NMR Analyses and Statistical Modeling of Biobased Polymer Microstructures—A Selected Review
Abstract
:1. Introduction
2. Statistical Models
3. Poly(lactic acid) Tacticity
4. Poly(hydroxyalkanoate) Comonomer Sequences
5. Polysaccharide Sequence Determination
5.1. Alginate Mannuronic/Guluronic Sequence Analysis
5.2. Pectin Galacturonic Acid/Ester Sequence Analysis
5.3. Sequence Analysis of Partially Deacetylated Chitosan
5.4. Comments
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, H.N.; Gross, R.A. (Eds.) Sustainable Green Chemistry in Polymer Research, Vol. 1. Biocatalysis and Biobased Materials; ACS Symposium Series 1450; American Chemical Society: Washington, DC, USA, 2023. [Google Scholar]
- Cheng, H.N.; Gross, R.A. (Eds.) Sustainable Green Chemistry in Polymer Research, Vol. 2. Sustainable Polymers and Applications; ACS Symposium Series 1451; American Chemical Society: Washington, DC, USA, 2023. [Google Scholar]
- Cywar, R.M.; Rorrer, N.A.; Hoyt, C.B.; Beckham, G.T.; Chen, E.Y. Bio-based polymers with performance-advantaged properties. Nat. Rev. Mater. 2022, 7, 83–103. [Google Scholar] [CrossRef]
- Azhar, N.N.H.; Ang, D.T.; Abdullah, R.; Harikrishna, J.A.; Cheng, A. Bio-Based Materials Riding the Wave of Sustainability: Common Misconceptions, Opportunities, Challenges and the Way Forward. Sustainability 2022, 14, 5032. [Google Scholar] [CrossRef]
- Bovey, F.A. High Resolution NMR of Macromolecules; Academic Press: New York, NY, USA, 1972. [Google Scholar]
- Matsuzaki, K.; Uryu, T.; Asakura, T. NMR Spectroscopy and Stereoregularity of Polymers; Japan Scientific Societies Press: Tokyo, Japan, 1996. [Google Scholar]
- Cheng, H.N. Structural Studies of Polymers by Solution NMR; RAPRA Review Reports 125, Vol. 11, Number 5; RAPRA: Shrewsbury, UK, 2001. [Google Scholar]
- Cheng, H.N.; English, A.D. (Eds.) NMR Spectroscopy of Polymers in Solution and in the Solid State; ACS Symposium Series 834; American Chemical Society: Washington, DC, USA, 2003. [Google Scholar]
- Mirau, P.A. A Practical Guide to Understanding the NMR of Polymers; Wiley: Hoboken, NJ, USA, 2004. [Google Scholar]
- Kitayama, T.; Hatada, K. NMR Spectroscopy of Polymers; Springer: New York, NY, USA, 2004. [Google Scholar]
- Cheng, H.N.; Asakura, T.; English, A.D. (Eds.) NMR Spectroscopy of Polymers: Innovative Strategies for Complex Macromolecules; ACS Symposium Series 1077; American Chemical Society: Washington, DC, USA, 2012. [Google Scholar]
- Zhang, R.; Miyoshi, T.; Sun, P. (Eds.) NMR Methods for Characterization of Synthetic and Natural Polymers; Royal Society of Chemistry: London, UK, 2019. [Google Scholar]
- Cheng, H.N. Computer-Assisted NMR Analysis of Polymers in Solution. Polym. News 2000, 25, 114–122. [Google Scholar]
- Cheng, H.N.; Miri, M. Statistical Models and NMR Analysis of Polymer Microstructure. ACS Symp. Ser. 2011, 1077, 371–382. [Google Scholar]
- Odian, G. Principles of Polymerization, 4th ed.; Wiley: Hoboken, NJ, USA, 2004. [Google Scholar]
- Hagiopol, C. Copolymerization: Toward a Systematic Approach; Springer: New York, NY, USA, 1999. [Google Scholar]
- Brar, A.S.; Hekmatyar, S.K. Microstructure determination of the acrylonitrile–styrene–methyl methacrylate terpolymers by NMR spectroscopy. J. Appl. Polym. Sci. 1999, 74, 3026–3032. [Google Scholar] [CrossRef]
