Development and Characterization of a Natural Antioxidant Additive in Powder Based on Polyphenols Extracted from Agro-Industrial Wastes (Walnut Green Husk): Effect of Chickpea Protein Concentration as an Encapsulating Agent during Storage
Abstract
:1. Introduction
2. Materials Methods
2.1. Samples
2.2. Walnut Green Husk Characterization
2.3. Extraction of Phenolic Compounds from the Walnut Green Husk
2.3.1. Quantification of Total Polyphenol Content and Antioxidant Capacity
2.3.2. Identification of Phenolic Compounds
2.4. Cell Viability Assay Using Vero Cells
2.5. Development of the Active Antioxidant Additive
2.6. Physicochemical Characterization of Additives in Powders
2.6.1. Encapsulation Efficiency (E.E. %)
2.6.2. Drying Process Yield (DY %)
2.6.3. Moisture Content and Water Activity
2.6.4. Color Analysis
2.6.5. Structural Characterization: SEM and FTIR
2.6.6. Isoelectric Point (IEP)
2.7. Stability at Different Relative Humidities (RH)
2.8. Statistical Analysis
3. Results and Discussion
3.1. Characterization of the Walnut Green Husk and Extracts
3.1.1. Proximal Analysis
3.1.2. Identification of Compounds in the Walnut Green Husk Extract
3.1.3. Cytotoxicity Evaluation of Walnut Green Husk Extract
3.2. Development of the Natural Antioxidant Additive
3.2.1. Physicochemical Characterization of the Natural Antioxidant Powder Additive
3.2.2. Structural Characterization of Powders
3.2.3. Zeta Potential (pZ)
3.3. Stability of the Antioxidant Additive at Different Relative Humidities (RH)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gonzalez, C. El Proyecto Aconcagüino Que Convierte las Cáscaras de Nuez en Paneles para Construcción. País Circular. Chile. 2020. Available online: https://www.paiscircular.cl/industria/el-proyecto-aconcaguino-que-convierte-las-cascaras-de-nuez-en-paneles-para-construccion/ (accessed on 16 February 2023).
- Matiacevich, S.; Soto Madrid, D.; Gutiérrez Cutiño, M. Circular Economy: Obtaining and encapsulating polyphenolic compounds from agroindustrial waste. RIVAR Rev. Iberoam. Vitic. Agroind. Rural. 2023, 10, 77–100. [Google Scholar] [CrossRef]
- Procomer. Prefieren Productos Saludables Con Etiqueta Limpia. 2019. Available online: https://www.procomer.com/alertas_comerciales/exportador-alerta/prefierenproductos-saludables-con-etiqueta-limpia/ (accessed on 10 December 2023).
- Benelli, P.; Riehl, C.; Smânia, A.; Smânia, E.; Ferreira, S. Bioactive extracts of orange (Citrus sinensis L. Osbeck) pomace obtained by SFE and low-pressure techniques: Mathematical modeling and extract composition. J. Supercrit. Fluids 2010, 55, 132–141. [Google Scholar] [CrossRef]
- Di Donato, P.; Taurisano, V.; Tommonaro, G.; Pasquale, V.; Jiménez, J.; de Pascual-Teresa, S.; Poli, A.; Nicolaus, B. Biological properties of polyphenols extracts from agro industry’s wastes. Waste Biomass Valorization 2018, 9, 1567–1578. [Google Scholar] [CrossRef]
- Grand View Research, Inc. Polyphenols Market Size, Share & Trends Analysis Report by Product (Grape Seed, Green Tea, Cocoa), by Application (Beverages, Food, Feed, Dietary Supplements, Cosmetics), and Segment Forecasts. 2019, pp. 2019–2025. Available online: https://www.grandviewresearch.com/industry-analysis/polyphenols-market-analysis (accessed on 27 December 2023).
- Chilenut. Asociación de Productores y Exportadores de Nueces. 2017. Available online: http://www.chilenut.cl/index.php?seccion=nuez-de-nogal (accessed on 15 December 2023).
