Thermally Conductive Polydimethylsiloxane-Based Composite with Vertically Aligned Hexagonal Boron Nitride
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of BN/PDMS Composites
2.3. Characterization
3. Results
3.1. The Preparation of the V-BP Composites
3.2. The Thermal Conductivity and Mechanical Properties of the V-BP Composite
3.3. The Impact of Coating Velocity on the Orientation of BN
3.4. Computational Fluid Dyanmics Simulation
3.5. Comparison of the Impact of the Coating Thickness and the Coating Velocity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Q.; Wang, Z. A Copper Organic Phosphonate Functionalizing Boron Nitride Nanosheet for PVA Film with Excellent Flame Retardancy and Improved Thermal Conductive Property. Compos. Part A Appl. Sci. Manuf. 2022, 153, 106738. [Google Scholar] [CrossRef]
- Song, Y.; Jiang, F.; Song, N.; Shi, L.; Ding, P. Multilayered Structural Design of Flexible Films for Smart Thermal Management. Compos. Part A Appl. Sci. Manuf. 2021, 141, 106222. [Google Scholar] [CrossRef]
- Jiang, F.; Cui, S.; Rungnim, C.; Song, N.; Shi, L.; Ding, P. Control of a Dual-Cross-Linked Boron Nitride Framework and the Optimized Design of the Thermal Conductive Network for Its Thermoresponsive Polymeric Composites. Chem. Mater. 2019, 31, 7686–7695. [Google Scholar] [CrossRef]
- Naghibi, S.; Kargar, F.; Wright, D.; Huang, C.Y.T.; Mohammadzadeh, A.; Barani, Z.; Salgado, R.; Balandin, A.A. Noncuring Graphene Thermal Interface Materials for Advanced Electronics. Adv. Electron. Mater. 2020, 6, 1901303. [Google Scholar] [CrossRef]
- Kim, H.S.; Jang, J.; Lee, H.; Kim, S.Y.; Kim, S.H.; Kim, J.; Jung, Y.C.; Yang, B.J. Thermal Management in Polymer Composites: A Review of Physical and Structural Parameters. Adv. Eng. Mater. 2018, 20, 1800204. [Google Scholar] [CrossRef]
- Shen, S.; Henry, A.; Tong, J.; Zheng, R.; Chen, G. Polyethylene Nanofibres with Very High Thermal Conductivities. Nat. Nanotechnol. 2010, 5, 251–255. [Google Scholar] [CrossRef]
- Singh, V.; Bougher, T.L.; Weathers, A.; Cai, Y.; Bi, K.; Pettes, M.T.; McMenamin, S.A.; Lv, W.; Resler, D.P.; Gattuso, T.R.; et al. High Thermal Conductivity of Chain-Oriented Amorphous Polythiophene. Nat. Nanotechnol. 2014, 9, 384–390. [Google Scholar] [CrossRef]
- Xu, Y.; Kraemer, D.; Song, B.; Jiang, Z.; Zhou, J.; Loomis, J.; Wang, J.; Li, M.; Ghasemi, H.; Huang, X.; et al. Nanostructured Polymer Films with Metal-like Thermal Conductivity. Nat. Commun. 2019, 10, 1771. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Gao, Q.; Wang, Z.; Ye, N.; Li, J.; Lu, Y. Nerve-Fiber-Inspired Construction of 3D Graphene “Tracks” Supported by Wood Fibers for Multifunctional Biocomposite with Metal-Level Thermal Conductivity. Adv. Funct. Mater. 2023, 33, 2213274. [Google Scholar] [CrossRef]
- Xiao, G.; Li, H.; Yu, Z.; Niu, H.; Yao, Y. Highly Thermoconductive, Strong Graphene-Based Composite Films by Eliminating Nanosheets Wrinkles. Nano-Micro Lett. 2023, 16, 17. [Google Scholar] [CrossRef]
- Song, J.; Zhang, Y. Vertically Aligned Silicon Carbide Nanowires/Reduced Graphene Oxide Networks for Enhancing the Thermal Conductivity of Silicone Rubber Composites. Compos. Part A Appl. Sci. Manuf. 2020, 133, 105873. [Google Scholar] [CrossRef]
- Ma, J.; Shang, T.; Ren, L.; Yao, Y.; Zhang, T.; Xie, J.; Zhang, B.; Zeng, X.; Sun, R.; Xu, J.-B.; et al. Through-Plane Assembly of Carbon Fibers into 3D Skeleton Achieving Enhanced Thermal Conductivity of a Thermal Interface Material. Chem. Eng. J. 2020, 380, 122550. [Google Scholar] [CrossRef]