- Brar, A.S.; Malhotra, M. Compositional Assignments and Sequence Distribution of Vinylidene Chloride—Methyl Acrylate Copolymers Using One- and Two-Dimensional NMR Spectroscopy. Macromolecules 1996, 29, 7470–7476. [Google Scholar] [CrossRef]
- Coleman, B.D.; Fox, T.G. Multistate mechanism for homogeneous ionic polymerization. I. The diastereosequence distribution. J. Chem. Phys. 1963, 38, 1065–1075. [Google Scholar] [CrossRef]
- Coleman, B.D.; Fox, T.G. General theory of stationary random sequences with applications to the tacticity of polymers. J. Polym. Sci. Part A 1963, 1, 3183–3197. [Google Scholar] [CrossRef]
- Coleman, B.D.; Fox, T.G. A multistate mechanism for homogeneous ionic polymerization. II. The molecular weight distribution. J. Am. Chem. Soc. 1963, 85, 1241–1244. [Google Scholar] [CrossRef]
- Price, F.P. Markov Chains and Monte Carlo Calculations in Polymer Science; Chapter 7; Lowry, G.G., Ed.; Marcel Dekker: New York, NY, USA, 1970. [Google Scholar]
- Shelden, R.A.; Fueno, T.; Tsunetsugu, T.; Furukawa, J. A one-parameter model for isotactic polymerization based on enantiomorphic catalyst sites. J. Polym. Sci. Part B Polym. Lett. 1965, 3, 23–26. [Google Scholar] [CrossRef]
- Inoue, Y.; Itabashi, Y.; Chûjô, R.; Doi, Y. Studies of the stereospecific polymerization mechanism of propylene by a modified Ziegler-Natta catalyst based on 125 MHz 13C n.m.r. spectra. Polymer 1984, 25, 1640–1644. [Google Scholar] [CrossRef]
- Seiner, J.A.; Litt, M. The role of monomer charge-transfer complexes in free radical copolymerization. I. Derivation of terminal complex model equations. Macromolecules 1971, 4, 308–311. [Google Scholar] [CrossRef]
- Hill, D.J.T.; O’Donnell, J.H.; O’Sullivan, P.W. The role of donor-acceptor complexes in polymerization. Prog. Polym. Sci. 1982, 8, 215–275. [Google Scholar] [CrossRef]
- Izu, M.; O’Driscoll, K.F.; Hill, R.J.; Quinn, M.J.; Harwood, H.J. Copolymerization with Depropagation. VII. Coisotacticities in the Free-Radical Copolymerization of α-Methylstyrene and Methyl Methacrylate between their Ceiling Temperatures. Macromolecules 1972, 5, 90–92. [Google Scholar] [CrossRef]
- Cais, R.E.; Hill, D.J.T.; O’Donnell, J.H. Copolymerization of Vinyl Chloride and Sulfur Dioxide. III. Evaluation of the Copolymerization Mechanism. J. Macromol. Sci. Chem. A 1982, 17, 1437–1467. [Google Scholar] [CrossRef]
- Szwarc, M.; Perrin, C.L. General treatment of equilibrium copolymerization of two or more comonomers deduced from the initial state of the system. Macromolecules 1985, 18, 528–533. [Google Scholar] [CrossRef]
- Harwood, H.J. Structures and compositions of copolymers. Makromol. Chem. Makromol. Symp. 1987, 10–11, 331–354. [Google Scholar] [CrossRef]
- Carman, C.J.; Harrington, R.A.; Wilkes, C.E. Monomer Sequence Distribution in Ethylene-Propylene Rubber Measured by 13C NMR. 3. Use of Reaction Probability Model. Macromolecules 1977, 10, 536–544. [Google Scholar] [CrossRef]
- Cheng, H.N. Markovian Statistics and Simplex Algorithm for Carbon-13 NMR Spectra of Ethylene Propylene Copolymers. Anal. Chem. 1982, 54, 1828–1833. [Google Scholar] [CrossRef]
- Cheng, H.N. 13C NMR Analysis of Propylene Butylene Copolymers by a Reaction Probability Model. J. Polym. Sci. Polym. Phys. Ed. 1983, 21, 573–581. [Google Scholar] [CrossRef]