- Oliveira, I.; Sousa, A.; Ferreira, I.; Bento, A.; Estevinho, L.; Pereira, J. Total phenols, antioxidant potential, and antimicrobial activity of walnut (Juglans regia L.) green husks. Food Chem. Toxicol. 2008, 46, 2326–2331. [Google Scholar] [CrossRef] [PubMed]
- Soto-Madrid, D.; Gutiérrez-Cutiño, M.; Pozo-Martínez, J.; Zúñiga-López, M.C.; Olea-Azar, C.; Matiacevich, S. Dependence of the ripeness stage on the antioxidant and antimicrobial properties of walnut (Juglans regia L.) green husk extracts from industrial by-products. Molecules 2021, 26, 2878. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, M.; Ferreira, P.; Mendes, V.; Silva, R.; Pereira, J.; Jerónimo, C.; Silva, B. Human cancer cell antiproliferative and antioxidant activities of Juglans regia L. Food Chem. Toxicol. 2010, 48, 441–447. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, B.; Jiang, Y.; Liu, Z.; Liu, Y.; Wang, X.; Kuang, H. Studies on cytotoxic activity against HepG-2 cells of naphthoquinones from green walnut husks of Juglans mandshurica Maxim. Molecules 2015, 20, 15572–15588. [Google Scholar] [CrossRef]
- Đorđević, V.; Balanč, B.; Belščak-Cvitanović, A.; Lević, S.; Trifković, K.; Kalušević, A.; Nedović, V. Trends in encapsulation technologies for delivery of food bioactive compounds. Food Eng. Rev. 2015, 7, 452–490. [Google Scholar] [CrossRef]
- Galanakis, C. Polyphenol Properties, Recovery, and Applications; Woodhead Publishing, An Imprint of Elsevier: Cambridge, UK, 2018. [Google Scholar]
- Labuschagne, P. Impact of wall material physicochemical characteristics on the stability of encapsulated phytochemicals: A Review. Food Res. Int. 2018, 107, 227–247. [Google Scholar] [CrossRef]
- El Asbahani, A.; Miladi, K.; Badri, W.; Sala, M.; Aït Addi, E.; Casabianca, H.; El Mousadik, A.; Hartmann, D.; Jilale, A.; Renaud, F.; et al. Essential oils: From extraction to encapsulation. Int. J. Pharm. 2015, 483, 220–243. [Google Scholar] [CrossRef]
- Akbarbaglu, Z.; Peighambardoust, S.; Sarabandi, K.; Jafari, S. Spray drying encapsulation of bioactive compounds within protein-based carriers; different options and applications. Food Chem. 2021, 359, 129965. [Google Scholar] [CrossRef]
- Day, L.; Cakebread, J.; Loveday, S. Food proteins from animals and plants: Differences in the nutritional and functional properties. Trends Food Sci. Technol. 2022, 119, 428–442. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, L.; Xu, G.; Ma, C.; Yang, X.; Yao, J. Potential of alginate fibers incorporated with drug-loaded nanocapsules as drug delivery systems. J. Mater. Chem. B 2014, 2, 7596–7604. [Google Scholar] [CrossRef]
- Coimbra, P.; Cardoso, F.; Goncalves, E. Spray-drying wall materials: Relationship with bioactive compounds. Crit. Rev. Food Sci. Nutr. 2021, 61, 2809–2826. [Google Scholar] [CrossRef]
- Shakoor, I.; Pamunuwa, G.; Karunaratne, D. Efficacy of alginate and chickpea protein polymeric matrices in encapsulating curcumin for improved stability, sustained release, and bioaccessibility. Food Hydrocoll. Health 2023, 3, 100119. [Google Scholar] [CrossRef]
- Glusac, J.; Isaschar-Ovdat, S.; Fishman, A. Transglutaminase modifies the physical stability and digestibility of chickpea protein-stabilized oil-in-water emulsions. Food Chem. 2020, 315, 126301. [Google Scholar] [CrossRef]
- Jukanti, A.; Gaur, P.; Gowda, C.; Chibbar, R. Nutritional quality and health benefits of chickpea (Cicer arietinum L.): A review. Br. J. Nutr. 2012, 108, S11–S26. [Google Scholar] [CrossRef]
- Quan, T.; Benjakul, S.; Sae-leaw, T.; Balange, A.; Maqsood, S. Protein–polyphenol conjugates: Antioxidant property, functionalities, and their applications. Trends Food Sci. Technol. 2019, 91, 507–517. [Google Scholar] [CrossRef]
- Yan, X.; Zeng, Z.; McClements, D.; Gong, X.; Yu, P.; Xia, J.; Gong, D. A review of the structure, function, and application of plant-based protein–phenolic conjugates and complexes. Compr. Rev. Food Sci. Food Saf. 2023, 22, 1312–1336. [Google Scholar] [CrossRef] [PubMed]
- Soto-Madrid, D.; Pérez, N.; Gutiérrez-Cutiño, M.; Matiacevich, S.; Zúñiga, R.N. Structural and physicochemical characterization of extracted proteins fractions from chickpea (Cicer arietinum L.) as a potential food ingredient to replace ovalbumin in foams and emulsions. Polymers 2023, 15, 110. [Google Scholar] [CrossRef] [PubMed]
- AOAC—Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1998.
