High-Stretchable and Transparent Ultraviolet-Curable Elastomer
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of UV-Curable Liquid Resin
2.3. Fabrication of UV-Curable Elastomer
2.4. Fabrication of Hydrogel–Elastomer Stretchable Sensor
2.5. Characterization
3. Results and Discussion
3.1. Preparation of UV-Curable Elastomer
3.2. Transparency of Elastomer
3.3. Mechanical Properties of Elastomer
3.4. Hydrogel–Elastomer Stretchable Sensor
3.5. Human Motion Detection
3.6. Applications for 3D Printing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- García Núñez, C.; Manjakkal, L.; Dahiya, R. Energy autonomous electronic skin. NPJ Flex. Electron. 2019, 3, 1. [Google Scholar] [CrossRef]
- Lu, N.; Kim, D.-H. Flexible and stretchable electronics paving the way for soft robotics. Soft Robot. 2014, 1, 53–62. [Google Scholar] [CrossRef]
- Li, J.; Cao, J.; Lu, B.; Gu, G. 3D-printed PEDOT: PSS for soft robotics. Nat. Rev. Mater. 2023, 8, 604–622. [Google Scholar] [CrossRef]
- Wang, J.; Lin, M.-F.; Park, S.; Lee, P.S. Deformable conductors for human–machine interface. Mater. Today 2018, 21, 508–526. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Z.; Zhan, Z.; Xie, M.; Duan, G.; Cheng, P.; Chen, Y.; Duan, H. 3D printed super-anti-freezing self-adhesive human-machine interface. Mater. Today Phys. 2021, 19, 100404. [Google Scholar] [CrossRef]
- Zhuang, M.; Yin, L.; Wang, Y.; Bai, Y.; Zhan, J.; Hou, C.; Yin, L.; Xu, Z.; Tan, X.; Huang, Y. Highly robust and wearable facial expression recognition via deep-learning-assisted, soft epidermal electronics. Research 2021, 2021, 9759601. [Google Scholar] [CrossRef]
- Balakrishnan, G.; Song, J.; Mou, C.; Bettinger, C.J. Recent progress in materials chemistry to advance flexible bioelectronics in medicine. Adv. Mater. 2022, 34, 2106787. [Google Scholar] [CrossRef]
- Chen, L.; Liu, P.; Feng, B.; Shu, Z.; Liang, H.; Chen, Y.; Dong, X.; Xie, J.; Duan, H. Dry-Transferrable Photoresist Enabled Reliable Conformal Patterning for Ultrathin Flexible Electronics. Adv. Mater. 2023, 35, 2303513. [Google Scholar] [CrossRef]
- Huang, S.; Liu, Y.; Zhao, Y.; Ren, Z.; Guo, C.F. Flexible electronics: Stretchable electrodes and their future. Adv. Funct. Mater. 2019, 29, 1805924. [Google Scholar] [CrossRef]
- Kim, K.K.; Ha, I.; Kim, M.; Choi, J.; Won, P.; Jo, S.; Ko, S.H. A deep-learned skin sensor decoding the epicentral human motions. Nat. Commun. 2020, 11, 2149. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, L.; Liao, Y.; Cheng, H. Conformal manufacturing of soft deformable sensors on the curved surface. Int. J. Extrem. Manuf. 2021, 3, 042001. [Google Scholar] [CrossRef]
- Cheng, I.-C. Flexible and printed electronics. In Materials for Advanced Packaging; Springer: Berlin/Heidelberg, Germany, 2017; pp. 813–854. [Google Scholar]
- Raman, S.; Sankar, R. Intrinsically conducting polymers in flexible and stretchable resistive strain sensors: A review. J. Mater. Sci. 2022, 57, 13152–13178. [Google Scholar] [CrossRef]
- Zhang, C.; Sun, J.; Lu, Y.; Liu, J. Nanocrack-based strain sensors. J. Mater. Chem. C 2021, 9, 754–772. [Google Scholar] [CrossRef]
- Chen, F.; Gu, Y.; Cao, S.; Li, Y.; Li, F.; Zhang, X.; Xu, M.; Zhang, Y. Low-cost highly sensitive strain sensors for wearable electronics. J. Mater. Chem. C 2017, 5, 10571–10577. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, J.; Gao, Q.; Zhang, J.; Zhang, J.; Omisore, O.M.; Wang, L.; Li, H. Polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications. Appl. Sci. 2018, 8, 345. [Google Scholar] [CrossRef]
