Effect of Degree of Substitution and Polymer Ratio on the Structure of Chitosan: Carboxymethyl Starch (Bio)Polyelectrolyte Complexes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy Analysis
2.3. Determination of Acid Dissociation Constant of Chitosan
2.4. Carboxymethylation of Cassava Starch
2.4.1. Establishing the Degree of Substitution of Carboxymethyl Starch
2.4.2. Determination of Molecular Weight of Polymers
2.5. Obtention of the Chitosan:Carboxymethyl Starch (Bio)Polyelectrolyte Complex Dispersions
2.6. Characterization of the Chitosan:Carboxymethyl Starch (Bio)Polyelectrolyte Complex Dispersions
3. Results and Discussion
3.1. Physical and Chemical Characteristics and Structure of the Carboxymethyl Cassava Starch and Chitosan Solutions
3.2. Effect of the Biopolymer Ratio Chit:CMS v/v% in the Formation of PEC
3.3. Characterization of (Bio)Polyelectrolyte Complex
3.4. Effect of the pH on the (Bio)Polyelectrolyte Complex
3.5. Structure of (Bio)PEC Dispersions Based on Chitosan and Carboxymethyl Starch
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kulkarni, A.D.; Vanjari, Y.H.; Sancheti, K.H.; Patel, H.M.; Belgamwar, V.S.; Surana, S.J.; Pardeshi, C.V. Polyelectrolyte Complexes: Mechanisms, Critical Experimental Aspects, and Applications. Artif. Cells Nanomed. Biotechnol. 2016, 44, 1615–1625. [Google Scholar] [CrossRef] [PubMed]
- Meka, V.S.; Sing, M.K.G.; Pichika, M.R.; Nali, S.R.; Kolapalli, V.R.M.; Kesharwani, P. A Comprehensive Review on Polyelectrolyte Complexes. Drug Discov. Today 2017, 22, 1697–1706. [Google Scholar] [CrossRef]
- Patwekar, S.L.; Potulwar, A.P.; Pedewad, R.; Gaikwad, M.S.; Khan, S.A.; Suryawanshi, A.B. Review on Polyelectrolyte Complex as Novel Approach for Drug Delivery System. Int. J. Pharm. Pharm. Res. 2016, 5, 98–109. [Google Scholar]
- Ghimire, Y.; Bhattarai, A. A Review on Polyelectrolytes (PES) and Polyelectrolyte Complexes (PECs). IJERT 2020, V9, 877–899. [Google Scholar] [CrossRef]
- Rumyantsev, A.M.; Jackson, N.E.; De Pablo, J.J. Polyelectrolyte Complex Coacervates: Recent Developments and New Frontiers. Annu. Rev. Condens. Matter Phys. 2021, 12, 155–176. [Google Scholar] [CrossRef]
- Lankalapalli, S.; Kolapalli, V.R.M. Polyelectrolyte Complexes: A Review of Their Applicability in Drug Delivery Technology. Indian. J. Pharm. Sci. 2009, 71, 481. [Google Scholar] [CrossRef]
- Lin, W.-S.; Catchmark, J.M. Development of Sustainable Adhesives Based on Polysaccharide–Polyelectrolyte Complexes for Natural Fiber-Based Materials. ACS Appl. Polym. Mater. 2024, 6, 7947–7955. [Google Scholar] [CrossRef]
- Muller, M.; Vehlow, D.; Torger, B.; Urban, B.; Woltmann, B.; Hempel, U. Adhesive Drug Delivery Systems Based on Polyelectrolyte Complex Nanoparticles (PEC NP) for Bone Healing. Curr. Pharm. Des. 2018, 24, 1341–1348. [Google Scholar] [CrossRef] [PubMed]