- Singleton, V.; Orthofer, R.; Lamuela-Raventós, R.; Lester, P. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzym. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, Z.; Zhao, J.; Liu, Y. The effect of non-covalent interaction of chlorogenic acid with whey protein and casein on physicochemical and radical scavenging activity of in vitro protein digests. Food Chem. 2018, 268, 334–341. [Google Scholar] [CrossRef]
- Fenoglio, D.; Soto Madrid, D.; Alarcón Moyano, J.; Ferrario, M.; Guerrero, S.; Matiacevich, S. Active food additive based on encapsulated yerba mate (Ilex paraguariensis) extract: Effect of drying methods on the oxidative stability of a real food matrix (mayonnaise). J. Food Sci. Technol. 2021, 58, 1574–1584. [Google Scholar] [CrossRef] [PubMed]
- Matiacevich, S.; Mery, D.; Pedreschi, F. Prediction of mechanical properties of corn and tortillas chips using computer vision. Food Bioprocess Technol. 2012, 5, 2025–2030. [Google Scholar] [CrossRef]
- Greenspan, L. Humidity fixed points of binary saturated aqueous solutions. J. Res. Natl. Bur. Stand. A Phys. Chem. 1977, 81A, 89–96. [Google Scholar] [CrossRef]
- Tang, J.; Yang, T. Dehydrated Vegetables: Principles and Systems. In Handbook of Vegetable Preservation and Processing; Hui, Y.H., Ghazala, S., Graham, D.M., Murrell, K.D., Nip, W.-K., Eds.; Marcel Dekker: New York, NY, USA, 2004. [Google Scholar]
- Tacon, A. Nutricion y Alimentacion de Peces y Camarones Cultivados; Manual de Capacitación (No. F009. 002); Food and Agricultural Organization (FAO): Geneva, Switzerland, 1989. [Google Scholar]
- Bandyopadhyay, P.; Ghosh, A.K.; Ghosh, C. Recent developments on polyphenol–protein interactions: Effects on tea and coffee taste, antioxidant properties and the digestive system. Food Funct. 2012, 3, 592–605. [Google Scholar] [CrossRef] [PubMed]
- Picó, Y. Ultrasound-assisted extraction for food and environmental samples. Trends Anal. Chem. 2013, 43, 84–99. [Google Scholar] [CrossRef]
- Deng, J.; Xu, Z.; Xiang, C.; Liu, J.; Zhou, L.; Li, T.; Yang, Z.; Ding, Z. Comparative evaluation of maceration and ultrasonic-assisted extraction of phenolic compounds from fresh olives. Ultrason. Sonochem. 2017, 37, 328–334. [Google Scholar] [CrossRef]
- do Nascimento Nunes, M.C. Impact of environmental conditions on fruit and vegetable quality. Stewart Postharvest Rev. 2008, 4, 1–14. [Google Scholar] [CrossRef]
- Sheng, F.; Hu, B.; Jin, Q.; Wang, J.; Wu, C.; Luo, Z. The analysis of phenolic compounds in walnut husk and pellicle by UPLC-Q-Orbitrap HRMS and HPLC. Molecules 2021, 26, 3013. [Google Scholar] [CrossRef]
- García-Huertas, P.; Pabón, A.; Arias, C.; Blair, S. Evaluación del efecto citotóxico y del daño genético de extractos estandarizados de Solanum nudum con actividad antiplasmodial. Veter Parasitol. Reg. Stud. Rep. 2012, 33, 78–87. [Google Scholar] [CrossRef]
