Marasović, P. Biodegradation Properties of Cellulose Fibers and PLA Biopolymer. Polymers 2023, 15, 3532. [Google Scholar] [CrossRef]
- Swetha, T.A.; Bora, A.; Mohanrasu, K.; Balaji, P.; Raja, R.; Ponnuchamy, K.; Muthusamy, G.; Arun, A. A comprehensive review on polylactic acid (PLA)—Synthesis, processing and application in food packaging. Int. J. Biol. Macromol. 2023, 234, 123715. [Google Scholar] [CrossRef]
- Jung, J.-W.; Kim, S.-H.; Kim, S.-H.; Park, J.-K.; Lee, W.-I. Research on the development of the properties of PLA composites for automotive interior parts. Compos. Res. 2011, 24, 1–5. [Google Scholar] [CrossRef]
- DeStefano, V.; Khan, S.; Tabada, A. Applications of PLA in modern medicine. Eng. Regen. 2020, 1, 76–87. [Google Scholar] [CrossRef]
- Zheng, G.; Kang, X.; Ye, H.; Fan, W.; Sonne, C.; Lam, S.S.; Liew, R.K.; Xia, C.; Shi, Y.; Ge, S. Recent advances in functional utilisation of environmentally friendly and recyclable high-performance green biocomposites: A review. Chin. Chem. Lett. 2024, 35, 108817. [Google Scholar] [CrossRef]
- Pycka, S.; Roman, K. Comparison of Wood-Based Biocomposites with Polylactic Acid (PLA) Density Profiles by Desaturation and X-ray Spectrum Methods. Materials 2023, 16, 5729. [Google Scholar] [CrossRef] [PubMed]
- ISO 10210:2012; Plastics—Methods for the Preparation of Samples for Biodegradation Testing of plastic Materials. ed. 1; International Organization for Standardization: Geneva, Switzerland, 2012.
- ISO 846:2019; Plastics—Evaluation of the Action of Microorganisms. ed. 3; International Organization for Standardization: Geneva, Switzerland, 2019.
- ISO 14853:2016; Plastics—Determination of the Ultimate Anaerobic Biodegradation of Plastic Materials in an Aqueous System—Method by Measurement of Biogas Production. ed. 2; International Organization for Standardization: Geneva, Switzerland, 2016.
- ISO 19679:2020; Plastics—Determination of Aerobic Biodegradation of Non-Floating Plastic Materials in a Seawater/Sediment Interface—Method by Analysis of Evolved Carbon Dioxide. ed. 2; International Organization for Standardization: Geneva, Switzerland, 2020.
- ISO 17088:2021; Plastics—Organic recycling—Specifications for Compostable Plastics. ed. 3; International Organization for Standardization: Geneva, Switzerland, 2021.
- ISO 16929:2021; Plastics—Determination of the Degree of Disintegration of Plastic Materials under Defined Composting Conditions in a Pilot-Scale Test. ed. 4; International Organization for Standardization: Geneva, Switzerland, 2021.
- Protano, C.; Buomprisco, G.; Cammalleri, V.; Pocino, R.N.; Marotta, D.; Simonazzi, S.; Cardoni, F.; Petyx, M.; Iavicoli, S.; Vitali, M. The Carcinogenic Effects of Formaldehyde Occupational Exposure: A Systematic Review. Cancers 2022, 14, 165. [Google Scholar] [CrossRef] [PubMed]
- EN 13986:2005+A1:2015; Wood-Based Panels for Use in Construction - Characteristics, Evaluation of Conformity and Marking. European Committee for Standardization: Brussels, Belgium, 2015.
- ISO 14184-1:2011; Textiles—Determination of Formaldehyde. Part 1: Free and Hydrolysed Formaldehyde (Water Extraction Method). ed. 2; International Organization for Standardization: Geneva, Switzerland, 2011.
- ISO 14184-2:2011; Textiles—Determination of Formaldehyde. Part 2: Released Formaldehyde (Vapour Absorption Method). ed. 2; International Organization for Standardization: Geneva, Switzerland, 2011.