- Jamróz, E.; Janik, M.; Juszczak, L.; Kruk, T.; Kulawik, P.; Szuwarzyński, M.; Kawecka, A.; Khachatryan, K. Composite Biopolymer Films Based on a Polyelectrolyte Complex of Furcellaran and Chitosan. Carbohydr. Polym. 2021, 274, 118627. [Google Scholar] [CrossRef] [PubMed]
- Delgado, J.D.; Schlenoff, J.B. Polyelectrolyte Complex Films from Blends Versus Copolymers. Macromolecules 2019, 52, 7812–7820. [Google Scholar] [CrossRef]
- Huang, J.; Wu, D.; Liu, W.; Sun, J.; Zhao, X.; Zhang, Y.; Feng, Y. Polyelectrolyte Complex Gels Used for CO2 Absorption. J. Polym. Sci. 2024, 62, 3275–3286. [Google Scholar] [CrossRef]
- Wanasingha, N.; Dorishetty, P.; Dutta, N.; Choudhury, N. Polyelectrolyte Gels: Fundamentals, Fabrication and Applications. Gels 2021, 7, 148. [Google Scholar] [CrossRef]
- Musin, E.V.; Kim, A.L.; Dubrovskii, A.V.; Tikhonenko, S.A. New Sight at the Organization of Layers of Multilayer Polyelectrolyte Microcapsules. Sci. Rep. 2021, 11, 14040. [Google Scholar] [CrossRef] [PubMed]
- Paşcalău, V.; Bogdan, C.; Pall, E.; Matroş, L.; Pandrea, S.-L.; Suciu, M.; Borodi, G.; Iuga, C.A.; Ştiufiuc, R.; Topală, T.; et al. Development of BSA Gel/Pectin/Chitosan Polyelectrolyte Complex Microcapsules for Berberine Delivery and Evaluation of Their Inhibitory Effect on Cutibacterium Acnes. React. Funct. Polym. 2020, 147, 104457. [Google Scholar] [CrossRef]
- Sutharsan, J.; Boyer, C.A.; Zhao, J. Physicochemical Properties of Chitosan Edible Films Incorporated with Different Classes of Flavonoids. Carbohydr. Polym. Technol. Appl. 2022, 4, 100232. [Google Scholar] [CrossRef]
- Abotbina, W.; Sapuan, S.M.; Ilyas, R.A.; Sultan, M.T.H.; Alkbir, M.F.M.; Sulaiman, S.; Harussani, M.M.; Bayraktar, E. Recent Developments in Cassava (Manihot esculenta) Based Biocomposites and Their Potential Industrial Applications: A Comprehensive Review. Materials 2022, 15, 6992. [Google Scholar] [CrossRef]
- Parmar, A.; Sturm, B.; Hensel, O. Crops That Feed the World: Production and Improvement of Cassava for Food, Feed, and Industrial Uses. Food Sec. 2017, 9, 907–927. [Google Scholar] [CrossRef]
- Verma, D.K.; Srivastav, P.P. Isolation, Modification, and Characterization of Rice Starch with Emphasis on Functional Properties and Industrial Application: A Review. Crit. Rev. Food Sci. Nutr. 2022, 62, 6577–6604. [Google Scholar] [CrossRef] [PubMed]
- Pooresmaeil, M.; Namazi, H. Developments on Carboxymethyl Starch-Based Smart Systems as Promising Drug Carriers: A Review. Carbohydr. Polym. 2021, 258, 117654. [Google Scholar] [CrossRef]
- Das, S.; Das, M.K.; Jamatia, T.; Bhattacharya, B.; Mazumder, R.; Yadav, P.K.; Ghose Bishwas, N.R.; Deka, T.; Roy, D.; Sinha, B.; et al. Advances of Cassava Starch-Based Composites in Novel and Conventional Drug Delivery Systems: A State-of-the-Art Review. RSC Pharm. 2024, 1, 182–203. [Google Scholar] [CrossRef]