- Cheng, H.N. Analysis of NMR Triad Distribution in Ethylene/1 Butene Copolymers. Polym. Bull. 1990, 23, 589–596. [Google Scholar] [CrossRef]
- Cheng, H.N.; Lee, G.H. Characterization of Ethylene Copolymers with 1H NMR Techniques and Reaction Probability Models. Macromolecules 1988, 21, 3164–3170. [Google Scholar] [CrossRef]
- Cheng, H.N. Computerized Model Fitting Approach for the NMR Analysis of Polymers. J. Chem. Inf. Comput. Sci. 1987, 27, 8–13. [Google Scholar] [CrossRef]
- Cheng, H.N. 13C NMR Sequence Determination for Multicomponent Polymer Mixtures. J. Appl. Polym. Sci. 1988, 35, 1639–1650. [Google Scholar] [CrossRef]
- Cheng, H.N. Perturbed Markovian Probability Models. Macromolecules 1992, 25, 2351–2358. [Google Scholar] [CrossRef]
- Cheng, H.N. NMR Characterization of Copolymers that Exhibit Non-Symmetric Compositional Heterogeneity. Macromolecules 1997, 30, 4117–4125. [Google Scholar] [CrossRef]
- Koenig, J.L. Chemical Microstructure of Polymer Chains; Wiley: New York, NY, USA, 1980. [Google Scholar]
- Cheng, H.N. Polymerization and Statistical Models. In Encyclopedia of NMR; Grant, D.M., Harris, R.K., Eds.; Wiley: New York, NY, USA, 1996; pp. 3713–3721. [Google Scholar]
- Cheng, H.N. Cheng. Stereochemistry of Vinyl Polymers and NMR Characterization. J. Appl. Polym. Sci. 1988, 36, 229–241. [Google Scholar] [CrossRef]
- Cheng, H.N.; Babu, G.N.; Newmark, R.A.; Chien, J.C.W. Consecutive Two State Statistical Models for Vinyl Polymerization. Macromolecules 1992, 25, 6980–6987. [Google Scholar] [CrossRef]
- Cheng, H.N. NMR analysis of multicomponent polyolefins. In New Advances in Polyolefins; Chung, T.C., Ed.; Plenum: New York, NY, USA, 1993; pp. 159–174. [Google Scholar]
- Roland, M.T.; Cheng, H.N. Reaction Probability Model for Four Component Copolymerization. Macromolecules 1991, 24, 2015–2018. [Google Scholar] [CrossRef]
- Cheng, H.N.; Kasehagen, L.J. NMR Analysis of Copolymers through Kinetic Modeling. ACS Polym. Prepr. 2003, 44, 381–382. [Google Scholar]
- Cheng, H.N.; Kasehagen, L.J. NMR Studies and Simulation of Polymerization. ACS Polym. Prepr. 1997, 38, 863–864. [Google Scholar]
- Lasprilla, A.J.R.; Martinez, G.A.R.; Lunelli, B.H.; Jardini, A.L.; Filho, R.M. Poly-lactic acid synthesis for application in biomedical devices—A review. Biotechnol. Adv. 2012, 30, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Bergsma, J.E.; Bos, R.R.M.; Rozema, F.R.; Jong, W.D.; Boering, G.J. Biocompatibility of intraosseously implanted predegraded poly(lactide): An animal study. J. Mater. Sci. Mater. Med. 1996, 7, 1–7. [Google Scholar] [CrossRef]
- Fambri, L.; Pergoretti, A.; Fenner, R.; Incardona, S.D.; Migliarisi, C. Biodegradable fibres of poly(L-lactic acid) produced by melt spinning. Polymer 1997, 38, 79–85. [Google Scholar] [CrossRef]
- Masutani, K.; Kimura, Y. PLA synthesis, from the monomer to the polymer. In Poly(Lactic Acid) Science and Technology: Processing, Properties, Additives and Applications; Jiemenz, A., Peltzer, M., Ruseckeite, R., Eds.; RSC Publishing: Cambridge, UK, 2015; pp. 3–36. [Google Scholar]
- Fukushima, K.; Kimura, Y. A novel synthetic approach to stereo-block poly(lactic acid). Macromol. Symp. 2005, 224, 133–143. [Google Scholar] [CrossRef]