- Rajaram, S.; Subbiah, T.; Arockiasamy, F.S.; Iyyadurai, J. Transforming Agricultural Waste into Sustainable Composite Materials: Mechanical Properties of Tamarindus Fruit Fiber (TFF)-Reinforced Polylactic Acid Composites. Eng. Proc. 2024, 61, 32. [Google Scholar] [CrossRef]
- Phiri, R.; Mavinkere Rangappa, S.; Siengchin, S.; Oladijo, O.P.; Dhakal, H.N. Development of sustainable biopolymer-based composites for lightweight applications from agricultural waste biomass: A review. Adv. Ind. Eng. Polym. Res. 2023, 6, 436–450. [Google Scholar] [CrossRef]
- Vigneswari, S.; Kee, S.H.; Hazwan, M.H.; Ganeson, K.; Tamilselvan, K.; Bhubalan, K.; Amirul, A.A.; Ramakrishna, S. Turning agricultural waste streams into biodegradable plastic: A step forward into adopting sustainable carbon neutrality. J. Environ. Chem. Eng. 2024, 12, 112135. [Google Scholar] [CrossRef]
- Hosseini Hashemi, S.K.; Eshghi, A.; Shirmohammadli, Y. Properties of biocomposites produced with polypropylene and willow (Salix babylonica L.) wood/bark. Mobilya Ahşap Malzeme Araştırmaları Derg. 2023, 6, 134–145. [Google Scholar] [CrossRef]
- Oktaee, J.; Lautenschläger, T.; Günther, M.; Neinhuis, C.; Wagenführ, A.; Lindner, M.; Winkler, A. Characterization of Willow Bast Fibers (Salix spp.) from Short-Rotation Plantation as Potential Reinforcement for Polymer Composites. Bioresources 2017, 12, 4270–4282. [Google Scholar] [CrossRef]
- Zhao, X.; Tekinalp, H.; Meng, X.; Ker, D.; Benson, B.; Pu, Y.; Ragauskas, A.; Wang, Y.; Li, K.; Webb, E.; et al. Poplar as Biofiber Reinforcement in Composites for Large-Scale 3D Printing. ACS Appl. Bio Mater. 2019, 2, 4557–4570. [Google Scholar] [CrossRef] [PubMed]
- Gunti, R.; Ratna Prasad, A.V.; Gupta, A.V.S.S.K.S. Mechanical and degradation properties of natural fiber-reinforced PLA composites: Jute, sisal, and elephant grass. Polym. Compos. 2018, 39, 1125–1136. [Google Scholar] [CrossRef]
- CE Marking. Available online: https://single-market-economy.ec.europa.eu/single-market/ce-marking_en (accessed on 3 September 2024).
Thermoplasts | ρ (g/cm3) | Eten (GPa) | σtens (MPa) | εfailure (%) | Tg (°C) | Tm (°C) |
---|---|---|---|---|---|---|
Polypropylene (PP) | 0.91 | 1.4 | 31–42 | 100–600 | −20 | 165 |
High-density polyethylene (HDPE) | 0.96 | 1.4 | 26 | 2–130 | −133–−100 | 130 |
Polyethylene terephthalate (PET) | 1.3 | 3.5 | 48–73 | 30–300 | 80 | 250 |
Polybutylene terephthalate (PBT) | 1.3 | 2.5 | 56 | 50–300 | 40 | 235 |
Polyamide 6 * (PA6) | 1.1 | 3.0 | 35 | min 50% | 60 | 220 |
Polyamide 66 * (PA66) | 1.1 | 1.3 | 55 | min 50% | 70 | 260 |
Polyamide 12 * (PA12) | 1.01 | 1.1 | 40 | min 50% | 40 | 175 |
Polyvinyl chloride (PVC) | 1.35 | 3.3 | 48 | 145 | 90 | 199 |
Polycarbonate (PC) | 1.2 | 2.2 | 55–75 | 80–150 | 145–150 | 215–230 |
Acrylonitrile–butadiene–styrene (ABS) | 1.05 | 3 | 35 | 102 | 105 |
Thermosets | ρ (g/cm3) | Eten (GPa) | σtens (MPa) | εfailure (%) | Tg (°C) | Cure Shrinkage (%) |
---|---|---|---|---|---|---|
Epoxies | 1.1–1.4 | 2.7–4.1 | 55–130 | 1–6 | 170–300 | 1–5 |
Phenolics | 1.1–1.3 | 4–7 | 50–60 | 175 | 2–4 | |
Polyesters | 1.2–1.5 | 2.1–3.5 | 34–105 | 2 | 130–160 | 5–12 |
Vinyl esters | 1.2–1.4 | 3–3.5 | 73–81 | 4–7 | 5–10 |
Fibers | Density (g/cm3) | Elongation (%) | Tensile Strength (MPa) | Young’s Modulus (GPa) |
---|---|---|---|---|
Flax | 1.5 | 2.7–3.2 | 345–1035 | 27.6 |