- Yuan, T.; Zhang, X.; Fang, Z.; Xu, Q.; Bao, C. Lightweight and Strong Exfoliated Graphite/Polyvinyl Alcohol Monoliths with Highly Thermo/Electro Conductivity for Advanced Thermal/EMI Management. Carbon 2023, 203, 732–742. [Google Scholar] [CrossRef]
- Cai, Y.; Chen, S.; Wang, Y.; Lin, T.; Gao, M.; Zhao, C.; Wu, X.; Lin, C.; Zhai, R.; Liu, J. 2D-3D Collaborative Network Based on Conductive Sponge and Flake Graphite to Design High Performance Silicone Rubber Composites. J. Mater. Sci. 2022, 57, 13414–13424. [Google Scholar] [CrossRef]
- Yin, D.; Xiu, H.; Wang, S.; Pan, Y.; Li, N.; Cheng, R.; Huang, S.; Fan, S.; Li, J. Flexible Mille-Feuille Structure Electromagnetic Interference Shielding Film with Excellent Thermal Conductivity and Joule Heating. Nano Res. 2024, 17, 4544–4554. [Google Scholar] [CrossRef]
- Wei, B.; Chen, X.; Yang, S. Construction of a 3D Aluminum Flake Framework with a Sponge Template to Prepare Thermally Conductive Polymer Composites. J. Mater. Chem. A 2021, 9, 10979–10991. [Google Scholar] [CrossRef]
- Zhao, Z.-B.; Liu, J.-D.; Du, X.-Y.; Wang, Z.-Y.; Zhang, C.; Ming, S.-F. Fabrication of Silver Nanoparticles/Copper Nanoparticles Jointly Decorated Nitride Flakes to Improve the Thermal Conductivity of Polymer Composites. Colloids Surf. A Physicochem. Eng. Asp. 2022, 635, 128104. [Google Scholar] [CrossRef]
- Chen, X.; Lim, J.S.K.; Yan, W.; Guo, F.; Liang, Y.N.; Chen, H.; Lambourne, A.; Hu, X. Salt Template Assisted BN Scaffold Fabrication toward Highly Thermally Conductive Epoxy Composites. ACS Appl. Mater. Interfaces 2020, 12, 16987–16996. [Google Scholar] [CrossRef]
- Miao, Z.; Xie, C.; Wu, Z.; Zhao, Y.; Zhou, Z.; Wu, S.; Su, H.; Li, L.; Tuo, X.; Huang, R. Self-Stacked 3D Anisotropic BNNS Network Guided by Para-Aramid Nanofibers for Highly Thermal Conductive Dielectric Nanocomposites. ACS Appl. Mater. Interfaces 2023, 15, 24880–24891. [Google Scholar] [CrossRef]
- Wang, H.; Lu, R.; Li, L.; Liang, C.; Yan, J.; Liang, R.; Sun, G.; Jiang, L.; Cheng, Q. Strong, Tough, and Thermally Conductive Nacre-Inspired Boron Nitride Nanosheet/Epoxy Layered Nanocomposites. Nano Res. 2023, 17, 820–828. [Google Scholar] [CrossRef]
- Rao, S.; Fan, J.; Zhou, Y.; Zeng, X.; Cheng, X.; Du, G.; Zeng, X.; Sun, R.; Ren, L. High Damping, Soft and Reprocessable Thermal Interface Materials Inspired by the Microstructure of Skin Tissue. Compos. Sci. Technol. 2024, 247, 110428. [Google Scholar] [CrossRef]
- Yang, R.; Wang, Y.; Zhang, Z.; Xu, K.; Li, L.; Cao, Y.; Li, M.; Zhang, J.; Qin, Y.; Zhu, B.; et al. Highly Oriented BN-Based TIMs with High through-Plane Thermal Conductivity and Low Compression Modulus. Mater. Horiz. 2024, 11, 4064–4074. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Lin, F.; Lin, X.; Liu, Y.; Song, L.; Hao, X.; Li, J.; Wang, S. The Synergistic Effect of Irregular Alumina and Round Plates Boron Nitride Binary-Particle System on the Thermal Conductivity of Epoxy Composites. J. Appl. Polym. Sci. 2022, 139, 51658. [Google Scholar] [CrossRef]
- Zhou, W.-Y.; Qi, S.-H.; Zhao, H.-Z.; Liu, N.-L. Thermally Conductive Silicone Rubber Reinforced with Boron Nitride Particle. Polym. Compos. 2007, 28, 23–28. [Google Scholar] [CrossRef]
- Xie, B.; Zhao, W.; Luo, X.; Hu, R. Alignment Engineering in Thermal Materials. Mater. Sci. Eng. R Rep. 2023, 154, 100738. [Google Scholar] [CrossRef]