- Zell, M.T.; Padden, B.E.; Paterick, A.J.; Thakur, K.A.M.; Kean, R.T.; Hillmyer, M.A.; Munson, E.J. Unambiguous determination of the 13C and 1H NMR stereosequence assignments of polylactide using high resolution solution NMR spectroscopy. Macromolecules 2002, 35, 7700–7707. [Google Scholar] [CrossRef]
- Thakur, K.A.M.; Kean, R.T.; Hall, E.S.; Kolstad, J.J.; Lindgren, T.A.; Doscotch, M.A.; Siepmann, J.I.; Munson, E.J. High-resolution 13C and 1H solution NMR study of poly(lactide). Macromolecules 1997, 30, 2422–2428. [Google Scholar] [CrossRef]
- Suganuma, K.; Horiuchi, K.; Matsuda, H.; Cheng, H.N.; Aoki, A.; Asakura, T. Stereoregularity of poly(lactic acid) and their model compounds as studied by NMR and quantum chemical calculations. Macromolecules 2011, 44, 9247–9253. [Google Scholar] [CrossRef]
- Suganuma, K.; Horiuchi, K.; Matsuda, H.; Cheng, H.N.; Aoki, A.; Asakura, T. NMR Analysis and chemical shift calculations of poly(lactic acid) dimer model compounds with different tacticities. Polym. J. 2012, 44, 838–844. [Google Scholar] [CrossRef]
- Suganuma, K.; Matsuda, H.; Cheng, H.N.; Iwai, M.; Nonokawa, R.; Asakura, T. Tacticity determination of 1H and 13C NMR spectra of poly(lactic acid) in C5D5N. Polym. Test. 2014, 38, 35–39. [Google Scholar] [CrossRef]
- Suganuma, K.; Asakura, T.; Oshimura, M.; Hirano, T.; Ute, K.; Cheng, H.N. NMR analysis of poly(lactic acid) via statistical models. Polymers 2019, 11, 725. [Google Scholar] [CrossRef]
- Kumar, M.; Rathour, R.; Singh, R.; Sun, Y.; Pandey, A.; Gnansounou, E.; Lin, K.A.; Tsang, D.C.W.; Thakur, I.S. Bacterial polyhydroxyalkanoates: Opportunities, challenges, and prospects. J. Clean. Prod. 2020, 263, 121500. [Google Scholar] [CrossRef]
- Anjum, A.; Zuber, M.; Zia, K.M.; Noreen, A.; Anjum, M.N.; Tabasum, S. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. Int. J. Biol. Macromol. 2016, 89, 161–174. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, J.; Chen, G.-Q. Polyhydroxyalkanoates, challenges and opportunities. Curr. Opin. Biotechnol. 2014, 30, 59–65. [Google Scholar] [CrossRef]
- Westlie, A.H.; Quinn, E.C.; Parker, C.R.; Chen, E.Y. Synthetic biodegradable polyhydroxyalkanoates (PHAs): Recent advances and future challenges. Prog. Polym. Sci. 2022, 134, 101608. [Google Scholar] [CrossRef]
- Adamus, G.; Domiński, A.; Kowalczuk, M.; Kurcok, P.; Radecka, I. From Anionic Ring-Opening Polymerization of β-Butyrolactone to Biodegradable Poly(hydroxyalkanoate)s: Our Contributions in This Field. Polymers 2021, 13, 4365. [Google Scholar] [CrossRef]
- Cherpinski, A.; Torres-Giner, S.; Vartiainen, J.; Peresin, M.S.; Lahtinen, P.; Lagaron, J.M. Improving the water resistance of nanocellulose-based films with polyhydroxyalkanoates processed by the electrospinning coating technique. Cellulose 2018, 25, 1291–1307. [Google Scholar] [CrossRef]
- Gross, R.A.; Demello, A.C.; Lenz, R.W.; Brandl, H.; Fuller, R.C. The biosynthesis and characterization of poly(β-hydroxyalkanoates) produced by Pseudomonas oleovorans. Macromolecules 1989, 22, 1106–1115. [Google Scholar] [CrossRef]