- Oh, J.-W.; Chun, S.C.; Chandrasekaran, M. Preparation and In Vitro Characterization of Chitosan Nanoparticles and Their Broad-Spectrum Antifungal Action Compared to Antibacterial Activities against Phytopathogens of Tomato. Agronomy 2019, 9, 21. [Google Scholar] [CrossRef]
- Riseh, R.S.; Vazvani, M.G.; Kennedy, J.F. The Application of Chitosan as a Carrier for Fertilizer: A Review. Int. J. Biol. Macromol. 2023, 252, 126483. [Google Scholar] [CrossRef] [PubMed]
- Kanmani, P.; Aravind, J.; Kamaraj, M.; Sureshbabu, P.; Karthikeyan, S. Environmental Applications of Chitosan and Cellulosic Biopolymers: A Comprehensive Outlook. Bioresour. Technol. 2017, 242, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Niu, Y.; Zhu, H.; Dong, K.; Wang, D.; Liu, F. Remediation of Zinc-Contaminated Soils by Using the Two-Step Washing with Citric Acid and Water-Soluble Chitosan. Chemosphere 2021, 282, 131092. [Google Scholar] [CrossRef]
- Zdanowicz, M.; Markowska-Szczupak, A.; Spychaj, T. Carboxymethyl Starch/Medium Chain Fatty Acid Compositions: Rheological Changes During Storage and Selected Film Properties. Starch Stärke 2020, 72, 1900240. [Google Scholar] [CrossRef]
- Bungenberg de Jong, H.G.; Kruyt, H.R. Coacervation (Partial Miscibility in Colloid Systems). Proc. K. Ned. Akad. Van. Wet. 1932, 32, 849–856. [Google Scholar]
- Michaels, A.S. Polyelectrolite Complex. Ind. Eng. Chem. 1965, 57, 32–40. [Google Scholar] [CrossRef]
- Michaels, A.S.; Miekka, R.G. Polycation-Polyanion Complexes: Preparation and Properties of Poly (Vinylbenzyltrimethylammonium) Poly-(Styrenesulfonate). J. Phys. Chem. 1961, 65, 1765–1773. [Google Scholar] [CrossRef]
- Facchi, D.P.; Da Cruz, J.A.; Bonafé, E.G.; Pereira, A.G.B.; Fajardo, A.R.; Venter, S.A.S.; Monteiro, J.P.; Muniz, E.C.; Martins, A.F. Polysaccharide-Based Materials Associated with or Coordinated to Gold Nanoparticles: Synthesis and Medical Application. Curr. Med. Chem. 2017, 24, 2701–2735. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Wang, X.; Liu, Q.; Fang, Y. Preparation and Application of Chitosan-Based Polyelectrolyte Complex Materials: An Overview. Pap. Biomater. 2022, 7, 1. [Google Scholar] [CrossRef]
- Quadrado, R.F.N.; Fajardo, A.R. Microparticles Based on Carboxymethyl Starch/Chitosan Polyelectrolyte Complex as Vehicles for Drug Delivery Systems. Arab. J. Chem. 2020, 13, 2183–2194. [Google Scholar] [CrossRef]
- Assaad, E.; Wang, Y.J.; Zhu, X.X.; Mateescu, M.A. Polyelectrolyte Complex of Carboxymethyl Starch and Chitosan as Drug Carrier for Oral Administration. Carbohydr. Polym. 2011, 84, 1399–1407. [Google Scholar] [CrossRef]
- Henao, E.; Delgado, E.; Contreras, H.; Quintana, G. Polyelectrolyte Complexation versus Ionotropic Gelation for Chitosan-Based Hydrogels with Carboxymethylcellulose, Carboxymethyl Starch, and Alginic Acid. Int. J. Chem. Eng. 2018, 2018, 3137167. [Google Scholar] [CrossRef]
