Preparation of PLGA Microspheres Using the Non-Toxic Glycofurol as Polymer Solvent by a Modified Phase Inversion Methodology
Abstract
:1. Introduction
2. Methods and Materials
2.1. PLGA Microsphere Preparation
2.2. Assessing Effect of PLGA Concentration on Solidification Time
2.3. Assessment of Sphere Hardness by Measurement of Compressive Modulus
2.4. In Vitro Release of DEX from Microspheres
2.5. Cytotoxicity of PLGA Microspheres on Fibroblasts and Splenocytes
2.6. Measurement of Drug Load and Encapsulation Efficiency
2.7. Determination of PLGA Microsphere Size, Density, and Porosity
2.8. Assessment of Water Diffusion into PLGA Microspheres [40]
2.9. Measurement of Residual Glycofurol
2.10. Quantification of DEX Breakdown by HPLC
2.11. Assessment of the Kinetic Models of Drug Release and Statistical Analyses
3. Results
3.1. Physical Properties
3.2. Water Diffusion
3.3. HPLC of Spheres
3.4. In Vitro Cytotoxicity of DCM- and Glycofurol-Prepared PLGA Microspheres
3.5. DEX Release from PLGA Microspheres
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Meng, E.; Hoang, T. MEMS-enabled implantable drug infusion pumps for laboratory animal research, preclinical, and clinical applications. Adv. Drug Deliv. Rev. 2012, 64, 1628–1638. [Google Scholar] [CrossRef]
- Dong, Y.; Paukkonen, H.; Fang, W.; Kontturi, E.; Laaksonen, T.; Laaksonen, P. Entangled and colloidally stable microcrystalline cellulose matrices in controlled drug release. Int. J. Pharm. 2018, 548, 1113–1119. [Google Scholar] [CrossRef]
- Richard, B.M.; Ott, L.R.; Haan, D.; Brubaker, A.N.; Cole, P.I.; Nelson, K.G.; Ross, P.E.; Rebelatto, M.C.; Newton, P.E. The safety and tolerability evaluation of DepoFoam bupivacaine (bupivacaine extended-release liposome injection) administered by incision wound infiltration in rabbits and dogs. Expert Opin. Investig. Drugs 2011, 20, 1327–1341. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, R.; Arai, Y.C.; Hamayasu, K.; Fujita, K.; Hara, K.; Yamaguchi, T.; Sasaguri, S. Complex of branched cyclodextrin and lidocaine prolong the duration of peripheral nerve block. J. Anesth. 2009, 23, 295–297. [Google Scholar] [CrossRef] [PubMed]
- Haghighi, F.H.; Binaymotlagh, R.; Fratoddi, I.; Chronopoulou, L.; Palocci, C. Peptide-Hydrogel Nanocomposites for Anti-Cancer Drug Delivery. Gels 2023, 9, 953. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, B.W. Current Advances in Stimuli-Responsive Hydrogels as Smart Drug Delivery Carriers. Gels 2023, 9, 838. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.H. The manufacturing techniques of various loaded biocompatible poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 2000, 21, 2475–2490. [Google Scholar] [CrossRef] [PubMed]
- Yue, S.; Zhang, B.; Sun, R.; Liu, W.; Zhu, Q.; Zhang, X.; Wang, R.; Chen, C. PLGA-based biodegradable microspheres in drug delivery: Recent advances in research and application. Drug Deliv. 2021, 28, 1397–1418. [Google Scholar] [CrossRef]
- Jain, S.; Mittal, A.; Jain, A.K. Enhanced topical delivery of cyclosporin-A using PLGA nanoparticles as carrier. Curr. Nanosci. 2011, 7, 524–530. [Google Scholar] [CrossRef]
- Salama, H.A.; Ghorab, M.; Mahmoud, A.A.; Hady, M.A. PLGA Nanoparticles as Subconjunctival Injection for Management of Glaucoma. AAPS PharmSciTech 2017, 18, 2517–2528. [Google Scholar] [CrossRef]
- Mirakabad, F.; Koshki, K.; Akbarzadeh, A.; Yamchi, M.R.; Milani, M.; Zarghami, N.; Zeighamian, V.; Rahimzadeh, A.; Alimohammadi, S.; Hanifehpour, Y.; et al. PLGA-based nanoparticles as cancer drug delivery systems. Asian Pac. J. Cancer Prev. 2014, 15, 517–535. [Google Scholar] [CrossRef]
