Optical Anisotropy of Polyethylene Terephthalate Films Characterized by Spectral Means
Abstract
:1. Introduction
2. Materials and Methods
- When Δψ = mπ, m = 0, 1, 2, …, the light remains linearly polarized, keeping its azimuth α (inclination of the electric field intensity relative to the optical axis of the anisotropic layer) if m is an even number or changing its azimuth to −α for an odd number m;
- When , m = 0, 1, 2, …, the light becomes elliptic polarized with its semiaxes parallel to the principal axes of the anisotropic layer (or circular polarized for azimuth angles being an odd number of π/4);
- For any other cases, the light is elliptically polarized with its polarization ellipse rotated relative to the principal axes of the anisotropic layer. The rotation angle θ depends on the phase difference introduced by AL.
3. Results and Discussion
3.1. Determination of the Stretched PET Films Birefringence by Ellipsometric Method
3.2. Determination of the Stretched PET Films Birefringence by Channeled Spectra Method
3.3. Infrared Spectral Analysis
3.3.1. General Remarks
3.3.2. Conformational Analysis
3.3.3. Dichroism and Structural Factor Spectra
3.3.4. Dichroic Ratios and Molecular Orientation Function
3.3.5. Microstructure of Stretched PET Revealed by Polarized ATR-FTIR Spectroscopy
- A change in intensity of the stretching vibrations of elliptically symmetric ester (1234 cm−1), ether (1100 cm−1), and ring modes (1020 and 872 cm−1);
- A change in symmetry for several deformation and stretching vibrations in CH2 groups (1341 cm−1), glycol (969/975 cm−1), and ester–glycol bridge (1120 cm−1);
- Intensity changes without symmetry change in the rocking CH2 vibrations at 845 and 896 cm−1, and in the carbonyl stretching at 1717/1710 cm−1.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, S.; Xie, S.; Guang, S.; Bao, J.; Zhang, X.; Chen, W. Crystallization and thermal behaviors of poly(ethylene terephthalate)/bisphenols complexes through melt post-polycondensation. Polymers 2020, 12, 3053. [Google Scholar] [CrossRef]
- Irwin, G. Blow molding. In The Wiley Encyclopedia of Packaging Technology, 3rd ed.; Yam, K.L., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 137–154. [Google Scholar]
- Vallejos, S.; Trigo-López, M.; Arnaiz, A.; Miguel, Á.; Muñoz, A.; Mendía, A.; García, J.M. From classical to advanced use of polymers in food and beverage applications. Polymers 2022, 14, 4954. [Google Scholar] [CrossRef]
- Elamri, A.; Zdiri, K.; Harzallah, O.; Lallam, A. Progress in polyethylene terephthalate recycling. In Polyethylene Terephthalate: Uses, Properties and Degradation; Barber, N.A., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2017; pp. 155–185. [Google Scholar]
- Benyathiar, P.; Kumar, P.; Carpenter, G.; Brace, J.; Mishra, D.K. Polyethylene terephthalate (PET) bottle-to-bottle recycling for the beverage industry: A review. Polymers 2022, 14, 2366. [Google Scholar] [CrossRef]
- Wiria, F.E.; Tham, C.L.; Subramanian, A.S.; Tey, J.N.; Qi, X.; Cheng, C.K.; Salam, B. Improving surface quality of polyethylene terephthalate film for large area flexible electronic applications. J. Solid State Electrochem. 2016, 20, 1895–1902. [Google Scholar] [CrossRef]