- Wang, Y.J.; Assaad, E.; Ispas-Szabo, P.; Mateescu, M.A.; Zhu, X.X. NMR Imaging of Chitosan and Carboxymethyl Starch Tablets: Swelling and Hydration of the Polyelectrolyte Complex. Int. J. Pharm. 2011, 419, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Saboktakin, M.R.; Tabatabaie, R.M.; Maharramov, A.; Ramazanov, M.A. Synthesis and in Vitro Evaluation of Carboxymethyl Starch–Chitosan Nanoparticles as Drug Delivery System to the Colon. Int. J. Biol. Macromol. 2011, 48, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Leonida, M.; Ispas-Szabo, P.; Mateescu, M.A. Self-Stabilized Chitosan and Its Complexes with Carboxymethyl Starch as Excipients in Drug Delivery. Bioact. Mater. 2018, 3, 334–340. [Google Scholar] [CrossRef]
- Brugnerotto, J.; Lizardi, J.; Goycoolea, F.M.; Argüelles-Monal, W.; Desbrières, J.; Rinaudo, M. An Infrared Investigation in Relation with Chitin and Chitosan Characterization. Polymer 2001, 42, 3569–3580. [Google Scholar] [CrossRef]
- Wang, Q.Z.; Chen, X.G.; Liu, N.; Wang, S.X.; Liu, C.S.; Meng, X.H.; Liu, C.G. Protonation Constants of Chitosan with Different Molecular Weight and Degree of Deacetylation. Carbohydr. Polym. 2006, 65, 194–201. [Google Scholar] [CrossRef]
- Stojanović, Ž.; Jeremić, K.; Jovanović, S.; Lechner, M.D. A Comparison of Some Methods for the Determination of the Degree of Substitution of Carboxymethyl Starch. Starch Stärke 2005, 57, 79–83. [Google Scholar] [CrossRef]
- Manna, P.K.; Choudhury, P.K. Molecular Parameters of Sodium Carboxymethyl Amylose in Dilute Solution. J. Macromol. Sci. Part. A Chem. 1974, 8, 909–917. [Google Scholar] [CrossRef]
- Kasaai, M.R. Calculation of Mark–Houwink–Sakurada (MHS) Equation Viscometric Constants for Chitosan in Any Solvent–Temperature System Using Experimental Reported Viscometric Constants Data. Carbohydr. Polym. 2007, 68, 477–488. [Google Scholar] [CrossRef]
- Flory, P.J. Principles of Polymer Chemistry; 19. Print; Cornell University Press: Ithaca, NY, USA, 2006; ISBN 978-0-8014-0134-3. [Google Scholar]
- Lustriane, C.; Dwivany, F.M.; Suendo, V.; Reza, M. Effect of Chitosan and Chitosan-Nanoparticles on Post Harvest Quality of Banana Fruits. J. Plant Biotechnol. 2018, 45, 36–44. [Google Scholar] [CrossRef]
- Mohammed, M.; Syeda, J.; Wasan, K.; Wasan, E. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics 2017, 9, 53. [Google Scholar] [CrossRef]
- Costa, C.N.; Teixeira, V.G.; Delpech, M.C.; Souza, J.V.S.; Costa, M.A.S. Viscometric Study of Chitosan Solutions in Acetic Acid/Sodium Acetate and Acetic Acid/Sodium Chloride. Carbohydr. Polym. 2015, 133, 245–250. [Google Scholar] [CrossRef]
- Philippova, O.E.; Korchagina, E.V. Chitosan and Its Hydrophobic Derivatives: Preparation and Aggregation in Dilute Aqueous Solutions. Polym. Sci. Ser. A 2012, 54, 552–572. [Google Scholar] [CrossRef]