- Anandharamakrishnan, C.; Ishwary, S. Spray Drying Techniques for Food Ingredient Encapsulation; Wiley-Blackwell: Chichester, UK, 2015. [Google Scholar]
- Robert, P.; Gorena, T.; Romero, N.; Sepulveda, E.; Chavez, J.; Saenz, C. Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. Int. J. Food Sci. Technol. 2010, 45, 1386–1394. [Google Scholar] [CrossRef]
- Pikal, M.J.; Rambhatla, S.; Ramot, R. The impact of freezing stage in lyophilization: Effect of the ice nucleation temperature on process design and product quality. Am. Pharm. Rev. 2002, 5, 48–53. [Google Scholar]
- Ezhilarasi, P.N.; Indrani, D.; Jena, B.S.; Anandharamakrishnan, C. Freeze drying technique for microencapsulation of Garcinia fruit extract and its effect on bread quality. J. Food Eng. 2013, 117, 513–520. [Google Scholar] [CrossRef]
- Khazaei, K.M.; Jafari, S.M.; Ghorbani, M.; Kakhki, A.H. Application of maltodextrin and gum Arabic in microencapsulation of saffron petal’s anthocyanins and evaluating their storage stability and color. Carbohydr. Polym. 2014, 105, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.; Yu, S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim. Biophys. Sin. 2007, 39, 549–559. [Google Scholar] [CrossRef] [PubMed]
- Heurtault, B.; Saulnier, P.; Pech, B.; Proust, J.E.; Benoit, J.P. Physico-chemical stability of colloidal lipid particles. Biomaterials 2003, 24, 4283–4300. [Google Scholar] [CrossRef] [PubMed]
- Salvia-Trujillo, L.; Rojas-Graü, M.A.; Soliva-Fortuny, R.; Martín-Belloso, O. Effect of processing parameters on physicochemical characteristics of microfluidized lemongrass essential oil-alginate nanoemulsions. Food Hydrocoll. 2013, 30, 401–407. [Google Scholar] [CrossRef]
- Martínez-Flórez, S.; González-Gallego, J.; Culebras, J.M.; Tuñón, M.J. Los flavonoides: Propiedades y acciones antioxidantes. Nutr. Hosp. 2002, 17, 271–278. [Google Scholar]
- Vani, B.; Zayas, J.F. Wheat germ protein flour solubility and water retention. J. Food Sci. 1995, 60, 845–848. [Google Scholar] [CrossRef]
- Boye, J.; Zare, F.; Pletch, A. Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Res. Int. 2010, 43, 414–431. [Google Scholar] [CrossRef]
- Ma, K.K.; Greis, M.; Lu, J.; Nolden, A.A.; McClements, D.J.; Kinchla, A.J. Functional performance of plant proteins. Foods 2022, 11, 594. [Google Scholar] [CrossRef] [PubMed]
- Lunkad, R.; Barroso da Silva, F.L.; Košovan, P. Both charge-regulation and charge-patch distribution can drive adsorption on the wrong side of the isoelectric point. J. Am. Chem. Soc. 2022, 144, 1813–1825. [Google Scholar] [CrossRef] [PubMed]
- Moreira, T.; Delgado, H.; Urra, C.; Fando, R. Efecto de un aditivo antihumectante y de otro antioxidante sobre las características higroscópicas y sobre la viabilidad de dos formulaciones vacunales liofilizadas de Vibrio cholerae. Rev. CENIC. Cienc. Biol. 2010, 41, 1–10. [Google Scholar]
Analysis | Walnut Green Husk (g/100 g Dry Base) | Extract Liquid (g/100 g Wet Base) |