- Singh, S.K.; Kachel, M.; Castillero, E.; Xue, Y.; Kalfa, D.; Ferrari, G.; George, I. Polymeric prosthetic heart valves: A review of current technologies and future directions. Front. Cardiovasc. Med. 2023, 10, 1137827. [Google Scholar] [CrossRef] [PubMed]
- Ara, C.; Akbulut, S.; Ince, V.; Aydin, C.; Gonultas, F.; Kayaalp, C.; Unal, B.; Yilmaz, S. Circumferential fence with the use of polyethylene terephthalate (Dacron) vascular graft for all-in-one hepatic venous reconstruction in right-lobe living-donor liver transplantation. Transplant. Proc. 2015, 47, 1458–1461. [Google Scholar] [CrossRef] [PubMed]
- Tinay, I.; Temiz, Y.; Ilker, Y.; Tuglular, S.; Turkeri, L. An alternative for short renal vein during kidney transplantation: Long-term experience with polyethylene terephthalate (Dacron) vascular graft. Urology 2013, 82, 245–247. [Google Scholar] [CrossRef] [PubMed]
- Gawlikowski, M.; El Fray, M.; Janiczak, K.; Zawidlak-Węgrzyńska, B.; Kustosz, R. In-vitro biocompatibility and hemocompatibility study of new PET copolyesters intended for heart assist devices. Polymers 2020, 12, 2857. [Google Scholar] [CrossRef] [PubMed]
- Szafran, K.; Jurak, M.; Mroczka, R.; Wiącek, A.E. Surface properties of the polyethylene terephthalate (PET) substrate modified with the phospholipide-polypeptide-antioxidant films: Design of functional biocoatings. Pharmaceutics 2022, 14, 2815. [Google Scholar] [CrossRef] [PubMed]
- Al Meslmani, B.; Mahmoud, G.; Strehlow, B.; Mohr, E.; Leichtweiß, T.; Bakowsky, U. Development of thrombus-resistant and cell compatible crimped polyethylene terephthalate cardiovascular grafts using surface co-immobilized heparin and collagen. Mater. Sci. Eng. C 2014, 43, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Ozaltin, K.; Lehocky, M.; Humpolicek, P.; Pelkova, J.; Di Martino, A.; Karakurt, I.; Saha, P. Anticoagulant polyethylene terephthalate surface by plasma-mediated fucoidan immobilization. Polymers 2019, 11, 750. [Google Scholar] [CrossRef]
- Flores-Rojas, G.G.; López-Saucedo, F.; Vera-Graziano, R.; Magaña, H.; Mendizábal, E.; Bucio, E. Silver nanoparticles loaded on polyethylene terephthalate films grafted with chitosan. Polymers 2023, 15, 125. [Google Scholar] [CrossRef]
- Çaykara, T.; Sande, M.G.; Azoia, N.; Rodrigues, L.R.; Silva, C.J. Exploring the potential of polyethylene terephthalate in the design of antibacterial surfaces. Med. Microbiol. Immunol. 2020, 209, 363–372. [Google Scholar] [CrossRef]
- Sant’Ana, P.L.; Bortoleto, J.R.R.; da Cruz, N.C.; Rangel, E.C.; Durrant, S.F.; Botti, L.M.C.; Anjos, C.A.R.; Azevedo, S.; Isabel, C.; Teixeira, V.; et al. Surface properties of PET polymer treated by plasma immersion techniques for food packaging. Int. J. Nano Res. 2018, 1, 33–41. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Q.; Du, X.; Li, L.; Li, P. Surface modification of polyethylene terephthalate films by direct fluorination. AIP Adv. 2018, 8, 125333. [Google Scholar] [CrossRef]