- Sun, T.; Cao, W.; Zhao, K.; Wang, X.; Wang, Z.; Gao, G.; Ye, Z.; Zhao, K.; Su, Z.; Dai, B.; et al. Bio-Inspired Robust and Highly Thermal Conductive BNNS/PBO Nanofiber Composite Films with Excellent Thermal Stability, Wear Resistance, and Adjustable Photothermal Properties. Chem. Eng. J. 2023, 474, 145916. [Google Scholar] [CrossRef]
- He, H.; Peng, W.; Liu, J.; Chan, X.Y.; Liu, S.; Lu, L.; Le Ferrand, H. Microstructured BN Composites with Internally Designed High Thermal Conductivity Paths for 3D Electronic Packaging. Adv. Mater. 2022, 34, 2205120. [Google Scholar] [CrossRef]
- Luo, S.; Peng, L.; Xie, Y.; Cao, X.; Wang, X.; Liu, X.; Chen, T.; Han, Z.; Fan, P.; Sun, H.; et al. Flexible Large-Area Graphene Films of 50–600 Nm Thickness with High Carrier Mobility. Nano-Micro Lett. 2023, 15, 61. [Google Scholar] [CrossRef]
- Zhou, S.; Xu, T.; Jin, L.; Song, N.; Ding, P. Ultraflexible Polyamide-Imide Films with Simultaneously Improved Thermal Conductive and Mechanical Properties: Design of Assembled Well-Oriented Boron Nitride Nanosheets. Compos. Sci. Technol. 2022, 219, 109259. [Google Scholar] [CrossRef]
- Niu, H.; Guo, H.; Kang, L.; Ren, L.; Lv, R.; Bai, S. Vertical Alignment of Anisotropic Fillers Assisted by Expansion Flow in Polymer Composites. Nano-Micro Lett. 2022, 14, 153. [Google Scholar] [CrossRef]
- Liang, Z.; Pei, Y.; Chen, C.; Jiang, B.; Yao, Y.; Xie, H.; Jiao, M.; Chen, G.; Li, T.; Yang, B.; et al. General, Vertical, Three-Dimensional Printing of Two-Dimensional Materials with Multiscale Alignment. ACS Nano 2019, 13, 12653–12661. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, R.; Zhu, T.; Feng, M.; Sun, D.; Yang, J.; Qi, X.; Wang, Y. Tree-Ring Structured Phase Change Materials with High through-Plane Thermal Conductivity and Flexibility for Advanced Thermal Management. Chem. Eng. J. 2024, 479, 147622. [Google Scholar] [CrossRef]
- Wan, B.; Li, X.; Zeng, X.; Zha, J.-W. Covalent-Assisted Construction of “Scale-like” Boron Nitride/Polyimide Thermal Interface Materials with High Thermal Conductivity. Compos. Commun. 2024, 45, 101803. [Google Scholar] [CrossRef]
- Zhang, J.; Kong, X.; Wang, Y.; Zhang, Z.; Li, L.; Xu, K.; Li, M.; Yang, R.; Zhou, Y.; Cai, T.; et al. Recycled and Flexible Boron Nitride Heat Spread Film with High Thermal Conductivity. J. Mater. Chem. C 2023, 11, 13204–13212. [Google Scholar] [CrossRef]
- Kong, X.; Chen, Y.; Yang, R.; Wang, Y.; Zhang, Z.; Li, M.; Chen, H.; Li, L.; Gong, P.; Zhang, J.; et al. Large-Scale Production of Boron Nitride Nanosheets for Flexible Thermal Interface Materials with Highly Thermally Conductive and Low Dielectric Constant. Compos. Part B Eng. 2024, 271, 111164. [Google Scholar] [CrossRef]
- Liu, J.; Feng, H.; Dai, J.; Yang, K.; Chen, G.; Wang, S.; Jin, D.; Liu, X. A Full-Component Recyclable Epoxy/BN Thermal Interface Material with Anisotropy High Thermal Conductivity and Interface Adaptability. Chem. Eng. J. 2023, 469, 143963. [Google Scholar] [CrossRef]
- Li, X.; Xu, Q.; Lei, Z.; Chen, Z. Electrostatic Flocking Assisted Aligned Boron Nitride Platelets Scaffold for Enhancing the Through-Plane Thermal Conductivity of Flexible Thermal Interface Materials. Ceram. Int. 2023, 49, 22623–22629. [Google Scholar] [CrossRef]
- Wang, S.; Li, W.; Jin, X.; Wu, J.; Chen, K.; Gan, W. Facile Fabrication of Three-Dimensional Thermal Conductive Composites with Synergistic Effect of Multidimensional Fillers. J. Mater. Sci. 2021, 56, 12671–12685. [Google Scholar] [CrossRef]