---|---|---|
Moisture | 7.5 ± 0.01 | 93.9 ± 0.01 |
Proteins (%Nx5.3 1) | 6.98 ± 0.23 | * ND |
Lipids | 1.94 ± 0.11 | ** ND |
Ash | 12.6 ± 0.05 | 1.0 ± 0.06 |
Crude fiber | 20.34 ± 1.19 | *** ND |
Non-nitrogen extract (N.N.E.) | 50.66 ± 1.13 | 5.0 ± 0.08 |
Energy (Kcal) | 248 ± 4.41 | 19.9 ± 0.31 |
N° | RT (min) | Formula | Measured Mass (m/z) | Error (ppm) | Ion Mode | Compound Identification | Reference | Classification |
---|---|---|---|---|---|---|---|---|
1 | 1.30 | C11H14NO7+ | 271.0687 | −4.03 | M-H | pyridine N-oxide glucuronide | [a] | Other (aromatic compound) |
2 | 1.55 | C4H6O6 | 133.0138 | −6.03 | M-H | malic acid | [a] | organic acid |
3 | 2.89 | C13H16O10 | 331.0669 | −0.41 | M-H | 3-glycogallic acid | [a] | Phenolic glycosides |
4 | 3.14 | C7H6O5 | 169.0140 | −1.37 | M-H | gallic acid | [a]; [b] | Phenolic acid |
5 | 3.64 | C14H16N2O8 | 321.0729 | 0.08 | M-H | glutamic acid-betaxanthin | [a] | Vegetal pigment |
6 | 3.86 | C14H18O10 | 345.0835 | 2.27 | M-H | methyl 6-O-galloyl-beta-D-glucopyranoside | [a,b] | Hydrolyzable tannin |
7 | 3.86 | C8H8O5 | 183.0303 | 2.35 | M-H | methyl gallate | [a] | Phenolic compound |
8 | 4.13 | C15H20O10 | 359.1002 | 5.13 | M-H | 3-methoxy-4-hydroxyphenylglycol-glucuronide | [a] | Phenolic glycosides |
9 | 4.20 | C9H10O4 | 181.0505 | −0.61 | M-H | syringaldehyde | [a]; [b] | Aromatic aldehyde |
10 | 4.21 | C8H8O3 | 151.0399 | −1.58 | M-H | vanillin | [a]; [b] | Phenolic aldehyde |
11 | 4.47 | C13H16O8 | 299.0773 | 0.29 | M-H | 4-methylcatechol 1-glucuronide | [a] | Phenolic glycosides |
12 | 4.52 | C7H6O4 | 153.0189 | −2.89 | M-H | protocatechuic acid | [a]; [b] | Phenolic acid |
13 | 4.62 | C9H8O4 | 179.0356 | 3.67 | M-H | caffeic acid | [a]; [b] | Phenolic acid |
14 | 4.62 | C7H12O6 | 191.0561 | 0.02 | M-H | quinic acid | [a]; [b] | Phenolic acid |
15 | 4.62 | C16H18O9 | 353.0879 | 0.31 | M-H | crypto chlorogenic acid | [a] | Phenolic acid |
16 | 4.69 | C14H18O9 | 329.0885 | 2.13 | M-H | vanillyl glucose | [a] | Hydrolyzable tannin |
17 | 4.93 | C15H20O10 | 359.0985 | 0.29 | M-H | glucosyringic acid | [a] | Phenolic glycosides |
18 | 5.00 | C30H26O12 | 577.1342 | −1.56 | M-H | procyanidin B8 | [a]; [b] | Flavonoid |
19 | 5.02 | C8H8O4 | 169.0497 | 1.06 | M+H | isovanilic acid | [a]; [b] | Phenolic acid |
20 | 5.15 | C15H18O9 | 341.0878 | 0.06 | M-H | glucocaffeic acid | [a] | Phenolic glycosides |
21 | 5.21 | C21H22O11 | 449.1099 | 2.18 | M-H | astilbin | [a]; [b] | Flavonoid |
22 | 5.30 | C21H20O12 | 463.0888 | 1.38 | M-H | myricitrin | [a]; [b] | Flavonoid |
23 | 5.47 | C16H20O9 | 337.0930 | 0.37 | M-H | gentiopicroside | [a] | Other |
24 | 5.47 | C9H8O3 | 163.0398 | −1.76 | M-H | coumaric acid | [a]; [b] | Phenolic acid |
25 | 5.59 | C15H10O6 | 287.0549 | −0.56 | M+H | kaempferol | [a]; [b] | Flavonoid |