Hemp | 1.5 | 1.6 | 690 | 70 |
Jute | 1.3 | 1.5–1.8 | 393–773 | 26.5 |
Ramie | 1.5 | 1.2–3.8 | 400–938 | 61.4–128 |
Sisal | 1.5 | 2–2.5 | 511–635 | 9.4–22 |
Coir | 1.2 | 30 | 175 | 4–6 |
Cotton | 1.5–1.6 | 7.0–8.0 | 287–800 | 5.5–12.6 |
Softwood | 1.5 | – | 1000 | 40 |
Nettle | – | 2.11 | 1594 | 87 |
Curaua | 1.4 | 1.4–4.9 | 87–1150 | 11.8–96 |
Pineapple | 1.526 | 2.4 | 170–1627 | 60–82 |
Bamboo | 0.6–1.1 | 1.3 | 441 | 35.9 |
Piassava | 1.4 | 7.8–21.9 | 134–143 | 1.07–4.59 |
Date palm | - | 3.6 | 135 | 4.6 |
Treatment | Composite | Effect of the Treatment | Ref. |
---|---|---|---|
Alkaline Acetylation | Bamboo fiber/Recycled HDPE | Both treatments enhanced the tensile properties of the composite materials. The optimal tensile strength of the bamboo/recycled HDPE composite was achieved at concentrations of 2.5% NaOH and 7.5% CH3COOH, respectively. | [102] |
Alkaline benzoylation | Sugar palm fiber/Epoxy | The fiber treatments increased the tensile stress and tensile modulus of the composites while decreasing the tensile strain. The enhanced bonding strength between the fiber and matrix was due to the removal of the outer layer and impurities from the fiber during chemical treatment. | [103] |
Silane | Ijuk fiber/PP | The silane-treated composites exhibited a higher tensile strength and tensile modulus while preserving the elongation at break compared to the untreated composites. | [104] |
Maleated PP | Sisal fiber/PP | The composites treated with the 1% maleated PP concentration showed about a 50% increase in tensile strength, a 30% increase in flexural strength, and a 58% increase in impact strength. | [105] |
Plasma treatment | Bamboo fiber/Epoxy | The tensile strength of the composite improved after a 30 min plasma treatment with argon, attributed to the removal of lignin and impurities, as well as increased fiber surface roughness. | [106] |
Corona treatment | Jute fiber/Polyester | Pullout tests showed that fibers immersed in hot water and then subjected to a 10 min corona discharge treatment exhibited a 34% higher adhesion strength compared to untreated fibers. | [107] |
Stress | Standard | Name | Ref. |
---|---|---|---|
Tension | ISO 527-1:2019 | Determination of tensile properties. Part 1: General principles | [133] |
ISO 527-2:2012 | Determination of tensile properties. Part 2: Test conditions for moulding and extrusion plastics | [134] | |
ISO 527-3:2018 | Determination of tensile properties. Part 3: Test conditions for films and sheets | [135] | |
ISO 527-4:2023 | Determination of tensile properties. Part 4: Test conditions for isotropic and orthotropic fibre-reinforced plastic composites | [136] | |
ISO 527-5:2021 | Determination of tensile properties. Part 5: Test conditions for unidirectional fibre-reinforced plastic composites | [137] | |
Flexure | ISO 14125:1998 | Fibre-reinforced plastic composites—Determination of flexural properties | [138] |
Impact | ISO 179-1:2023 | Determination of Charpy impact properties. Part 1: Non-instrumented impact test | [139] |
ISO 179-2:2020 | Determination of Charpy impact properties. Part 2: Instrumented impact test | [140] | |
ISO 180:2023 | Determination of Izod impact strength | [141] | |
Compression | ISO 604:2002 | Determination of compressive properties | [142] |
ISO 14126:2023 | Determination of compressive properties in the in-plane direction | [143] | |