- Dong, J.; Cao, L.; Li, Y.; Wu, Z.; Teng, C. Largely Improved Thermal Conductivity of PI/BNNS Nanocomposites Obtained by Constructing a 3D BNNS Network and Filling It with AgNW as the Thermally Conductive Bridges. Compos. Sci. Technol. 2020, 196, 108242. [Google Scholar] [CrossRef]
- An, D.; Duan, X.; Cheng, S.; Zhang, Z.; Yang, B.; Lian, Q.; Li, J.; Sun, Z.; Liu, Y.; Wong, C.-P. Enhanced Thermal Conductivity of Natural Rubber Based Thermal Interfacial Materials by Constructing Covalent Bonds and Three-Dimensional Networks. Compos. Part A Appl. Sci. Manuf. 2020, 135, 105928. [Google Scholar] [CrossRef]
- Isarn, I.; Ferrando, F.; Serra, A.; Urbina, C. Novel BN-Epoxy/Anhydride Composites with Enhanced Thermal Conductivity. Polym. Adv. Technol. 2021, 32, 1485–1492. [Google Scholar] [CrossRef]
- Yang, X.; Zhu, J.; Yang, D.; Zhang, J.; Guo, Y.; Zhong, X.; Kong, J.; Gu, J. High-Efficiency Improvement of Thermal Conductivities for Epoxy Composites from Synthesized Liquid Crystal Epoxy Followed by Doping BN Fillers. Compos. Part B Eng. 2020, 185, 107784. [Google Scholar] [CrossRef]
- Yan, W.; Chen, X.; Lim, J.S.K.; Chen, H.; Gill, V.; Lambourne, A.; Hu, X. Epoxy-Assisted Ball Milling of Boron Nitride towards Thermally Conductive Impregnable Composites. Compos. Part A Appl. Sci. Manuf. 2022, 156, 106868. [Google Scholar] [CrossRef]
- Yang, F.; Sun, X.; Guo, Q.; Yao, Z. Improvement of Thermal Conductivities for Epoxy Composites via Incorporating Poly(Vinyl Benzal)-Coated h-BN Fillers and Solvent-Assisted Dispersion. Ind. Eng. Chem. Res. 2019, 58, 18635–18643. [Google Scholar] [CrossRef]
- Abdolmaleki, H.; Kidmose, P.; Agarwala, S. Droplet-Based Techniques for Printing of Functional Inks for Flexible Physical Sensors. Adv. Mater. 2021, 33, 2006792. [Google Scholar] [CrossRef]
- Guo, H.; Zhao, H.; Niu, H.; Ren, Y.; Fang, H.; Fang, X.; Lv, R.; Maqbool, M.; Bai, S. Highly Thermally Conductive 3D Printed Graphene Filled Polymer Composites for Scalable Thermal Management Applications. ACS Nano 2021, 15, 6917–6928. [Google Scholar] [CrossRef]
- Trebbin, M.; Steinhauser, D.; Perlich, J.; Buffet, A.; Roth, S.V.; Zimmermann, W.; Thiele, J.; Förster, S. Anisotropic Particles Align Perpendicular to the Flow Direction in Narrow Microchannels. Proc. Natl. Acad. Sci. USA 2013, 110, 6706–6711. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.; Xu, G.; Chen, Z.; Wang, L.; Liu, Z.; Ma, L. Thermally Conductive Polydimethylsiloxane-Based Composite with Vertically Aligned Hexagonal Boron Nitride. Polymers 2024, 16, 3126. https://doi.org/10.3390/polym16223126
Lin H, Xu G, Chen Z, Wang L, Liu Z, Ma L. Thermally Conductive Polydimethylsiloxane-Based Composite with Vertically Aligned Hexagonal Boron Nitride. Polymers. 2024; 16(22):3126. https://doi.org/10.3390/polym16223126
Chicago/Turabian StyleLin, Haosen, Genghao Xu, Zihao Chen, Luyang Wang, Zhichun Liu, and Lei Ma. 2024. "Thermally Conductive Polydimethylsiloxane-Based Composite with Vertically Aligned Hexagonal Boron Nitride" Polymers 16, no. 22: 3126. https://doi.org/10.3390/polym16223126
APA StyleLin, H., Xu, G., Chen, Z., Wang, L., Liu, Z., & Ma, L. (2024). Thermally Conductive Polydimethylsiloxane-Based Composite with Vertically Aligned Hexagonal Boron Nitride. Polymers, 16(22), 3126. https://doi.org/10.3390/polym16223126