- Noda, I.; Green, P.R.; Satkowski, M.M.; Schechtman, L.A. Preparation and properties of a novel class of polyhydroxyalkanote copolymers. Biomacromolecules 2005, 6, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Luo, G.; Zhou, X.R.; Chen, G.Q. Biosynthesis of poly(3-hydroxydecanoate) and 3-hydroxydodecanoate dominating polyhydroxyalkanoates by β-oxidation pathway inhibited Pseudomonas putida. Metab. Eng. 2011, 13, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Matsusaki, H.; Abe, H.; Taguchi, K.; Fukui, T.; Doi, Y. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant bacteria expressing the PHA synthase gene phaC1 from Pseudomonas sp. 61-3. Appl. Microbiol. Biotechnol. 2000, 53, 401–409. [Google Scholar] [CrossRef]
- Phithakrotchanakoon, C.; Champreda, V.; Aiba, S.; Pootanakit, K.; Tanapongpipat, S. Production of polyhydroxyalkanoates from crude glycerol using recombinant Escherichia coli. J. Polym. Environ. 2015, 23, 38–44. [Google Scholar] [CrossRef]
- Cheng, H.N.; Biswas, A.; Vermillion, K.; Melendez-Rodriguez, B.; Lagaron, S.M. NMR Analysis and Triad Sequence Distributions of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Polym. Test. 2020, 90, 106754. [Google Scholar] [CrossRef]
- Abe, M.M.; Martins, J.R.; Sanvezzo, P.B.; Macedo, J.V.; Branciforti, M.C.; Halley, P.; Botaro, V.R.; Brienzo, M. Advantages and Disadvantages of Bioplastics Production from Starch and Lignocellulosic Components. Polymers 2021, 13, 2484. [Google Scholar] [CrossRef]
- Lim, C.; Yusoff, S.; Ng, C.G.; Lim, P.E.; Ching, Y.C. Bioplastic made from seaweed polysaccharides with green production methods. J. Environ. Chem. Eng. 2021, 9, 105895. [Google Scholar] [CrossRef]
- Whistler, R.L.; BeMiller, J.N. (Eds.) Industrial Gums: Polysaccharides and their Derivatives, 3rd ed.; Academic Press: San Diego, CA, USA, 1993. [Google Scholar]
- Shaghaleh, H.; Xu, X.; Wang, S. Current progress in production of biopolymeric materials based on cellulose, cellulose nanofibers, and cellulose derivatives. RSC Adv. 2018, 8, 825–842. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.N.; Biswas, A.; Furtado, R.F.; Alves, C.A. Hydrophobic Modifications of Agro-based Polymers—A Selected Review. ACS Symp. Ser. 2023, 1450, 249–258. [Google Scholar]
- Cheng, H.N. Use of green chemistry for process development and improvement. In Green Chemistry: Research and Connections to Climate Change; Benvenuto, M.A., Welch, L., Eds.; De Gruyter: Berlin, Germany; Boston, MA, USA, 2023; pp. 1–12. [Google Scholar]
- Cheng, H.N.; Neiss, T.G. NMR Spectroscopy of Food Polysaccharides in Solution. Polym. Rev. 2012, 52, 81–114. [Google Scholar] [CrossRef]
- Yao, H.Y.; Wang, J.; Yin, J.; Nie, S.; Xie, M. A review of NMR analysis in polysaccharide structure and conformation: Progress, challenge and perspective. Food Res. Int. 2021, 143, 110290. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, L. Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources. Carbohydr. Polym. 2009, 76, 349–361. [Google Scholar] [CrossRef]
- Ren, Y.; Bai, Y.; Zhang, Z.; Cai, W.; Flores, A.D.R. The Preparation and Structure Analysis Methods of Natural Polysaccharides of Plants and Fungi: A Review of Recent Development. Molecules 2019, 24, 3122. [Google Scholar] [CrossRef] [PubMed]
- Pettolino, F.A.; Walsh, C.; Fincher, G.B.; Bacic, A. Determining the polysaccharide composition of plant cell walls. Nat. Protoc. 2012, 7, 1590–1607. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef] [PubMed]
- Pawar, S.N.; Edgar, K.J. Alginate derivatization: A review of chemistry, properties and applications. Biomaterials 2012, 33, 3279–3305. [Google Scholar] [CrossRef] [PubMed]