- Jain, A.; Kunduru, K.R.; Basu, A.; Mizrahi, B.; Domb, A.J.; Khan, W. Injectable formulations of poly (lactic acid) and its copolymers in clinical use. Adv. Drug Deliv. Rev. 2016, 107, 213–227. [Google Scholar] [CrossRef] [PubMed]
- Rezvantalab, S.; Drude, N.I.; Gyvener, N.; Koons, E.K.; Shi, Y.; Lammers, T.; Kiessling, F.; Kiessling, F. PLGA-Based Nanoparticles in Cancer Treatment. Front. Pharmacol. 2018, 9, 1260. [Google Scholar] [CrossRef] [PubMed]
- Danier, F.; Ansorena, E.; Silva, J.M.; Coco, R.; Le Breton, A.; Preat, V. PLGA-based nanoparticles: An overview of biomedical applications. J. Control. Release 2012, 151, 505–522. [Google Scholar] [CrossRef] [PubMed]
- Muddineti, O.S.; Omri, A. Current trends in PLGA based long-acting injectable products: The industry perspective. Expert Opin. Drug Deliv. 2022, 19, 559–576. [Google Scholar] [CrossRef]
- Bala, I.; Hariharan, S.; Kumar, M.N.V.R. PLGA nanoparticles in drug delivery: The state of the art. Crit. Rev. Ther. Drug Carr. Syst. 2004, 21, 387–422. [Google Scholar] [CrossRef]
- Raghavendra, C.; Mundargi, R.C.; Babu, V.R.; Rangaswamy, V.; Patel, P.; Aminabhavi, T.M. Nano/micro technologies for delivering macromolecular therapeutics using poly (D,L-lactide-co-glycolide) and its derivatives. J. Control. Release 2008, 125, 193–209. [Google Scholar]
- Galeska, I.; Kim, T.-K.; Patil, S.D.; Bhardwaj, U.; Chattopadhyay, D.; Papidimitrkopoulos, F.; Burges, D.J. Controlled release of dexamethasone from PLGA, Microspheres Embedded within polyacid-containing PVA hydrogels. AAPS J. 2005, 7, E231–E240. [Google Scholar] [CrossRef]
- Hickey, T.; Kreutzer, D.; Burgess, D.J.; Moussy, F. Dexamethasone/PLGA microspheres for continuous delivery of an anti-inflammatory drug for implantable medical devices. Biomaterials 2002, 23, 1649–1656. [Google Scholar] [CrossRef]
- Bittner, B.; Ronnenberger, B.; Zange, R.; Volland, C.; Anderson, J.M.; Kissel, T. Bovine serum albumin loaded poly(lactide-co-glyclolide) microspheres; the influence of polymer purity in particle charracteristics. J. Microencapsul. 1998, 15, 495–514. [Google Scholar] [CrossRef]
- Q3C—Tables and List, Guidance for Industry. US Dept. of Health and Human Svcs. Federal Register 2017. Available online: https://www.fda.gov/media/71737/download (accessed on 14 May 2023).
- Washington, M.A.; Balmert, S.C.; Fedorchak, M.V.; Little, S.R.; Watkins, S.C.; Tara, Y.; Meyer, T.Y. Monomer sequence in PLGA microparticles: Effects on acidic microclimates and in vivo inflammatory response. Acta BioMaterialia 2018, 65, 259–271. [Google Scholar] [CrossRef]
- Carel, J.C.; Eugster, E.A.; Rogol, A.; Ghizzoni, L.; Palmert, M.R.; ESPE-LWPES GnRH Analogs Consensus Conference Group; Antoniazzi, F.; Berenbaum, S.; Bourguignon, J.-P.; Chrousos, G.P.; et al. Consensus statement on the use of gonadotropin-releasing hormone analogs in children. Pediatrics 2009, 123, e752–e762. [Google Scholar] [CrossRef]
- Sah, H. Ethyl formate—Alternative dispersed solvent useful in preparing PLGA microspheres. Int. J. Pharm. 2000, 195, 103–113. [Google Scholar] [CrossRef]
- Hermann, J.; Bodmeier, R. Biodegradable, somatostatin acetate containing microspheres prepared by various aqueous and non-aqueous solvent evaporation methods. Eur. J. Pharm. Biopharm. 1998, 45, 75–82. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information 2023, PubChem Compound Summary for, Glycofurol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Glycofurol (accessed on 14 May 2023).
- Barakat, N.S. Optimization of physical characterization, skin permeation of naproxen from glycofurol-based topical gel. Asian J. Pharm. (AJP) 2010, 4, 154–162. [Google Scholar] [CrossRef]
- Available online: www.osha.gov/laws-regs/regulations/standardnumber/1910/1910.1200 (accessed on 14 May 2023).