- Adeyanju, O.; Olademehin, O.P.; Hussaini, Y.; Nwanta, U.C.; Adejoh, A.I.; Plavec, J. Synthesis and Characterization of Carboxymethyl Plectranthus Esculentus Starch. A Potential Disintegrant. J. Pharm. Appl. Chem. 2016, 2, 189–195. [Google Scholar] [CrossRef]
- Wang, W.; Liu, W.; Wu, J.; Liu, M.; Wang, Y.; Liu, H.; Liu, J. Preparation and Characterization of Particle-Filled Microgels by Chemical Cross-Linking Based on Zein and Carboxymethyl Starch for Delivering the Quercetin. Carbohydr. Polym. 2024, 323, 121375. [Google Scholar] [CrossRef] [PubMed]
- Vishakha, V.; Abdel-Mohsen, A.M.; Michalicka, J.; White, P.B.; Lepcio, P.; Tinoco Navarro, L.K.; Jančář, J. Carboxymethyl Starch as a Reducing and Capping Agent in the Hydrothermal Synthesis of Selenium Nanostructures for Use with Three-Dimensional-Printed Hydrogel Carriers. R. Soc. Open Sci. 2023, 10, 230829. [Google Scholar] [CrossRef] [PubMed]
- Stojanović, Ž.; Jeremić, K.; Jovanović, S. Molecular Structure of Carboxymethyl Starch in Dilute Aqueous Sodium Chloride Solutions. Starch Stärke 2013, 65, 902–911. [Google Scholar] [CrossRef]
- Litvinov, M.; Kashurin, A.; Aleksandr, P. Study of the Influence of the Composition and pH of the Solution on the Structure and Morphology of Particle Dispersions of a (Bio)Polyelectrolyte Complex between Chitosan and Gelatin. Colloid. Polym. Sci. 2024. [Google Scholar] [CrossRef]
- Chen, X.; Yan, Y.; Li, H.; Wang, X.; Tang, S.; Li, Q.; Wei, J.; Su, J. Evaluation of Absorbable Hemostatic Agents of Polyelectrolyte Complexes Using Carboxymethyl Starch and Chitosan Oligosaccharide Both in Vitro and in Vivo. Biomater. Sci. 2018, 6, 3332–3344. [Google Scholar] [CrossRef] [PubMed]
- Buchhammer, H.-M.; Kramer, G.; Lunkwitz, K. Interaction of Colloidal Dispersions of Non-Stoichiometric Polyelectrolyte Complexes and Silica Particles. Colloids Surf. A Physicochem. Eng. Asp. 1995, 95, 299–304. [Google Scholar] [CrossRef]
- Klimaviciute, R.; Bendoraitiene, J.; Lekniute, E.; Zemaitaitis, A. Non-Stoichiometric Complexes of Cationic Starch and 4-Sulfophthalic Acid and Their Flocculation Efficiency. Colloids Surf. A Physicochem. Eng. Asp. 2014, 457, 180–188. [Google Scholar] [CrossRef]
- Gao, J.; Zhan, Q.; Tang, Z.; Huang, Y. The Critical Transition from Soluble Complexes to Colloidal Aggregates of Polyelectrolyte Complexes at Non-Stoichiometric Charge Ratios. Macromol. Rapid Commun. 2022, 43, 2100880. [Google Scholar] [CrossRef]
- Drogoz, A.; David, L.; Rochas, C.; Domard, A.; Delair, T. Polyelectrolyte Complexes from Polysaccharides: Formation and Stoichiometry Monitoring. Langmuir 2007, 23, 10950–10958. [Google Scholar] [CrossRef] [PubMed]
- Izumrudov, V.A.; Volkova, I.F.; Grigoryan, E.S.; Gorshkova, M.Y. Water-Soluble Nonstoichiometric Polyelectrolyte Complexes of Modified Chitosan. Polym. Sci. Ser. A 2011, 53, 281–288. [Google Scholar] [CrossRef]