- Silva, G.G.; da Costa Valente, M.L.; Bachmann, L.; dos Reis, A.C. Use of polyethylene terephthalate as a prosthetic component in the prothesis on an overdenture implant. Mater. Sci. Eng. C 2019, 99, 1341–1349. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, J.; Li, Y.; Li, H.; Jing, Y.; Wu, P.; Yu, D.; Chen, S. A new strategy to enhance artificial ligament graft osseointegration in the bone tunnel using hydroxypropylcellulose. Int. Orthop. 2013, 37, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Chen, F.; Jian, G.; Ye, Z.; Wang, Z.; Liu, H.; Kang, Y. Effect of culture complex of BMSCs and sodium hydroxide- and GRGDSPC-treated PET on the reconstruction of injured anterior cruciate ligament in a rabbit model. Int. J. Clin. Exp. Med. 2015, 8, 6902–6913. [Google Scholar] [PubMed]
- Apel, P.Y. Fabrication and functional micro- and nanoporous materials from polymers modified by swift heavy ions. Radiat. Phys. Chem. 2019, 159, 25–34. [Google Scholar] [CrossRef]
- Kusumoto, T.; Barillon, R.; Yamauchi, T. Application of radial electron fluence around ion tracks for the description of track response data of polyethylene terephthalate as a polymeric nuclear track detector. Nucl. Instrum. Methods Phys. Res. B 2019, 461, 260–266. [Google Scholar] [CrossRef]
- Zdorovets, M.V.; Korolkov, I.V.; Yeszhanov, A.B.; Gorin, Y.G. Functionalization of PET track-etched membranes by UV-induced graft (co)polymerization for detection of heavy metal ions in water. Polymers 2019, 11, 1876. [Google Scholar] [CrossRef]
- Kim, S.-J.; Phung, T.H.; Kim, S.; Rahman, M.K.; Kwon, K.S. Low-cost fabrication method for thin, flexible, and transparent touch screen sensors. Adv. Mater. Technol. 2020, 5, 2000441. [Google Scholar] [CrossRef]
- Yu, Y.-Y.; Ting, Y.-J.; Chung, C.-L.; Tsai, T.-W.; Chen, C.-P. Comprehensive study on chemical and hot press-treated silver nanowires for efficient polymer solar cell application. Polymers 2017, 9, 635. [Google Scholar] [CrossRef] [PubMed]
- Girtan, M.; Negulescu, B. A review on oxide/metal/oxide thin films on flexible substrates as electrodes for organic and perovskite solar cells. Opt. Mater. X 2022, 13, 100122. [Google Scholar] [CrossRef]
- Chen, C.N.; Chen, C.P.; Dong, T.-Y.; Chang, T.C.; Chen, M.C.; Chen, H.T.; Chen, I.G. Using nanoparticles as direct-injection printing ink to fabricate conductive silver features on a transparent flexible PET substrate at room temperature. Acta Mater. 2012, 60, 5914–5924. [Google Scholar] [CrossRef]
- Breil, J. Future trends for biaxially oriented films and orienting lines. In Biaxial Stretching of Film. Principles and Applications; DeMeuse, M.T., Ed.; Woodhead Publishing: Cambridge, UK, 2011; pp. 240–273. [Google Scholar] [CrossRef]
- Zhou, Z.; Jiang, H.; Gu, H.; Chen, X.; Peng, H.; Liao, Y.; Liu, S.; Xie, X. Strain-optical behavior of polyethylene terephthalate film during uniaxial stretching investigated by Mueller matrix ellipsometry. Polymer 2019, 182, 121842. [Google Scholar] [CrossRef]
- He, Q.; Wang, M.; Du, Y.; Qin, Q.; Qiu, W. Quantitative characterization of the anisotropy of the stress-optical properties of polyethylene terephthalate films based on the photoelastic method. Polymers 2022, 14, 3257. [Google Scholar] [CrossRef] [PubMed]
- Schmidegg, K.; Sun, L.D.; Zeppenfeld, P. Optical and mechanical anisotropies of oriented poly(ethylene terephthalate) films. Appl. Phys. Lett. 2006, 89, 051906. [Google Scholar] [CrossRef]