26 | 5.76 | C16H18O9 | 353.0877 | −0.42 | M-H | chlorogenic acid | [a]; [b] | Phenolic acid |
27 | 5.81 | C9H10O3 | 165.0555 | −1.30 | M-H | 4-hydroxyphenyl-2-propionic acid | [a]; [b] | Phenolic acid |
28 | 5.81 | C9H10O3 | 167.0702 | −1.68 | M+H | ethylparaben | [a]; [b] | p-hydroxybenzoic acid ethyl ester |
29 | 5.88 | C7H6O3 | 137.0241 | −2.14 | M-H | 3-hydroxybenzoic acid | [a]; [b] | Phenolic acid |
30 | 5.90 | C10H12O4 | 177.0562 | 2.26 | M-H | xanthoxylin | [a] | Phenolic ketone |
31 | 6.10 | C15H18O8 | 325.0929 | −0.01 | M-H | coumaric acid 2-glucoside isomer | [a]; [b] | Phenolic glycosides |
32 | 6.23 | C16H20O9 | 355.1035 | 0.20 | M-H | ferulic acid 4-glucoside isomer | [a] | Phenolic glycosides |
33 | 6.25 | C28H28N4O6S | 547.1661 | 0.72 | M-H | 1-((2-methoxy-4-(((phenylsulfonyl)amino)carbonyl)phenyl)methyl)-1H-indazol-6-yl)carbamic | [a] | Herbicide |
34 | 6.55 | C15H14O6 | 289.0723 | 1.76 | M-H | catechin | [a]; [b] | Flavonoid |
35 | 6.55 | C13H16O9 | 315.0737 | 4.99 | M-H | protocatechuic acid 4-glucoside | [a] | Phenolic glycosides |
36 | 6.69 | C16H18O8 | 337.0929 | 0.02 | M-H | 3-p-coumaroylquinic acid | [a]; [b] | Phenolic acid |
37 | 6.69 | C9H10O5 | 197.0458 | 1.25 | M-H | syringic acid | [a]; [b] | Phenolic acid |
38 | 6.76 | C15H22O5 | 281.1398 | 1.32 | M-H | dihydrophasic acid | [a]; [b] | Other |
39 | 6.93 | C41H28O26 | 935.0794 | 0.99 | M-H | casuarinin | [a] | Hydrolyzable tannin |
40 | 7.06 | C10H10O3 | 177.0557 | −2.84 | M-H | (S)-Isosclerone | [a] | Other |
41 | 7.06 | C10H8O3 | 175.0397 | −1.85 | M-H | 7-hydroxy-methyl coumarin | [a]; [b] | Phenolic acid |
42 | 7.18 | C21H20O13 | 479.0824 | −1.43 | M-H | myricetin-3-glucoside | [a] | Phenolic glycosides |
43 | 7.44 | C20H20O11 | 435.0928 | −1.10 | M-H | taxifolin 3-arabinoside | [a] | Flavonoid |
44 | 7.61 | C9H6O3 | 163.0388 | −1.07 | M+H | 3-hydroxycoumarin | [a]; [b] | Other |
45 | 7.83 | C10H6O3 | 173.0251 | 3.79 | M-H | juglone | [a] | Quinone |
46 | 7.92 | C23H22O12 | 489.1054 | 3.13 | M-H | quercetin 3-O-acetyl-rhamnoside | [a]; [b] | Flavonoid |
47 | 7.95 | C21H24O11 | 433.1148 | 1.69 | M-H | catechin 3-glucoside | [a] | Phenolic glycosides |
48 | 8.02 | C21H24O24 | 435.1297 | 0.04 | M-H | florizin | [a]; [b] | Glycoside |
49 | 8.06 | C21H20O12 | 463.0880 | −0.47 | M-H | quercetin 3-galactoside | [a] | Flavonoid |
50 | 8.06 | C14H6O8 | 300.9991 | 0.35 | M-H | ellagic acid | [a]; [b] | Phenolic acid |
51 | 8.46 | C21H22O11 | 449.1092 | 0.49 | M-H | astilbin | [a]; [b] | Flavonoid |
52 | 8.46 | C10H10O4 | 193.0516 | 4.91 | M-H | cis-ferulic acid | [a]; [b] | Phenolic acid |
53 | 8.51 | C20H18O11 | 433.0773 | −0.84 | M-H | quercetin 3-xyloside | [a] | Flavonoid |
54 | 8.64 | C10H12O | 149.0961 | −0.15 | M+H | cuminaldehyde | [a]; [b] | Aldehído aromático |
55 | 8.66 | C21H20O11 | 447.0934 | 0.20 | M-H | quercitrin | [a]; [b] | Flavonoid |
56 | 9.68 | C9H16O4 | 187.0978 | 0.89 | M-H | azelaic acid | [a]; [b] | Other |