- Li, S.; Wu, W.; Chang, Y.; Chen, W.; Liu, Y.; He, Z.; Pu, Y.; Babichuk, I.S.; Ye, T.T.; Gao, Z.; et al. Flexible strain sensors based on silver nanowires and UV-curable acrylate elastomers for wrist movement monitoring. RSC Appl. Interfaces 2024, 1, 684–688. [Google Scholar] [CrossRef]
- Duan, L.; D’hooge, D.R.; Cardon, L. Recent progress on flexible and stretchable piezoresistive strain sensors: From design to application. Prog. Mater. Sci. 2020, 114, 100617. [Google Scholar] [CrossRef]
- Li, H.; Ma, Y.; Huang, Y. Material innovation and mechanics design for substrates and encapsulation of flexible electronics: A review. Mater. Horiz. 2021, 8, 383–400. [Google Scholar] [CrossRef]
- Patel, D.K.; Sakhaei, A.H.; Layani, M.; Zhang, B.; Ge, Q.; Magdassi, S. Highly stretchable and UV curable elastomers for digital light processing based 3D printing. Adv. Mater. 2017, 29, 1606000. [Google Scholar] [CrossRef]
- Huang, X.; Peng, S.; Zheng, L.; Zhuo, D.; Wu, L.; Weng, Z. 3D Printing of High Viscosity UV-Curable Resin for Highly Stretchable and Resilient Elastomer. Adv. Mater. 2023, 35, 2304430. [Google Scholar] [CrossRef]
- Deng, Y.; Li, J.; He, Z.; Hong, J.; Bao, J. Urethane acrylate-based photosensitive resin for three-dimensional printing of stereolithographic elastomer. J. Appl. Polym. Sci. 2020, 137, 49294. [Google Scholar] [CrossRef]
- Hingorani, H.; Zhang, Y.-F.; Zhang, B.; Serjouei, A.; Ge, Q. Modified commercial UV curable elastomers for passive 4D printing. Int. J. Smart Nano Mater. 2019, 10, 225–236. [Google Scholar] [CrossRef]
- Peng, S.; Li, Y.; Wu, L.; Zhong, J.; Weng, Z.; Zheng, L.; Yang, Z.; Miao, J.T. 3D Printing Mechanically Robust and Transparent Polyurethane Elastomers for Stretchable Electronic Sensors. ACS Appl. Mater. Interfaces 2020, 12, 6479–6488. [Google Scholar] [CrossRef]
- Xiang, H.; Wang, X.; Ou, Z.; Lin, G.; Yin, J.; Liu, Z.; Zhang, L.; Liu, X. UV-curable, 3D printable and biocompatible silicone elastomers. Prog. Org. Coat. 2019, 137, 105372. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.; Han, H. Synthesis of UV curable, highly stretchable, transparent poly (urethane-acrylate) elastomer and applications toward next generation technology. Macromol. Res. 2020, 28, 896–902. [Google Scholar] [CrossRef]
- Ye, J.; Lin, G.; Lin, Z.; Deng, H.; Huang, J.; Xiang, H.; Rong, M.Z.; Zhang, M.Q. UV-Curable Polyurethane Elastomer with UV-Irradiation/Thermo Dual-Activated Self-Healability. Macromol. Mater. Eng. 2022, 307, 2100874. [Google Scholar] [CrossRef]
- Fei, M.; Liu, T.; Zhao, B.; Otero, A.; Chang, Y.-C.; Zhang, J. From glassy plastic to ductile elastomer: Vegetable oil-based UV-curable vitrimers and their potential use in 3D printing. ACS Appl. Polym. Mater. 2021, 3, 2470–2479. [Google Scholar] [CrossRef]
- Zhao, T.; Yu, R.; Li, S.; Li, X.; Zhang, Y.; Yang, X.; Zhao, X.; Wang, C.; Liu, Z.; Dou, R.; et al. Superstretchable and Processable Silicone Elastomers by Digital Light Processing 3D Printing. ACS Appl. Mater. Interfaces 2019, 11, 14391–14398. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Y.; Ye, H.; Duan, G.; Duan, H.; Ge, Q.; Wang, Z. Color-Changeable Four-Dimensional Printing Enabled with Ultraviolet-Curable and Thermochromic Shape Memory Polymers. ACS Appl. Mater. Interfaces 2021, 13, 18120–18127. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.-F.; Wang, H.; Wang, H.; Ruan, Q.; Wredh, S.; Ke, Y.; Chan, J.; Zhang, W.; Qiu, C.-W.; Yang, J. 3D-printed multilayer structures for high–numerical aperture achromatic metalenses. Sci. Adv. 2023, 9, eadj9262. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.; Zhang, W.; Yang, J. Toward near-perfect diffractive optical elements via nanoscale 3D printing. ACS Nano 2020, 14, 10452–10461. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, H.; Ruan, Q.; Chan, J.; Zhang, W.; Liu, H.; Rezaei, S.D.; Trisno, J.; Qiu, C.-W.; Gu, M.; et al. Coloured vortex beams with incoherent white light illumination. Nat. Nanotechnol. 2023, 18, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, H.; Wang, H.; Chan, J.; Liu, H.; Zhang, B.; Zhang, Y.-F.; Agarwal, K.; Yang, X.; Ranganath, A.S.; et al. Structural multi-colour invisible inks with submicron 4D printing of shape memory polymers. Nat. Commun. 2021, 12, 112. [Google Scholar] [CrossRef] [PubMed]
- Shahrubudin, N.; Lee, T.C.; Ramlan, R. An overview on 3D printing technology: Technological, materials, and applications. Procedia Manuf. 2019, 35, 1286–1296. [Google Scholar] [CrossRef]
- Ge, Q.; Li, Z.; Wang, Z.; Kowsari, K.; Zhang, W.; He, X.; Zhou, J.; Fang, N. Projection micro stereolithography based 3D printing and its applications. Int. J. Extrem. Manuf. 2020, 2, 022004. [Google Scholar] [CrossRef]
- Wang, H.; Pan, C.-F.; Li, C.; Menghrajani, K.S.; Schmidt, M.A.; Li, A.; Fan, F.; Zhou, Y.; Zhang, W.; Wang, H.; et al. Two-photon polymerization lithography for imaging optics. Int. J. Extrem. Manuf. 2024, 6, 042002. [Google Scholar] [CrossRef]
- Guessasma, S.; Stephant, N.; Durand, S.; Belhabib, S. Digital Light Processing Route for 3D Printing of Acrylate-Modified PLA/Lignin Blends: Microstructure and Mechanical Performance. Polymers 2024, 16, 1342. [Google Scholar] [CrossRef]
PUA | HPA | PEGDA | TPO-L | Item |
---|---|---|---|---|
10 g | 0 g | 0 g | 0.3 g | UVE-A1 |
7.5 g | 2.5 g | 0 g | 0.3 g | UVE-A2 |
5 g | 5 g | 0 g | 0.3 g | UVE-A3 |
2.5 g | 7.5 g | 0 g | 0.3 g | UVE-A4 |
PUA | HPA | PEGDA | TPO-L | Item |
---|---|---|---|---|
5 g | 5 g | 0 g | 0.3 g | UVE-P0 |
5 g | 5 g | PEG200DA 0.05 g | 0.3 g | UVE-P1 |
5 g | 5 g | PEG1000DA 0.05 g | 0.3 g | UVE-P2 |
Materials | Transparency | Stretchability | References |
---|---|---|---|
PUA-HPA | 94.8% | 2992% | This work |
Epoxy aliphatic acrylate and aliphatic urethane diacrylate | 91.6% | 1100% | [20] |
Polyurethane methacrylate blocking | NA | 1605% | [21] |
Polyurethane acrylate and isobornyl acrylate | 89.4% | 414.3% | [24] |
Modified TangoPlus | NA | <520% | [23] |
Bifunctional urethane acrylate and diluents | NA | <200% | [22] |
Poly(mercaptopropylmethylsiloxane-co-dimethylsiloxane) | NA | 158% | [25] |
Poly(urethane-acrylate) elastomer | 90% | 600% | [26] |
Self-healable polyurethane elastomer | NA | 1100% | [27] |
Bio-based dimethacrylate compound | NA | 66.4% | [28] |
Silica-filled silicone elastomer | NA | 1400% | [29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; He, Y.; Dai, L.; Zhang, W.; Wang, H.; Liu, P. High-Stretchable and Transparent Ultraviolet-Curable Elastomer. Polymers 2024, 16, 3464. https://doi.org/10.3390/polym16243464
Chen L, He Y, Dai L, Zhang W, Wang H, Liu P. High-Stretchable and Transparent Ultraviolet-Curable Elastomer. Polymers. 2024; 16(24):3464. https://doi.org/10.3390/polym16243464
Chicago/Turabian StyleChen, Lei, Yongchang He, Lu Dai, Wang Zhang, Hao Wang, and Peng Liu. 2024. "High-Stretchable and Transparent Ultraviolet-Curable Elastomer" Polymers 16, no. 24: 3464. https://doi.org/10.3390/polym16243464
APA StyleChen, L., He, Y., Dai, L., Zhang, W., Wang, H., & Liu, P. (2024). High-Stretchable and Transparent Ultraviolet-Curable Elastomer. Polymers, 16(24), 3464. https://doi.org/10.3390/polym16243464