- Mihai, M.; Dragan, E.S. Chitosan Based Nonstoichiometric Polyelectrolyte Complexes as Specialized Flocculants. Colloids Surf. A Physicochem. Eng. Asp. 2009, 346, 39–46. [Google Scholar] [CrossRef]
- Dragan, E.S.; Mihai, M.; Schwarz, S. Complex Nanoparticles Based on Chitosan and Ionic/Nonionic Strong Polyanions: Formation, Stability, and Application. ACS Appl. Mater. Interfaces 2009, 1, 1231–1240. [Google Scholar] [CrossRef] [PubMed]
- Paneva, D.; Mincheva, R.; Yancheva, E.; Manolova, N.; Stoilova, O.; Dubois, P.; Rashkov, I. N-Carboxyethylchitosan-Based Polymer Materials. In Chitosan: Manufacture, Propierties and Usage; Biotechnology in Agriculture, Industry and Medicine; Nova Science Publishers: Hauppauge, NY, USA, 2011; pp. 261–320. ISBN 978-1-61728-831-9. [Google Scholar]
- Souza, C.J.F.; Da Costa, A.R.; Souza, C.F.; Tosin, F.F.S.; Garcia-Rojas, E.E. Complex Coacervation between Lysozyme and Pectin: Effect of pH, Salt, and Biopolymer Ratio. Int. J. Biol. Macromol. 2018, 107, 1253–1260. [Google Scholar] [CrossRef]
- Mao, S.; Bakowsky, U.; Jintapattanakit, A.; Kissel, T. Self-Assembled Polyelectrolyte Nanocomplexes between Chitosan Derivatives and Insulin. J. Pharm. Sci. 2006, 95, 1035–1048. [Google Scholar] [CrossRef]
- Tabandeh, S.; Leon, L. Engineering Peptide-Based Polyelectrolyte Complexes with Increased Hydrophobicity. Molecules 2019, 24, 868. [Google Scholar] [CrossRef]
- Kulikouskaya, V.I.; Lazouskaya, M.E.; Agabekov, V.E. Features of the Formation of Interpolyelectrolyte Complexes Based on Chitosan and Pectin. Theor. Exp. Chem. 2019, 54, 375–385. [Google Scholar] [CrossRef]
- Sunarti, T.C.; Febrian, M.I.; Ruriani, E.; Yuliasih, I. Some Properties of Chemical Cross-Linking Biohydrogel from Starch and Chitosan. Int. J. Biomater. 2019, 2019, 1–6. [Google Scholar] [CrossRef]
- Nicolay, V.; Nina, S.; Yuliya, K.; Galina, B. Formation of Polyelectrolyte Complexes from Chitosan and Alkaline Gelatin. KnE Life Sci. 2020, 5, 109–119. [Google Scholar] [CrossRef]
- Ibrahim, H.K.; Sorour, R.M.H.; Salah Ad-din, I. Application of Mathematical Modelling to Alginate Chitosan Polyelectrolyte Complexes for the Prediction of System Behavior with Venlafaxine HCl as a Model Charged Drug. Saudi Pharm. J. 2022, 30, 1507–1520. [Google Scholar] [CrossRef]
- Tamburaci, S.; Kimna, C.; Tihminlioglu, F. Bioactive Diatomite and POSS Silica Cage Reinforced Chitosan/Na-Carboxymethyl Cellulose Polyelectrolyte Scaffolds for Hard Tissue Regeneration. Mater. Sci. Eng. C 2019, 100, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Rinaudo, M.; Pavlov, G.; Desbrières, J. Influence of Acetic Acid Concentration on the Solubilization of Chitosan. Polymer 1999, 40, 7029–7032. [Google Scholar] [CrossRef]
- Abuelella, K.; Abd-Allah, H.; Soliman, S.; Abdel-Mottaleb, M. Chitosan Based Polyelectrolyte Complex Nanoparticles: Preparation and Characterization. Bull. Pharm. Sci. Assiut Univ. 2022, 45, 53–62. [Google Scholar] [CrossRef]
