Highly Thermally Conductive Triple-Level Ordered CNT/PVA Nanofibrous Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the MWCNT/PVA Composite Fibrous Films
2.2. Characterizations
3. Results and Discussion
3.1. First-Level Orderness (Aligned PVA Chains)
3.2. Second-Level Orderness (Aligned MWCNTs)
3.3. Inter-Level Perturbation
3.4. Third-Level Orderness (Aligned Nanofibers)
3.5. The Matrix of Triple-Level Orderness
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, M.; Wang, H.; Su, Z.; Tian, C.; Zhang, J.T.; Wang, Y.; Yan, F.; Mai, Z.; Xing, G. Enhanced Thermal Conductivity and Lower Density Composites with Brick-Wall Microstructure Based on Highly Oriented Graphite Nanoplatelet: Towards Manufacturable Cooling Substrates for High Power Density Electronic Devices. Nanotechnology 2019, 30, 245204. [Google Scholar] [CrossRef]
- Razeeb, K.M.; Dalton, E.; Cross, G.L.W.; Robinson, A.J. Present and Future Thermal Interface Materials for Electronic Devices. Int. Mater. Rev. 2018, 63, 1–21. [Google Scholar] [CrossRef]
- Chen, H.; Ginzburg, V.V.; Yang, J.; Yang, Y.; Liu, W.; Huang, Y.; Du, L.; Chen, B. Thermal Conductivity of Polymer-Based Composites: Fundamentals and Applications. Prog. Polym. Sci. 2016, 59, 41–85. [Google Scholar] [CrossRef]
- Pan, C.; Kou, K.; Zhang, Y.; Li, Z.; Wu, G. Enhanced Through-Plane Thermal Conductivity of PTFE Composites with Hybrid Fillers of Hexagonal Boron Nitride Platelets and Aluminum Nitride Particles. Compos. Part B Eng. 2018, 153, 1–8. [Google Scholar] [CrossRef]
- Hu, M.; Yu, D.; Wei, J. Thermal Conductivity Determination of Small Polymer Samples by Differential Scanning Calorimetry. Polym. Test. 2007, 26, 333–337. [Google Scholar] [CrossRef]
- Shrestha, R.; Luan, Y.; Shin, S.; Zhang, T.; Luo, X.; Lundh, J.S.; Gong, W.; Bockstaller, M.R.; Choi, S.; Luo, T.; et al. High-Contrast and Reversible Polymer Thermal Regulator by Structural Phase Transition. Sci. Adv. 2019, 5, eaax3777. [Google Scholar] [CrossRef]
- Ding, Y.; Hou, H.; Zhao, Y.; Zhu, Z.; Fong, H. Electrospun Polyimide Nanofibers and Their Applications. Prog. Polym. Sci. 2016, 61, 67–103. [Google Scholar] [CrossRef]
- Kumaresan, V.; Sreekantan, S.; Devarajan, M.; Mohamed, K. Bin Non-Oil Bleed Two-Part Silicone Dispensable Thermal Gap Filler with Al2O3 and AlN Filler for Effective Heat Dissipation in Electronics Packaging. J. Adhes. 2022, 98, 855–870. [Google Scholar] [CrossRef]
- Ahn, K.; Kim, K.; Kim, J. Fabrication of Surface-Treated BN/ETDS Composites for Enhanced Thermal and Mechanical Properties. Ceram. Int. 2015, 41, 9488–9495. [Google Scholar] [CrossRef]
- Ishida, H.; Rimdusit, S. Very High Thermal Conductivity Obtained by Boron Nitride-Filled Polybenzoxazine. Thermochim. Acta 1998, 320, 177–186. [Google Scholar] [CrossRef]
- Roy, C.K.; Bhavnani, S.; Hamilton, M.C.; Johnson, R.W.; Nguyen, J.L.; Knight, R.W.; Harris, D.K. Investigation into the Application of Low Melting Temperature Alloys as Wet Thermal Interface Materials. Int. J. Heat Mass Transf. 2015, 85, 996–1002. [Google Scholar] [CrossRef]
- Ji, C.; Wang, Y.; Ye, Z.; Tan, L.; Mao, D.; Zhao, W.; Zeng, X.; Yan, C.; Sun, R.; Kang, D.J.; et al. Ice-Templated MXene/Ag-Epoxy Nanocomposites as High-Performance Thermal Management Materials. ACS Appl. Mater. Interfaces 2020, 12, 24298–24307. [Google Scholar] [CrossRef] [PubMed]