- El-Farahaty, K.A.; Sadik, A.M.; Hezma, A.M. Study of optical and structure properties of polyester (PET) and copolyester (PETG) fibers by interferometry. Int. J. Polym. Mater. 2007, 56, 715–728. [Google Scholar] [CrossRef]
- Li, L.; Wen, J.; Wang, Y.; Jin, Y.; Wen, Y.; Sun, J.; Zhao, Q.; Bo, L.; Zhou, J. Reflection-type transparent metamaterial polarization rotator with ultra-wide bandwidth. J. Phys. D Appl. Phys. 2023, 56, 475106. [Google Scholar] [CrossRef]
- Yang, S.M.; Hong, S.; Kim, S.Y. Optical, mechanical, and photoelastic anisotropy of biaxially stretched polyethylene terephthalate films studied using transmission ellipsometer equipped with strain camera and stress gauge. J. Polym. Sci. B Polym. Phys. 2019, 57, 152–160. [Google Scholar] [CrossRef]
- Scripa (Tudose), A.E.; Dimitriu, D.G.; Dorohoi, D.O. Linear birefringence of polymer foils determined by optical means. J. Mol. Struct. 2017, 1140, 67–70. [Google Scholar] [CrossRef]
- Yang, S.M.; Hong, S.; Kim, S.Y. Wavelength dependent in-plane birefringence of transparent flexible films determined by using transmission ellipsometry. Jpn. J. Appl. Phys. 2018, 57, 05GB03. [Google Scholar] [CrossRef]
- Stchakovsky, M.; Caillaud, C.; Foldyna, M.; Ossikovski, R.; Garcia-Caurel, E. Polarimetric characterization of optically anisotropic flexible substrates. Thin Solid Films 2008, 516, 1414–1418. [Google Scholar] [CrossRef]
- Makhlouka, Y.; Sanaâ, F.; Gharbia, M. Ordinary and extraordinary complex refractive indices extraction of a Mylar films by transmission spectrophotometry. Polymers 2022, 14, 1805. [Google Scholar] [CrossRef] [PubMed]
- Postolache, M.; Dimitriu, D.G.; Nechifor, C.D.; Condurache Bota, S.; Closca, V.; Dorohoi, D.O. Birefringence of thin uniaxial polymer films estimated using the light polarization ellipse. Polymers 2022, 14, 1063. [Google Scholar] [CrossRef] [PubMed]
- Cosutchi, A.I.; Dimitriu, D.G.; Zelinschi, C.B.; Breaban, I.; Dorohoi, D.O. Optical activity of transparent polymer layers characterized by spectral means. J. Mol. Struct. 2015, 1090, 39–43. [Google Scholar] [CrossRef]
- Cole, K.C.; Ajji, A.; Pellerin, E. New insights into the development of ordered structure in poly(ethylene terephthalate). 1. Results from external reflection infrared spectroscopy. Macromolecules 2002, 35, 770–784. [Google Scholar] [CrossRef]
- Cole, K.C.; Guevremont, J.; Ajji, A.; Dumoulin, M.M. Characterization of surface orientation in poly(ethylene terephthalate) by front-surface reflection infrared spectroscopy. Appl. Spectrosc. 1994, 48, 1513–1521. [Google Scholar] [CrossRef]
- Fina, L.J.; Koenig, J.L. Studies of chain folding in solution-crystallized poly(ethylene terephthalate). Macromolecules 1984, 17, 2572–2579. [Google Scholar] [CrossRef]
- Santoro, G.; Ochando, I.M.; Ellis, G. Advanced vibrational microspectroscopic study of conformational changes within a craze in poly(ethylene terephthalate). Macromolecules 2015, 48, 1162–1168. [Google Scholar] [CrossRef]
- D’Esposito, L.; Koenig, J.L. Application of Fourier transform infrared spectroscopy to the study of semicrystalline polymers: Poly(ethylene terephthalate). J. Polym. Sci. Polym. Phys. Ed. 1976, 14, 1731–1741. [Google Scholar] [CrossRef]