Fatigue | ISO 13003:2003 | Determination of fatigue properties under cyclic loading conditions | [144] |
Creep | ISO 899-1:2017 | Determination of creep behaviour. Part 1: Tensile creep | [145] |
ISO 899-2:2024 | Determination of creep behaviour. Part 2: Flexural creep by three-point loading | [146] | |
Shear | ISO 15310:1999 | Determination of the in-plane shear modulus by the plate twist method | [147] |
Hardness | ISO 868:2003 | Determination of indentation hardness by means of a durometer (Shore hardness) | [148] |
ISO 2039-1:2001 | Determination of hardness—Part 1: Ball indentation method | [149] | |
ISO 2039-2:1987 | Determination of hardness—Part 2: Rockwell hardness | [150] | |
General | ISO 291:2008 | Standard atmospheres for conditioning and testing | [151] |
ISO 293:2023 | Compression moulding of test specimens of thermoplastic materials | [152] | |
ISO 1268-1 | Methods of producing test plates | [153] | |
ISO 294-4:2018 | Injection moulding of test specimens of thermoplastic materials. Part 4: Determination of moulding shrinkage | [154] | |
ISO 294-5:2017 | Injection moulding of test specimens of thermoplastic materials. Part 5: Preparation of standard specimens for investigating anisotropy | [155] | |
ISO 295:2004 | Compression moulding of test specimens of thermosetting materials | [156] |
Composite | Manufacturing Technology | Fiber Content (%) | Density (g/cm3) | Reference |
---|---|---|---|---|
Flax/Epoxy | Resin transfer molding | 41 | 1.2804 | [158] |
Flax/Bio-Epoxy | Hand compression molding | 40 | 1.143 | [159] |
Ramie/Bio-Epoxy | Hand compression molding | 40 | 1.1259 | [159] |
Bamboo/Bio-Epoxy | Compression molding | 40 | 1.2497 | [160] |
Oil palm/Bio-Epoxy | Compression molding | 40 | 1.3038 | [160] |
Carbon/Epoxy | Compression molding | 45 | 1.4334 | [161] |
Property | Standard | Name | Ref. |
---|---|---|---|
Density | ISO 1183-1:2019 | Methods for determining the density of non-cellular plastics. Part 1: Immersion method, liquid pycnometer method and titration method | [184] |
ISO 1183-2:2019 | Methods for determining the density of non-cellular plastics. Part 2: Density gradient column method | [185] | |
ISO 1183-3:1999 | Methods for determining the density of non-cellular plastics. Part 3: Gas pycnometer method | [186] | |
Water absorption | ISO 62:2008 | Determination of water absorption | [187] |
Melting behavior | ISO 3146:2022 | Determination of melting behaviour (melting temperature or melting range) of semi-crystalline polymers by capillary tube and polarizing-microscope methods | [188] |
ISO 11357-1:2023 | Differential scanning calorimetry (DSC). Part 1: General principles | [189] | |
ISO 11357-2:2020 | Differential scanning calorimetry (DSC). Part 2: Determination of glass transition temperature and step height | [190] | |
ISO 11357-3:2018 | Differential scanning calorimetry (DSC). Part 3: Determination of temperature and enthalpy of melting and crystallization | [191] | |
ISO 1133-1:2022 | Determination of the melt mass-flow rate (MFR) and melt volume-flow rate (MVR) of thermoplastics. Part 1: Standard method | [192] | |
Specific heat | ISO 11357-4:2021 | Differential scanning calorimetry (DSC). Part 4: Determination of specific heat capacity | [193] |
Thermal conductivity | ISO 11357-8:2021 | Differential scanning calorimetry (DSC)Part 8: Determination of thermal conductivity | [194] |