57 | 9.95 | C11H12O5 | 225.0766 | 4.81 | M+H | sinapic acid | [a]; [b] | Phenolic acid |
58 | 11.58 | C15H10O7 | 301.0356 | 0.75 | M-H | quercetin | [a]; [b] | Flavonoid |
59 | 13.77 | C14H10O8 | 287.0207 | 3.06 | M-H | 2-(3,4-dihydroxybenzoyloxy)-4,6-dihydroxybenzoate | [a] | Phenolic compounds |
60 | 16.69 | C15H10O6 | 285.0416 | 3.97 | M-H | luteolin | [a]; [b] | Flavonoid |
61 | 18.83 | C18H12Cl2N2O | 341.0261 | 2.19 | M-H | boscalida | [a] | Fungicide |
62 | 28.23 | C10H8O2 | 161.0599 | 0.91 | M+H | naphthalen diol isomer | [a]; [b] | Quinone |
63 | 31.59 | C20H26NO3+ | 309.1744 | 3.10 | M-H | 8-O-Methyloblongin | [a] | Isoquinoline |
64 | 31.86 | C21H22O12 | 465.1037 | −0.28 | M-H | (-)-epicatechin 3′-O-glucuronide | [a] | Flavonoid |
Analysis | Chickpea Protein Concentration (% w/v) | ||
---|---|---|---|
5 | 7.5 | 10 | |
Encapsulation efficiency (%) | 44 ± 3 a | 60 ± 8 b | 42 ± 5 a |
aW | 0.17 ± 0.04 a | 0.200 ± 0.001 a | 0.197 ± 0.001 a |
Moisture (% dry basis) | 7.80 ± 0.003 a | 6.49 ± 0.004 b | 6.03 ± 0.003 b |
Parameter L* | 76.82 ± 3.42 a | 78.12 ± 0.07 a | 77.12 ± 2.74 a |
Parameter a* | 1.7 ± 0.1 a | 5.9 ± 0.5 b | 2.78 ± 0.4 a |
Parameter b* | 5.34 ± 0.5 a | 6.04 ± 5.1 a | 10.6 ± 0.6 c |
Images |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soto-Madrid, D.; Arrau, F.; Zúñiga, R.N.; Gutiérrez-Cutiño, M.; Matiacevich, S. Development and Characterization of a Natural Antioxidant Additive in Powder Based on Polyphenols Extracted from Agro-Industrial Wastes (Walnut Green Husk): Effect of Chickpea Protein Concentration as an Encapsulating Agent during Storage. Polymers 2024, 16, 777. https://doi.org/10.3390/polym16060777
Soto-Madrid D, Arrau F, Zúñiga RN, Gutiérrez-Cutiño M, Matiacevich S. Development and Characterization of a Natural Antioxidant Additive in Powder Based on Polyphenols Extracted from Agro-Industrial Wastes (Walnut Green Husk): Effect of Chickpea Protein Concentration as an Encapsulating Agent during Storage. Polymers. 2024; 16(6):777. https://doi.org/10.3390/polym16060777
Chicago/Turabian StyleSoto-Madrid, Daniela, Florencia Arrau, Rommy N. Zúñiga, Marlén Gutiérrez-Cutiño, and Silvia Matiacevich. 2024. "Development and Characterization of a Natural Antioxidant Additive in Powder Based on Polyphenols Extracted from Agro-Industrial Wastes (Walnut Green Husk): Effect of Chickpea Protein Concentration as an Encapsulating Agent during Storage" Polymers 16, no. 6: 777. https://doi.org/10.3390/polym16060777
APA StyleSoto-Madrid, D., Arrau, F., Zúñiga, R. N., Gutiérrez-Cutiño, M., & Matiacevich, S. (2024). Development and Characterization of a Natural Antioxidant Additive in Powder Based on Polyphenols Extracted from Agro-Industrial Wastes (Walnut Green Husk): Effect of Chickpea Protein Concentration as an Encapsulating Agent during Storage. Polymers, 16(6), 777. https://doi.org/10.3390/polym16060777