- Grasdalen, H.; Larsen, B.; Smidsrod, O. 13C-n.m.r. studies of monomeric composition and sequence in alginate. Carbohydr. Res. 1981, 89, 179–191. [Google Scholar] [CrossRef]
- Grasdalen, H. High-field ‘H-n.m.r. spectroscopy of alginate: Sequential structure and linkage conformations. Carbohydr. Res. 1983, 118, 255–260. [Google Scholar] [CrossRef]
- Cheng, H.N. Compositional Heterogeneity of Alginates through NMR Analysis. Polym. Bull. 1999, 43, 247. [Google Scholar] [CrossRef]
- Neiss, T.G.; Cheng, H.N. Analysis of Polysaccharides by NMR and Separation Techniques. ACS Polym. Prepr. 2001, 42, 76–77. [Google Scholar]
- Neiss, T.G.; Cheng, H.N. Coupled SEC-NMR Analysis of Alginates. ACS Symp. Ser. 2002, 834, 382–395. [Google Scholar]
- Kawarada, H.; Hirai, A.; Odani, H.; Lida, T.; Nakajima, A. Structure characterization of alginate and conformational behaviors of various alkali-metal alginates in solution. Polym. Bull. 1990, 24, 551–557. [Google Scholar] [CrossRef]
- Cheng, H.N.; USDA-ARS-SRRC, New Orleans, LA, USA. Personal communication.
- Freitas, C.M.P.; Coimbra, J.S.R.; Souza, V.G.; Sousa, R.C.S. Structure and Applications of Pectin in Food, Biomedical, and Pharmaceutical Industry: A Review. Coatings 2021, 11, 922. [Google Scholar] [CrossRef]
- Mohnen, D. Pectin structure and biosynthesis. Curr. Opin. Plant Biol. 2008, 11, 266–277. [Google Scholar] [CrossRef]
- Neiss, T.G.; Cheng, H.N.; Daas, P.J.H.; Schols, H.A. NMR and statistical analysis of the galacturonic acid and methyl ester distributions in pectic polysaccharides. ACS Polym. Prepr. 1998, 39, 688–689. [Google Scholar]
- Neiss, T.G.; Cheng, H.N.; Daas, P.J.H.; Schols, H.A. Compositional Heterogeneity in Pectic Polysaccharides: NMR and Statistical Analysis. Macromol. Symp. 1999, 140, 165–178. [Google Scholar] [CrossRef]
- Kou, S.G.; Peters, L.M.; Mucalo, M.R. Chitosan: A review of sources and preparation methods. Int. J. Biol. Macromol. 2021, 169, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Ahmed, S. A review on chitosan and its nanocomposites in drug delivery. Int. J. Biol. Macromol. 2018, 109, 273–286. [Google Scholar] [CrossRef] [PubMed]
- Varum, K.M.; Anthonsen, M.W.; Grasdalen, H.; Smidsrod, O. Determination of the degree of N-acetylation and the distribution of N-acetyl groups in partially N-deacetylated chitins (chitosans) by high-field n.m.r. spectroscopy. Carbohydr. Res. 1991, 211, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Varum, K.M.; Anthonsen, M.W.; Grasdalen, H.; Smidsrod, O. 13C-N.m.r. studies of the acetylation sequences in partially N-deacetylated chitins (chitosans). Carbohydr. Res. 1991, 217, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.N. Compositional Heterogeneity in NMR Polymer Analysis. ACS Polym. Prepr. 2003, 44, 261–262. [Google Scholar]
- Moser, E.; Laistler, E.; Schmitt, F.; Kontaxis, G. Ultra-High Field NMR and MRI—The Role of Magnet Technology to Increase Sensitivity and Specificity. Front. Phys. 2017, 5, 33, Corrigendum Front. Phys. 2017, 5, 41. [Google Scholar] [CrossRef]
- Wren, E. Evidence that NMR Chemical Shifts Depend on Magnetic Field Strength. Chemistry World. 29 April 2020. Available online: https://www.chemistryworld.com/news/evidence-that-nmr-chemical-shifts-depend-on-magnetic-field-strength/4011613.article (accessed on 6 January 2024).