- Ki, S.; Shim, J.; Oh, S.; Ryu, S.; Kim, J.; Nam, Y. Rapid Enhancement of Thermal Conductivity by Incorporating Oxide-Free Copper Nanoparticle Clusters for Highly Conductive Liquid Metal-Based Thermal Interface Materials. In Proceedings of the 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 1–4 July 2021; pp. 601–606. [Google Scholar]
- Wei, S.; Yu, Z.F.; Zhou, L.J.; Guo, J.D. Investigation on Enhancing the Thermal Conductance of Gallium-Based Thermal Interface Materials Using Chromium-Coated Diamond Particles. J. Mater. Sci. Mater. Electron. 2019, 30, 7194–7202. [Google Scholar] [CrossRef]
- Molina-Jordá, J.M. Multi-Scale Design of Novel Materials for Emerging Challenges in Active Thermal Management: Open-Pore Magnesium-Diamond Composite Foams with Nano-Engineered Interfaces. Compos. Part A Appl. Sci. Manuf. 2018, 105, 265–273. [Google Scholar] [CrossRef]
- Shen, S.; Henry, A.; Tong, J.; Zheng, R.; Chen, G. Polyethylene Nanofibres with Very High Thermal Conductivities. Nat. Nanotechnol. 2010, 5, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Kraemer, D.; Song, B.; Jiang, Z.; Zhou, J.; Loomis, J.; Wang, J.; Li, M.; Ghasemi, H.; Huang, X.; et al. Nanostructured Polymer Films with Metal-like Thermal Conductivity. Nat. Commun. 2019, 10, 1771. [Google Scholar] [CrossRef]
- Chen, A.; Wu, Y.; Zhou, S.; Xu, W.; Jiang, W.; Lv, Y.; Guo, W.; Chi, K.; Sun, Q.; Fu, T.; et al. High Thermal Conductivity Polymer Chains with Reactive Groups: A Step towards True Application. Mater. Adv. 2020, 1, 1996–2002. [Google Scholar] [CrossRef]
- Wang, G.; Lu, X.; Ling, Y.; Zhai, T.; Wang, H.; Tong, Y.; Li, Y. LiCl/PVA Gel Electrolyte Stabilizes Vanadium Oxide Nanowire Electrodes for Pseudocapacitors. ACS Nano 2012, 6, 10296–10302. [Google Scholar] [CrossRef]
- Baker, M.I.; Walsh, S.P.; Schwartz, Z.; Boyan, B.D. A Review of Polyvinyl Alcohol and Its Uses in Cartilage and Orthopedic Applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 100B, 1451–1457. [Google Scholar] [CrossRef]
- Song, W.L.; Wang, W.; Veca, L.M.; Kong, C.Y.; Cao, M.S.; Wang, P.; Meziani, M.J.; Qian, H.; Lecroy, G.E.; Cao, L.; et al. Polymer/Carbon Nanocomposites for Enhanced Thermal Transport Properties—Carbon Nanotubes versus Graphene Sheets as Nanoscale Fillers. J. Mater. Chem. 2012, 22, 17133–17139. [Google Scholar] [CrossRef]
- Du, F.P.; Ye, E.Z.; Yang, W.; Shen, T.H.; Tang, C.Y.; Xie, X.L.; Zhou, X.P.; Law, W.C. Electroactive Shape Memory Polymer Based on Optimized Multi-Walled Carbon Nanotubes/Polyvinyl Alcohol Nanocomposites. Compos. Part B Eng. 2015, 68, 170–175. [Google Scholar] [CrossRef]
- Guo, X.; Cheng, S.; Yan, B.; Li, Y.; Zhou, Y.; Cai, W.; Zhang, Y.; Zhang, X. Extraordinary Thermal Conductivity of Polyvinyl Alcohol Composite by Aligning Densified Carbon Fiber via Magnetic Field. Nano Res. 2023, 16, 2572–2578. [Google Scholar] [CrossRef]
- Zeng, X.; Ye, L.; Yu, S.; Li, H.; Sun, R.; Xu, J.; Wong, C.P. Artificial Nacre-like Papers Based on Noncovalent Functionalized Boron Nitride Nanosheets with Excellent Mechanical and Thermally Conductive Properties. Nanoscale 2015, 7, 6774–6781. [Google Scholar] [CrossRef]