- Crowther, M.A.; Pillina, A.; Owen, K. The evaluation of glycofurol as a vehicle for use in toxicity studies. Hum. Exp. Toxicol. 1997, 16, 406. [Google Scholar]
- Aubert-Pouëssel, A.; Venier-Julienne, M.C.; Saulnier, P.; Sergent, M.; Benoît, J.-P. Preparation of PLGA Microparticles by an Emulsion-Extraction Process using Glycofurol as Polymer Solvent. Pharm. Res. 2004, 21, 2384–2391. [Google Scholar] [CrossRef]
- Kim, B.K.; Kim, D.; Cho, S.H.; Yuk, S.H. Hydrophilized poly(lactid-co-glycolide) nanospheres with poly (ethylene oxide)-poly(propylene oxide)-poly(ethyleneoxide) triblock copolymer. J. Microencapsul. 2004, 21, 697–707. [Google Scholar] [CrossRef] [PubMed]
- Allhenn, D.; Lamprecht, A. Microsphere preparation using the untoxic solvent glycofurol. Pharm. Res. 2011, 28, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Swed, A.; Cordonnier, T.; Fleury, F.; Boury, F. Protein encapsulation into PLGA Nanoparticles by a Novel Phase Separation Method Using Non-Toxic Solvent. Nanomed. Nanotechnlogy 2014, 10, 2147–7439. [Google Scholar]
- Rodriguez, G.; Dias, J.; d’Ávila, M.A.; Paulo, B. Influence of Hydroxyapatite on Extruded 3D Scaffolds. Procedia Eng. 2013, 59, 263–269. [Google Scholar] [CrossRef]
- Kim, D.H.; Martin, D.C. Sustained release of dexamethasone from hydrophilic matrices using PLGA nanoparticles for neural drug delivery. Biomaterials 2006, 27, 3031–3037. [Google Scholar] [CrossRef]
- Rampersad, S.N. Multiple Applications of Alamar Blue as an indicator of Metabolic Function and Cellular Health in Cell Viability Bioassays. Sensors 2012, 12, 12347–12360. [Google Scholar] [CrossRef]
- Shahu, P.A.; Potnis, V.V.; Dangre, P.V.; Thote, L.T. Development and validation of simultaneous spectrophotometric estimation of ciprofloxacin hydrochloride and dexamethasone sodium phosphate in bulk drug and its formulation. Indo Am. J. Pharm. Res. 2013, 3, 7103–7113. [Google Scholar]
- Park, C.W.; Lee, H.J.; Oh, D.W.; Kang, J.H.; Han, C.S.; Kim, D.W. Preparation and in vitro/in vivo evaluation of PLGA microspheres containing norquetiapine for long-acting injection. Drug Des. Devel. Ther. 2018, 12, 711–719. [Google Scholar] [CrossRef]
- Sediq, A.S.; Waasdorp, S.; Nejadnik, M.R.; van Beers, M.M.; Meulenaar, J.; Verrijk, R.; Jiskoot, W. Determination of the porosity of PLGA microparticles by tracking their sedimentation velocity using a flow imaging microscope (FlowCAM). Pharm. Res. 2017, 34, 1104–1114. [Google Scholar] [CrossRef]
- Huang, C.L.; Steele, T.W.J.; Widjaja, E.; Boey, F.Y.C.; Ventkatraman, S.S.; Loo, J.S.C. The influence of additives in modulating drug delivery and degradation of PLGA thin films. NPG Asia Mater. 2013, 5, e54. [Google Scholar] [CrossRef]
- Zhang, Y.; Huo, M.; Zhou, J.; Zou, A.; Li, W.; Yao, C.; Xie, S. DDSolver: An added-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010, 12, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Kopcha, M.; Lordi, N.G.; Tojo, K.J. Evaluation of Release from Selected Thermosoftening Vehicles. J. Pharm. Pharmacol. 1991, 43, 382–387. [Google Scholar] [CrossRef]
- Kim, K.; Pack, D.W. Microspheres for Drug Delivery. In BioMEMS and Biomedical Nanotechnology; Ferrari, M., Lee, A.P., Lee, L.J., Eds.; Springer: Boston, MA, USA, 2006; pp. 19–50. [Google Scholar]