NMR Information | Statistical Models | References |
---|---|---|
Homopolymer tacticity and copolymer sequence | 1. One-component models (discrete) a. Chain-end control: B, M1, M2 b. Catalytic-site control: E model c. Both end and site control: EM1, EM2 | [5,40,41,42] |
2. Two-component models (discrete) a. Consecutive B/B, B/E, E/E b. Concurrent B/B, B/E, E/E | [43] | |
3. Multi-component models (discrete) a. Consecutive multisite models b. Concurrent multisite models | [37,44] | |
4. Perturbed models (continuous) a. Symmetric B and M1 models b. Non-symmetric B and M1 models c. General-case models | [38,39] | |
Terpolymers and Tetrapolymers | Higher-copolymerization models | [45] |
Branched polymers and more complex polymers | Kinetic models | [46,47] |
Tetrad | Model 1 a | Model 2 b | Model 3 c | Obsd. % | Calc. % Mod. 1 | Calc. % Mod. 3 |
---|---|---|---|---|---|---|
mmm | (p22 + q22 + p23 + q23)/2 | p14 + q14 | f2[(p22 + q22 + p23 + q23)/2] + f1[p14 + q14] | 39.9 | 40.1 | 39.9 |
mrm | p2q2 | 2p12q12 | f2 p2q2 + f1 [2p12q12] | 21.4 | 24.0 | 21.3 |
mmr | p2q2/2 | p13q1 + p1q13 | f2 p2q2/2 + f1 [p13q1 + p1q13] | 11.3 | 12.0 | 11.6 |
rmm | p2q2/2 | p13q1 + p1q13 | f2 p2q2/2 + f1 [p13q1 + p1q13] | 10.9 | 12.0 | 11.6 |
rmr | p2q2/2 | 2p12q12 | f2 p2q2/2 + f1 [2p12q12] | 12.0 | 12.0 | 11.3 |
rrm | 0 | p13q1 + p1q13 | f1 [p13q1 + p1q13] | 2.5 | 0 | 1.5 |
mrr | 0 | p13q1 + p1q13 | f1 [p13q1 + p1q13] | 1.5 | 0 | 1.5 |
rrr | 0 | 2p12q12 | f1 [2p12q12] | 0.7 | 0 | 1.2 |
MD | 1.2 | 0.4 | ||||
Reaction probabilities | p2 = 0.6 | p1 = 0.66 f1 = 0.12 p2 = 0.65 f2 = 0.88 |
Triad | Obsd % | M1 Model Expressions * | Calc. % | Two-Component B/B Model Expressions ** | Calc. % |
---|---|---|---|---|---|
VVV | 4.7 | kPBVPVV2 | 4.7 | w1PV13 + w2PV23 | 4.7 |
BVV + VVB | 8.3 | 2kPBVPVVPVB | 11.6 | 2w1PV12(1 − Pv1) + 2w2PV22(1 − Pv2) | 8.3 |
BVB | 9.7 | kPVB2PBV | 7.1 | w1PV1(1 − Pv1)2 + w2PV2(1 − Pv2)2 | 9.9 |
VBV | 3.9 | kPBV2PVB | 2.2 | w1PV12(1 − Pv1) + w2PV22(1 − Pv2) | 4.1 |
BBV + VBB | 20.3 | 2kPVBPBBPBV | 21.4 | 2w1PV1(1 − Pv1)2 + 2w2PV2(1 − Pv2)2 | 19.9 |
BBB | 53.1 | kPVBPBB2 | 53.1 | w1(1 − PV1)3 + w2(1 − PV2)3 | 53.1 |
mean deviation | 1.5 | mean deviation | 0.2 | ||
PBV | 0.168 | PV1 | 0.134 | ||
PVB | 0.551 | w1 | 0.802 | ||
r1 r2 | 4.03 | PV2 | 0.610 | ||
w2 | 0.198 |
NMR Triad | Obsd % | Discrete Models | Continuous Model | |
---|---|---|---|---|
Calc % (for B) | Calc % (for B/B) | Calc % (for Perturbed B) | ||
MMM | 39 | 39 | 39 | 39 |
MMG | 17 | 29 | 19 | 18 |
GMG | 8 | 5 | 7 | 7 |
MGM | 10 | 14 | 9 | 9 |
GGM | 14 | 11 | 14 | 15 |
GGG | 12 | 2 | 12 | 12 |
Mean dev. | 5.4 | 0.6 | 0.6 | |