- Shen, H.; Guo, J.; Wang, H.; Zhao, N.; Xu, J. Bioinspired Modification of H-BN for High Thermal Conductive Composite Films with Aligned Structure. ACS Appl. Mater. Interfaces 2015, 7, 5701–5708. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Y.; Xue, Y.; Liu, D.; Wang, X.; Hu, X.; Bando, Y.; Lei, W. Super-Compatible Functional Boron Nitride Nanosheets/Polymer Films with Excellent Mechanical Properties and Ultra-High Thermal Conductivity for Thermal Management. J. Mater. Chem. C 2018, 6, 1363–1369. [Google Scholar] [CrossRef]
- Wu, W.; Liu, H.; Wang, Z.; Lv, P.; Hu, E.; Zheng, J.; Yu, K.; Wei, W. Formation of Thermal Conductive Network in Boron Nitride/Polyvinyl Alcohol by Ice-Templated Self-Assembly. Ceram. Int. 2021, 47, 33926–33929. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, X.; Shang, Y.; Xu, P.; Pan, D.; Su, F.; Ji, Y.; Feng, Y.; Liu, Y.; Liu, C. Highly Thermally Conductive Polyvinyl Alcohol/Boron Nitride Nanocomposites with Interconnection Oriented Boron Nitride Nanoplatelets. Compos. Sci. Technol. 2021, 201, 108521. [Google Scholar] [CrossRef]
- Li, M.; Sun, Y.; Feng, D.; Ruan, K.; Liu, X.; Gu, J. Thermally Conductive Polyvinyl Alcohol Composite Films via Introducing Hetero-Structured MXene@silver Fillers. Nano Res. 2023, 16, 7820–7828. [Google Scholar] [CrossRef]
- Wang, X.; Wu, P. Highly Thermally Conductive Fluorinated Graphene Films with Superior Electrical Insulation and Mechanical Flexibility. ACS Appl. Mater. Interfaces 2019, 11, 21946–21954. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, M.; Cheng, J.; Zhao, C.; Tang, Z. High Thermal Conductivity, Good Electrical Insulation, and Excellent Flexibility of FGN/PVA Films Based on a Large Sheet and Narrow Diameter Distribution of Fluorographene. Mater. Today Chem. 2023, 29, 101422. [Google Scholar] [CrossRef]
- Pan, X.; Debije, M.G.; Schenning, A.P.H.J.; Bastiaansen, C.W.M. Enhanced Thermal Conductivity in Oriented Polyvinyl Alcohol/Graphene Oxide Composites. ACS Appl. Mater. Interfaces 2021, 13, 28864–28869. [Google Scholar] [CrossRef]
- Luo, F.; Zhang, M.; Chen, S.; Xu, J.; Ma, C.; Chen, G. Sandwich-Structured PVA/RGO Films from Self-Construction with High Thermal Conductivity and Electrical Insulation. Compos. Sci. Technol. 2021, 207, 108707. [Google Scholar] [CrossRef]
- Chen, X.; Tang, Z. Ultra-High Thermal Conductivity FGN/PVA/MXene Composite Films with Good Electrical Insulation. Compos. Sci. Technol. 2023, 242, 110208. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, Z. A Copper Organic Phosphonate Functionalizing Boron Nitride Nanosheet for PVA Film with Excellent Flame Retardancy and Improved Thermal Conductive Property. Compos. Part A Appl. Sci. Manuf. 2022, 153, 106738. [Google Scholar] [CrossRef]
- Zhang, Y.; He, H.; Huang, B.; Wang, S.; He, X. Enhanced Thermal Conductivity of Polyvinyl Alcohol Insulation Composites with M-BN@CNW Hybrid Materials. Compos. Sci. Technol. 2021, 208, 108766. [Google Scholar] [CrossRef]
- Zhou, J.; Yu, Z.; Lv, Y.; Wang, C.; Hu, P.; Liu, Y. Highly Thermal Conductivity of PVA-Based Nanocomposites by Constructing MWCNT-BNNS Conductive Paths. Compos. Part A Appl. Sci. Manuf. 2022, 163, 107195. [Google Scholar] [CrossRef]