- Lefnaoui, S.; Moulai-Mostefa, N. Synthesis and Evaluation of the Structural and Physicochemical Properties of Carboxymethyl Pregelatinized Starch as a Pharmaceutical Excipient. Saudi Pharm. J. 2015, 23, 698–711. [Google Scholar] [CrossRef] [PubMed]
- Kaibara, K.; Okazaki, T.; Bohidar, H.B.; Dubin, P.L. pH-Induced Coacervation in Complexes of Bovine Serum Albumin and Cationic Polyelectrolytes. Biomacromolecules 2000, 1, 100–107. [Google Scholar] [CrossRef]
- Botelho Da Silva, S.; Krolicka, M.; Van Den Broek, L.A.M.; Frissen, A.E.; Boeriu, C.G. Water-Soluble Chitosan Derivatives and pH-Responsive Hydrogels by Selective C-6 Oxidation Mediated by TEMPO-Laccase Redox System. Carbohydr. Polym. 2018, 186, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Aranaz, I.; Alcántara, A.R.; Civera, M.C.; Arias, C.; Elorza, B.; Heras Caballero, A.; Acosta, N. Chitosan: An Overview of Its Properties and Applications. Polymers 2021, 13, 3256. [Google Scholar] [CrossRef] [PubMed]
- Ardean, C.; Davidescu, C.M.; Nemeş, N.S.; Negrea, A.; Ciopec, M.; Duteanu, N.; Negrea, P.; Duda-Seiman, D.; Musta, V. Factors Influencing the Antibacterial Activity of Chitosan and Chitosan Modified by Functionalization. Int. J. Mol. Sci. 2021, 22, 7449. [Google Scholar] [CrossRef]
- Zhang, B.; Tao, H.; Wei, B.; Jin, Z.; Xu, X.; Tian, Y. Characterization of Different Substituted Carboxymethyl Starch Microgels and Their Interactions with Lysozyme. PLoS ONE 2014, 9, e114634. [Google Scholar] [CrossRef]
- Li, X.-M.; Wu, Z.-Z.; Zhang, B.; Pan, Y.; Meng, R.; Chen, H.-Q. Fabrication of Chitosan Hydrochloride and Carboxymethyl Starch Complex Nanogels as Potential Delivery Vehicles for Curcumin. Food Chem. 2019, 293, 197–203. [Google Scholar] [CrossRef]
- Kokufuta, E.; Ogawa, K.; Doi, R.; Kikuchi, R.; Farinato, R.S. Geometrical Characteristics of Polyelectrolyte Nanogel Particles and Their Polyelectrolyte Complexes Studied by Dynamic and Static Light Scattering. J. Phys. Chem. B 2007, 111, 8634–8640. [Google Scholar] [CrossRef] [PubMed]
- Newham, G.; Mathew, R.K.; Wurdak, H.; Evans, S.D.; Ong, Z.Y. Polyelectrolyte Complex Templated Synthesis of Monodisperse, Sub-100 Nm Porous Silica Nanoparticles for Cancer Targeted and Stimuli-Responsive Drug Delivery. J. Colloid. Interface Sci. 2021, 584, 669–683. [Google Scholar] [CrossRef]
- Ferreira, D.C.M.; Ferreira, S.O.; De Alvarenga, E.S.; Soares, N.D.F.F.; Coimbra, J.S.D.R.; De Oliveira, E.B. Polyelectrolyte Complexes (PECs) Obtained from Chitosan and Carboxymethylcellulose: A Physicochemical and Microstructural Study. Carbohydr. Polym. Technol. Appl. 2022, 3, 100197. [Google Scholar] [CrossRef]