Reaction probabilities | PM = 0.731 | Component 1: w1 = 0.592 PM = 0.858 Component 2: w2 = 0.408 PM = 0.338 | PM = 0.648 σ = 0.253 τ = −0.004 |
NMR Triad | Obsd. % | Discrete Models | Continuous Model | |
---|---|---|---|---|
Calc % (for B) | Calc % (for B/B) | Calc % (for Perturbed B) | ||
EEE | 32.4 | 32.4 | 32.5 | 32.4 |
EEG | 28.0 | 29.5 | 28.0 | 27.5 |
GEG | 6.4 | 6.7 | 7.1 | 6.7 |
EGE | 13.0 | 14.8 | 14.0 | 13.8 |
GGE | 14.0 | 13.5 | 14.0 | 13.4 |
GGG | 6.2 | 3.1 | 4.4 | 6.2 |
Mean dev. | 1.2 | 0.6 | 0.4 | |
Reaction probabilities | PE = 0.687 | Component 1: w1 = 0.793 PE = 0.724 Component 2: w2 = 0.207 PE = 0.489 | PE = 0.675 σ = 0.118 τ = −0.008 |
NMR Triad | Obsd. % | Discrete Models | Continuous Model | |
---|---|---|---|---|
Calc % (for B) | Calc % (for B/B) | Calc % (for Perturbed B) | ||
EEE | 2.1 | 1.6 | 2.4 | 2.5 |
EEG | 10.6 | 9.6 | 10.6 | 10.6 |
GEG | 13.4 | 14.1 | 13.3 | 13.3 |
EGE | 5.5 | 4.8 | 5.3 | 5.3 |
GGE | 26.7 | 28.2 | 26.7 | 26.6 |
GGG | 41.7 | 41.7 | 41.7 | 41.7 |
Mean dev. | 0.8 | 0.1 | 0.1 | |
Reaction probabilities | PE = 0.253 | Component 1: w1 = 0.337 PE = 0.586 Component 2: w2 = 0.159 PE = 0.414 | PE = 0.264 σ = 0.0928 τ = 0.0003 |
NMR Triad | Obsd. % | Discrete Models | Continuous Model | |
---|---|---|---|---|
Calc % (for B) | Calc % (for B/B) | Calc % (for Perturbed B) | ||
AAA | 15 | 15 | 16 | 15 |
AAD | 28 | 27 | 25 | 28 |
DAD | 10 | 12 | 10 | 9 |
ADA | 14 | 13 | 13 | 14 |
DDA | 16 | 23 | 20 | 17 |
DDD | 17 | 10 | 17 | 17 |
Mean dev. | 3.0 | 1.5 | 0.4 | |
Reaction probabilities | PA = 0.531 | Component 1: w1 = 0.906 PA = 0.357 Component 2: w2 = 0.094 PA = 0.009 | PA = 0.547 σ = 0.083 τ = −0.031 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, H.N.; Asakura, T.; Suganuma, K.; Lagaron, J.M.; Melendez-Rodriguez, B.; Biswas, A. NMR Analyses and Statistical Modeling of Biobased Polymer Microstructures—A Selected Review. Polymers 2024, 16, 620. https://doi.org/10.3390/polym16050620
Cheng HN, Asakura T, Suganuma K, Lagaron JM, Melendez-Rodriguez B, Biswas A. NMR Analyses and Statistical Modeling of Biobased Polymer Microstructures—A Selected Review. Polymers. 2024; 16(5):620. https://doi.org/10.3390/polym16050620
Chicago/Turabian StyleCheng, Huai N., Tetsuo Asakura, Koto Suganuma, Jose M. Lagaron, Beatriz Melendez-Rodriguez, and Atanu Biswas. 2024. "NMR Analyses and Statistical Modeling of Biobased Polymer Microstructures—A Selected Review" Polymers 16, no. 5: 620. https://doi.org/10.3390/polym16050620
APA StyleCheng, H. N., Asakura, T., Suganuma, K., Lagaron, J. M., Melendez-Rodriguez, B., & Biswas, A. (2024). NMR Analyses and Statistical Modeling of Biobased Polymer Microstructures—A Selected Review. Polymers, 16(5), 620. https://doi.org/10.3390/polym16050620