- Han, Z.; Fina, A. Progress in Polymer Science Thermal Conductivity of Carbon Nanotubes and Their Polymer Nanocomposites: A Review. Prog. Polym. Sci. 2011, 36, 914–944. [Google Scholar] [CrossRef]
- Shao, C.; Yu, X.; Yang, N.; Yue, Y.; Bao, H. A Review of Thermal Transport in Low-Dimensional Materials Under External Perturbation: Effect of Strain, Substrate, and Clustering. Nanoscale Microscale Thermophys. Eng. 2017, 21, 201–236. [Google Scholar] [CrossRef]
- Qin, H.; Jiang, W. Manipulating the Interlayer Thermal Conductivity in Circular/Collapsed Carbon Nanotube Clusters. J. Phys. D. Appl. Phys. 2024, 57, 105303. [Google Scholar] [CrossRef]
- Xu, M.; Futaba, D.N.; Yumura, M.; Hata, K. Alignment Control of Carbon Nanotube Forest from Random to Nearly Perfectly Aligned by Utilizing the Crowding Effect. ACS Nano 2012, 6, 5837–5844. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y. Heat-Loss Modified Angstrom Method for Simultaneous Measurements of Thermal Diffusivity and Conductivity of Graphite Sheets: The Origins of Heat Loss in Angstrom Method. Int. J. Heat Mass Transf. 2016, 92, 784–791. [Google Scholar] [CrossRef]
- Guo, W.; Chen, A.; Lv, Y.; Zhu, Y.; Wu, J. Microscale Heat-Flux Meter for Low-Dimensional Thermal Measurement and Its Application in Heat-Loss Modified Angstrom Method. Int. J. Heat Mass Transf. 2021, 169, 120938. [Google Scholar] [CrossRef]
- Xu, S.; Liu, J.; Li, Q. Mechanical Properties and Microstructure of Multi-Walled Carbon Nanotube-Reinforced Cement Paste. Constr. Build. Mater. 2015, 76, 16–23. [Google Scholar] [CrossRef]
- Xu, W.; Wu, Y.; Zhu, Y.; Liang, X.G. Molecular Dynamics Simulation of Thermal Conductivity of Silicone Rubber. Chin. Phys. B 2020, 29, 046601. [Google Scholar] [CrossRef]
- Hone, J. Phonons and Thermal Properties of Carbon Nanotubes. Carbon Nanotub. 2007, 286, 273–286. [Google Scholar]
- Mansur, H.S.; Oréfice, R.L.; Mansur, A.A.P. Characterization of Poly(Vinyl Alcohol)/Poly(Ethylene Glycol) Hydrogels and PVA-Derived Hybrids by Small-Angle X-Ray Scattering and FTIR Spectroscopy. Polymer 2004, 45, 7193–7202. [Google Scholar] [CrossRef]
- Poirier, D.R.; Geiger, G.H. Transport Phenomena in Materials Processing; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 9783319480909. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Chen, A.; Jiang, W.; Tan, Z.; Fu, T.; Xie, T.; Zhu, G.; Zhu, Y. Highly Thermally Conductive Triple-Level Ordered CNT/PVA Nanofibrous Films. Polymers 2024, 16, 734. https://doi.org/10.3390/polym16060734
Wu Y, Chen A, Jiang W, Tan Z, Fu T, Xie T, Zhu G, Zhu Y. Highly Thermally Conductive Triple-Level Ordered CNT/PVA Nanofibrous Films. Polymers. 2024; 16(6):734. https://doi.org/10.3390/polym16060734
Chicago/Turabian StyleWu, Yanyan, Anqi Chen, Wenlong Jiang, Zhiye Tan, Tingting Fu, Tingting Xie, Guimei Zhu, and Yuan Zhu. 2024. "Highly Thermally Conductive Triple-Level Ordered CNT/PVA Nanofibrous Films" Polymers 16, no. 6: 734. https://doi.org/10.3390/polym16060734
APA StyleWu, Y., Chen, A., Jiang, W., Tan, Z., Fu, T., Xie, T., Zhu, G., & Zhu, Y. (2024). Highly Thermally Conductive Triple-Level Ordered CNT/PVA Nanofibrous Films. Polymers, 16(6), 734. https://doi.org/10.3390/polym16060734