- Štokr, J.; Schneider, B.; Doskočilová, D.; Lövy, J.; Sedláček, P. Conformational structure of poly(ethylene terephthalate). Infra-red, Raman and n.m.r. spectra. Polymer 1982, 23, 714–721. [Google Scholar] [CrossRef]
- Forestier, E.; Guigo, N.; Combeaud, C.; Billon, N.; Sbirrazzuoli, N. Conformational change analysis of poly(ethylene 2,5-furandicarboxylate) and poly(ethylene terephthalate) under uniaxial stretching. Macromolecules 2020, 53, 8693–8703. [Google Scholar] [CrossRef]
- Melveger, A.J. Laser-Raman study of crystallinity changes in poly(ethylene terephthalate). J. Polym. Sci. A-2 Polym. Phys. 1972, 10, 317–322. [Google Scholar] [CrossRef]
- Bahl, S.K.; Cornell, D.D.; Boerio, F.J.; McGraw, G.E. Interpretation of the vibrational spectra of poly(ethylene terephthalate). J. Polym. Sci. Polym. Lett. Ed. 1974, 12, 13–19. [Google Scholar] [CrossRef]
- Mecozzi, M.; Nisini, L. The differentiation of biodegradable and non-biodegradable polyethylene terephthalate (PET) samples by FTIR spectroscopy: A potential support for the structural differentiation of PET in environmental analysis. Infrared Phys. Technol. 2019, 101, 119–126. [Google Scholar] [CrossRef]
- Cunningham, A.; Ward, I.M.; Willis, H.A.; Zichy, V. An infra-red spectroscopic study of molecular orientation and conformational changes in poly(ethylene terephthalate). Polymer 1974, 15, 749–756. [Google Scholar] [CrossRef]
- Guévremont, J.; Ajji, A.; Cole, K.C.; Dumoulin, M.M. Orientation and conformation in poly(ethylene terephthalate) with low draw ratios as characterized by specular reflection infra-red spectroscopy. Polymer 1995, 36, 3385–3392. [Google Scholar] [CrossRef]
- Spiby, P.; O’Neill, M.A.; Duckett, R.A.; Ward, I.M. An infra-red study of conformational changes occurring during the drawing of PEMT, PET and PEMT/PET copolymer. Polymer 1992, 33, 4479–4485. [Google Scholar] [CrossRef]
- Donelli, I.; Freddi, G.; Nierstrasz, V.A.; Taddei, P. Surface structure and properties of poly-(ethylene terephthalate) hydrolyzed by alkali and cutinase. Polym. Degrad. Stab. 2010, 95, 1542–1550. [Google Scholar] [CrossRef]
- Lofgren, E.A.; Jabarin, S.A. Polarized internal reflectance spectroscopic studies of oriented poly(ethylene terephthalate). J. Appl. Polym. Sci. 1994, 51, 1251–1267. [Google Scholar] [CrossRef]
- González-Córdova, J.A.; Ariza-Flores, D.; Pérez-Huerta, J.S.; Madrigal-Melchor, J.; López-Miranda, A.; Ortega-Gallegos, J. Optical anisotropy Raman response of polyethylene terephthalate strained thin films. Physica B 2023, 654, 414693. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, Y.; Duan, Y.; Zhang, J.; Yan, S.; Shen, D. Reflection–absorption infrared spectroscopy investigation of the crystallization kinetics of poly(ethylene terephthalate) ultrathin films. J. Polym. Sci. B 2004, 42, 4440–4447. [Google Scholar] [CrossRef]
ΔL (μm) | α (°) | θ (°) | tan 2α | tan 2θ |
---|---|---|---|---|
1.0 | 10 | 4.80 | 0.36397 | 0.16914 |
20 | 10.90 | 0.83910 | 0.39997 | |
30 | 20.00 | 1.73205 | 0.83910 | |
40 | 34.90 | 5.67128 | 2.71792 | |
44 | 42.90 | 28.63625 | 13.61741 | |
1.2 | 10 | 2.62 | 0.36397 | 0.09171 |
20 | 5.84 | 0.83910 | 0.20673 | |
30 | 11.52 | 1.73205 | 0.42530 | |
40 | 27.80 | 5.67128 | 1.46046 | |
44 | 40.09 | 28.63625 | 5.77736 | |
2.0 | 10 | 84.50 | 0.36397 | −0.19438 |