- Bhardwaj, U.; Sura, R.; Papadimitrakopoulos, F.; Burgess, D.J. Controlling Acute Inflammation with Fast Releasing Dexamethasone-PLGA Microsphere/PVA hydrogel Composites for Implantable Devices. J. Diabetes Sci. Technol. 2007, 1, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Gaete, C.; Tsapis, N.; Besnard, M.; Bochot, A.; Fattal, E. Encapsulation of dexamethasone into biodegradable polymeric nanoparticles. Int. J. Pharm. 2007, 331, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Paillard-Giteau, A. Effect if various additive and polymers on lysozyme release from PLGA microspheres prepared by an s/0/2 emulsion technique. Eur. J. Pharm. Biopharm. 2010, 75, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Fu, K.; Klibanov, A.M.; Langer, R. Protein stability in controlled-release systems. Nat. Biotechnol. 2000, 18, 24–25. [Google Scholar] [CrossRef] [PubMed]
- Lagreca, E.; Onesto, V.; Di Natale, C.; La Manna, S.; Netti, P.A.; Vecchione, R. Recent advances in the formulation of PLGA microparticles for controlled drug delivery. Prog. Biomater. 2020, 9, 153–174. [Google Scholar] [CrossRef] [PubMed]
- Mao, S.; Shi, Y.; Li, L.; Xu, J.; Schaper, A.; Kissel, T. Effects of process and formulation parameters on characteristics and internal morphology of poly (D,L-lactid-co-glycolide) microspheres formd by the solvent evaporation method. Eur. J. Pharm. Biopharm. 2008, 68, 214–223. [Google Scholar] [CrossRef]
- Weibull, W. A Statistical Distribution Function of Wide Applicability. J. Appl. Mech. 1951, 18, 293–297. [Google Scholar] [CrossRef]
- Korsmeyer, R.W.; Gurny, R.; Doelker, E.; Buri, P.; Peppas, N.A. Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm. 1983, 15, 25–35. [Google Scholar] [CrossRef]
- Zolnik, B.S.; Burgess, D.J. Evaluation of in vivo-in vitro release of dexamethasone from PLGA microspheres. J. Control. Release 2008, 127, 137–145. [Google Scholar] [CrossRef]
- Bhardwaj, U.; Sura, R.; Papadimitrakopoulos, F.; Burgess, D.J. PLGA/PVA Hydrogel Composites for Long-Term Inflammation Control Following s.c. Implantation. Int. J. Pharm. 2010, 384, 78–86. [Google Scholar] [CrossRef]
- WIschke, C.; Schwendeman, S.P. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int. J. Pharm. 2008, 364, 298–327. [Google Scholar] [CrossRef]
% PLGA | Needle Exposed, d1 (mm) | Needle Gauge | Distance Needle to Surface Water, d2 (cm) | Air Flow (LPM) | Morphology/Size of Spheres |
---|---|---|---|---|---|
20 | 2 | 27 | 2.5 | 30 | Sphere, 300–400 µm * |
20 | 5 | 27 | 2.5 | 30 | Sphere, 400–600 µm |
20 | 2 | 27 | 2.5 | 15 | Sphere, 500–700 µm |
20 | 2 | 27 | 2.5 | 45 | Rods |
20 | 2 | 27 | 5 | 30 | Sphere, 300–400 µm |
20 | 2 | 30 | 2.5 | 30 | Rods & Sphere, 300–400 µm |
5 | 2 | 27 | 2.5 | 30 | Sphere, 300–400 µm * |
5 | 5 | 27 | 2.5 | 30 | Sphere, 350–600 µm |
5 | 2 | 27 | 2.5 | 15 | Sphere, 400–650 µm |
5 | 2 | 27 | 2.5 | 45 | Rods |
5 | 2 | 27 | 5 | 30 | Sphere, 300–400 µm |
5 | 2 | 30 | 2.5 | 30 | Rods & Sphere, 300–400 µm |
1 | 2 | 27 | 2.5 | 30 | Sphere, 300–400 µm * |
1 | 5 | 27 | 2.5 | 30 | Sphere, 300–500 µm |
1 | 2 | 27 | 2.5 | 15 | Sphere, 400–600 µm |
1 | 2 | 27 | 2.5 | 45 | Rods |
1 | 2 | 27 | 5 | 30 | Rods and Sphere, 300–400 µm |
1 | 2 | 30 | 2.5 | 30 | Rods and Sphere, 300–400 µm |