- De Vasconcelos, C.L.; Bezerril, P.M.; Dos Santos, D.E.S.; Dantas, T.N.C.; Pereira, M.R.; Fonseca, J.L.C. Effect of Molecular Weight and Ionic Strength on the Formation of Polyelectrolyte Complexes Based on Poly(Methacrylic Acid) and Chitosan. Biomacromolecules 2006, 7, 1245–1252. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Yang, T.; Hu, X. Novel Polysaccharides-Based Nanoparticle Carriers Prepared by Polyelectrolyte Complexation for Protein Drug Delivery. Polym. Bull. 2012, 68, 1183–1199. [Google Scholar] [CrossRef]
- Liu, X.; Haddou, M.; Grillo, I.; Mana, Z.; Chapel, J.-P.; Schatz, C. Early Stage Kinetics of Polyelectrolyte Complex Coacervation Monitored through Stopped-Flow Light Scattering. Soft Matter 2016, 12, 9030–9038. [Google Scholar] [CrossRef]
- Saikia, C.; Hussain, A.; Ramteke, A.; Sharma, H.K.; Maji, T.K. Carboxymethyl Starch-Chitosan-Coated Iron Oxide Magnetic Nanoparticles for Controlled Delivery of Isoniazid. J. Microencapsul. 2015, 32, 29–39. [Google Scholar] [CrossRef]
- Wu, D.; Delair, T. Stabilization of Chitosan/Hyaluronan Colloidal Polyelectrolyte Complexes in Physiological Conditions. Carbohydr. Polym. 2015, 119, 149–158. [Google Scholar] [CrossRef]
- Sæther, H.V.; Holme, H.K.; Maurstad, G.; Smidsrød, O.; Stokke, B.T. Polyelectrolyte Complex Formation Using Alginate and Chitosan. Carbohydr. Polym. 2008, 74, 813–821. [Google Scholar] [CrossRef]
Polymer | MCA, g | DS (or DD for Chit) | Kh | R2 | [η], mL/g | Mη, kDa | (Rg2)1/2, nm | Rh, nm |
---|---|---|---|---|---|---|---|---|
Chit | – | 0.82 | 0.16 | 0.90 | 66.1 | 30 | 7 | – |
CMS 1 | 2.0 | 0.16 | 0.24 | 0.98 | 54.0 | 92 | 9 | 17 |
CMS 2 | 2.5 | 0.33 | 0.25 | 0.99 | 56.4 | 107 | 10 | 17 |
CMS 3 | 3.0 | 0.36 | 0.23 | 0.99 | 62.0 | 151 | 11 | 22 |
Chit:CMS | Ratio of Ionized Groups z | ||
---|---|---|---|
CMS 1 | CMS 2 | CMS 3 | |
1:1 | 0.10 | 0.21 | 0.32 |
1:2 | 0.20 | 0.42 | 0.65 |
1:3 | 0.30 | 0.64 | 0.98 |
1:4 | 0.40 | 0.85 | 1.30 |
1:5 | 0.50 | 1.06 | 1.63 |
1:6 | 0.60 | 1.27 | 1.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro, D.; Brovina, V.; Litvinov, M.; Podshivalov, A. Effect of Degree of Substitution and Polymer Ratio on the Structure of Chitosan: Carboxymethyl Starch (Bio)Polyelectrolyte Complexes. Polymers 2024, 16, 3539. https://doi.org/10.3390/polym16243539
Castro D, Brovina V, Litvinov M, Podshivalov A. Effect of Degree of Substitution and Polymer Ratio on the Structure of Chitosan: Carboxymethyl Starch (Bio)Polyelectrolyte Complexes. Polymers. 2024; 16(24):3539. https://doi.org/10.3390/polym16243539
Chicago/Turabian StyleCastro, David, Valentina Brovina, Mikhail Litvinov, and Aleksandr Podshivalov. 2024. "Effect of Degree of Substitution and Polymer Ratio on the Structure of Chitosan: Carboxymethyl Starch (Bio)Polyelectrolyte Complexes" Polymers 16, no. 24: 3539. https://doi.org/10.3390/polym16243539
APA StyleCastro, D., Brovina, V., Litvinov, M., & Podshivalov, A. (2024). Effect of Degree of Substitution and Polymer Ratio on the Structure of Chitosan: Carboxymethyl Starch (Bio)Polyelectrolyte Complexes. Polymers, 16(24), 3539. https://doi.org/10.3390/polym16243539