Property | Standard | Name | Ref. |
---|---|---|---|
Burning behavior | ISO 4589-1:2017 | Determination of burning behaviour by oxygen index. Part 1: General requirements | [240] |
ISO 4589-2:2017 | Determination of burning behaviour by oxygen index. Part 2: Ambient-temperature test | [241] | |
ISO 4589-3:2017 | Determination of burning behaviour by oxygen index. Part 3: Elevated-temperature test | [242] | |
ISO 5660-1:2015 | Heat release, smoke production and mass loss rate. Part 1: Heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement) | [243] | |
ISO/TS 5660-3:2012 | Heat release, smoke production and mass loss rate. Part 3: Guidance on measurement | [244] | |
ISO/TS 5658-1:2006 | Spread of flame. Part 1: Guidance on flame spread | [245] | |
ISO 5658-4:2001 | Spread of flame. Part 4: Intermediate-scale test of vertical spread of flame with vertically oriented specimen | [246] | |
UV stability | ISO 4892-1:2024 | Methods of exposure to laboratory light sources. Part 1: General guidance and requirements | [247] |
ISO 4892-2:2013 | Methods of exposure to laboratory light sources. Part 2: Xenon-arc lamps | [248] | |
ISO 4892-3:2024 | Methods of exposure to laboratory light sources. Part 3: Fluorescent UV lamps | [249] | |
ISO 4892-4:2013 | Methods of exposure to laboratory light sources. Part 4: Open-flame carbon-arc lamps | [250] | |
VOCs emission | ISO 16000-9:2024 | Indoor air. Part 9: Determination of the emission of volatile organic compounds from samples of building products and furnishing—Emission test chamber method | [251] |
Chemical resistance | ISO 175:2010 | Methods of test for the determination of the effects of immersion in liquid chemicals | [252] |
Standard | Name | Ref. |
---|---|---|
ISO 10210:2012 | Methods for the preparation of samples for biodegradation testing of plastic materials | [269] |
ISO 846:2019 | Evaluation of the action of microorganisms | [270] |
ISO 14853:2016 | Determination of the ultimate anaerobic biodegradation of plastic materials in an aqueous system—Method by measurement of biogas production | [271] |
ISO 19679:2020 | Determination of aerobic biodegradation of non-floating plastic materials in a seawater/sediment interface—Method by analysis of evolved carbon dioxide | [272] |
ISO 17088:2021 | Organic recycling—Specifications for compostable plastics | [273] |
ISO 16929:2021 | Determination of the degree of disintegration of plastic materials under defined composting conditions in a pilot-scale test | [274] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ichim, M.; Muresan, E.I.; Codau, E. Natural-Fiber-Reinforced Polymer Composites for Furniture Applications. Polymers 2024, 16, 3113. https://doi.org/10.3390/polym16223113
Ichim M, Muresan EI, Codau E. Natural-Fiber-Reinforced Polymer Composites for Furniture Applications. Polymers. 2024; 16(22):3113. https://doi.org/10.3390/polym16223113
Chicago/Turabian StyleIchim, Mariana, Emil Ioan Muresan, and Elena Codau. 2024. "Natural-Fiber-Reinforced Polymer Composites for Furniture Applications" Polymers 16, no. 22: 3113. https://doi.org/10.3390/polym16223113
APA StyleIchim, M., Muresan, E. I., & Codau, E. (2024). Natural-Fiber-Reinforced Polymer Composites for Furniture Applications. Polymers, 16(22), 3113. https://doi.org/10.3390/polym16223113