% PLGA | Sphere Solidification Time (t1) (s) | Compressive Modulus E (×10−3 mPa) |
---|---|---|
20%PLGA | 3.83 (0.15) | 18.44 ± 0.733 |
10% PLGA | 7.33 (0.38) | 9.212 ± 0.784 |
5% PLGA | 10.00 (0.33) | 6.468 ± 0.48 |
1% PLGA | 12.83 (0.28) | 4.116 ± 0.392 |
Density (g/cm3) | Porosity (Φ) | Encapsulation Efficiency | Burst Release% (24 h) | |
---|---|---|---|---|
No drug–20% PLGA–GPI | 0.170 (0.005) | 0.8692 (0.004) | - | - |
20% DEX 20% PLGA–GPI | 0.196 (0.009) | 0.8493 (0.008) | 80.45% (1.23) | 4.88% (0.16) |
1% DEX 20% PLGA–GPI | 0.163 (0.008) | 0.8749 (0.007) | 86.21% (2.87) | 5.99% (0.17) |
20% DEX 5% PLGA–GPI | 0.133 (0.011) | 0.9073 (0.010) | 47.25% (3.74) d | 15.68% (2.12) b |
No drug 20% PLGA–DCM | 0.217 (0.006) e | 0.8333 (0.007) | - | - |
20% DEX 20% PLGA–DCM | 0.205 (0.009) | 0.8423 (0.012) | 72.25% (1.45) d | 28.65% (3.34) b |
20% Sudan III–20% PLGA–DCM | 0.228 (0.012) | 0.7147 (0.009) a | 62.41% (2.84) f | 19.28% (4.41) c |
No drug–20% PLGA–GEM | 0.345 (0.004) e | 0.7348 (0.003) | - | - |
20% Sudan III–20% PLGA–GEM | 0.331 (0.002) | 0.7448 (0.002) a | 34.91% (3.98) f | 18.17% (3.79) c |
20% Sudan III–20% PLGA–GPI | 0.178 (0.007) g | 0.8630 (0.005) | 73.11% (2.34) | 6.03% (1.02) |
Model | 20%DEX-Day 0 to 210 | 1% DEX-Day 0 to 210 | |||||
---|---|---|---|---|---|---|---|
Avg. R2 | Avg. AIC | Avg. MSC | Avg. R2 | Avg. AIC | Avg. MSC | ||
First Order | 0.7721 (0.0689) | 148.35 (4.9) | 1.43 (0.34) | 0.9318 (0.0395) | 133.78 (7.46) | 2.75 (0.57) | |
Gompertz | 0.9828 (0.0023) | 98.35 (3.83) | 3.93 (0.14) | 0.9297 (0.0159) | 138.11 (8.54) | 2.53 (0.22) | |
Higuchi | 0.9492 (0.0193) | 117.57 (7.32) | 2.97 (0.44) | 0.9685 (0.0175) | 117.64 (11.09) | 3.55 (0.69) | |
Hixson-Crowell | 0.6584 (0.0862) | 156.79 (3.68) | 1.01 (0.27) | 0.8794 (0.0684) | 144.92 (8.23) | 2.19 (0.61) | |
Korsmeyer-Peppas | 0.9825 (0.0031) | 98.57 (3.95) | 3.92 (0.19) | ||||
Weibull | 0.9921 (0.0029) * | 81.44 (7.33) * | 4.77 (0.41) * | ||||
Zero-Order | 0.2574 (0.1254) | 172.74 (2) | 0.21 (0.17) | 0.3754 (0.1313) | 180.91 (2.86) | 0.39 (0.22) | |
A | B | A/B | A | B | A/B | Mechanism | |
Kopcha’s | 0.201 (0.007) | 0.024 (0.002) | 8.26 | 0.16 (0.008) | 0.028 (0.006) | 5.61 | Diffusion (A/B > 1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobel, D.; Ramasubramanian, B.; Sawhney, P.; Parmar, K. Preparation of PLGA Microspheres Using the Non-Toxic Glycofurol as Polymer Solvent by a Modified Phase Inversion Methodology. Polymers 2024, 16, 434. https://doi.org/10.3390/polym16030434
Sobel D, Ramasubramanian B, Sawhney P, Parmar K. Preparation of PLGA Microspheres Using the Non-Toxic Glycofurol as Polymer Solvent by a Modified Phase Inversion Methodology. Polymers. 2024; 16(3):434. https://doi.org/10.3390/polym16030434
Chicago/Turabian StyleSobel, Douglas, Barath Ramasubramanian, Puja Sawhney, and Keerat Parmar. 2024. "Preparation of PLGA Microspheres Using the Non-Toxic Glycofurol as Polymer Solvent by a Modified Phase Inversion Methodology" Polymers 16, no. 3: 434. https://doi.org/10.3390/polym16030434
APA StyleSobel, D., Ramasubramanian, B., Sawhney, P., & Parmar, K. (2024). Preparation of PLGA Microspheres Using the Non-Toxic Glycofurol as Polymer Solvent by a Modified Phase Inversion Methodology. Polymers, 16(3), 434. https://doi.org/10.3390/polym16030434