20 | 76.91 | 0.83910 | −0.49163 | |
30 | 67.30 | 1.73205 | −1.01406 | |
40 | 52.98 | 5.67128 | −3.49663 | |
44 | 46.74 | 28.63625 | −16.44405 |
ΔL (μm) | α (°) | θ (°) | tan 2α | tan 2θ |
---|---|---|---|---|
1.0 | 10 | 5.20 | 0.36397 | 0.18353 |
20 | 11.45 | 0.83910 | 0.42242 | |
30 | 21.10 | 1.73205 | 0.90674 | |
40 | 35.40 | 5.67128 | 2.87161 | |
44 | 43.10 | 28.63625 | 15.05572 | |
1.3 | 10 | 2.55 | 0.36397 | 0.08925 |
20 | 5.65 | 0.83910 | 0.19982 | |
30 | 11.20 | 1.73205 | 0.41217 | |
40 | 26.69 | 5.67128 | 1.34552 | |
44 | 40.80 | 28.63625 | 6.77199 |
ΔL (μm) | α(°) | θ(°) | tan 2α | tan 2θ |
---|---|---|---|---|
1.25 | 10 | 8.05 | 0.36397 | 0.28864 |
20 | 16.80 | 0.83910 | 0.66440 | |
30 | 26.95 | 1.73205 | 1.37134 | |
40 | 38.65 | 5.67128 | 4.43735 | |
44 | 43.72 | 28.63625 | 22.36627 | |
2.25 | 10 | 3.80 | 0.36397 | 0.13343 |
20 | 8.51 | 0.83910 | 0.30611 | |
30 | 16.10 | 1.73205 | 0.62973 | |
40 | 31.90 | 5.67128 | 2.03227 | |
44 | 42.30 | 28.63625 | 10.57889 |
γ | ΔL (μm) | Δψ (°) | Δn | |
---|---|---|---|---|
3.1 | 1.0 | 61.61786 | 0.10087 | 0.10342 |
1.2 | 78.49929 | 0.10708 | ||
2.0 | 124.98626 | 0.10230 | ||
2.4 | 1.0 | 58.23477 | 0.09533 | 0.09572 |
1.3 | 76.32643 | 0.09611 | ||
1.66 | 1.25 | 38.67712 | 0.05065 | 0.05017 |
2.25 | 68.29857 | 0.04969 |
Peak (cm−1) | Du | α (°) | fu | Ds | fs | Conformation | Dichroism |
---|---|---|---|---|---|---|---|
845 | 3.79 | -- | 1.28 | -- | γrock(CH2), trans crystalline | π | |
872 | 0.28 | 85 1 | -- | 1.05 | 0.02 | out-of-plane δ(C-C-H)ring gauche | σ |
898 | 2.33 | -- | 2.16 | -- | trans | π | |
969 | 3.33 | 34 2 | 0.47 | 1.14 | 0.05 | ν(O-CH2), trans | π |
975 | 4.42 | 34 | 0.58 | 0.61 | 0.16 | ν(O-CH2), trans amorphous | π |
1020 | 1.41 | 20 3 | 0.14 | 1.13 | 0.05 | in-plane δ(C-H)ring, trans amorphous | π |
1100 | 1.27 | -0.32 | 0.73 | 0.19 | ν(C-O), gauche | π | |
1120 | 1.30 | 1.02 | -- | ν(C-C)ring + ν(C-O-C), crystalline | π | ||
1126 | 1.02 | 0.01 | 1.12 | 0.04 | ν(C-C)ring + ν(C-O-C), crystalline | π | |
1259 | 0.54 | 90 4 | 1.07 | 0.02 | ν(O=C-O-C) | σ | |
1234 | 1.64 | 1.41 | -- | ν(O=C-O-C) | π | ||
1339 | 0.98 | 21.3 5 | −0.005 | 1.32 | 0.06 | δwagg(CH2), trans amorphous | π |
1341 | 0.85 | 21.3 5 | −0.06 | 1.36 | 0.11 | δwagg(CH2), trans crystalline | π |
1710 | 1.37 | 0.86 | ν(C=O), crystalline | π | |||
1717 | 0.63 | 0.87 | ν(C=O), trans isolated | σ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avadanei, M.I.; Dimitriu, D.G.; Dorohoi, D.O. Optical Anisotropy of Polyethylene Terephthalate Films Characterized by Spectral Means. Polymers 2024, 16, 850. https://doi.org/10.3390/polym16060850
Avadanei MI, Dimitriu DG, Dorohoi DO. Optical Anisotropy of Polyethylene Terephthalate Films Characterized by Spectral Means. Polymers. 2024; 16(6):850. https://doi.org/10.3390/polym16060850
Chicago/Turabian StyleAvadanei, Mihaela Iuliana, Dan Gheorghe Dimitriu, and Dana Ortansa Dorohoi. 2024. "Optical Anisotropy of Polyethylene Terephthalate Films Characterized by Spectral Means" Polymers 16, no. 6: 850. https://doi.org/10.3390/polym16060850
APA StyleAvadanei, M. I., Dimitriu, D. G., & Dorohoi, D. O. (2024). Optical Anisotropy of Polyethylene Terephthalate Films Characterized by Spectral Means. Polymers, 16(6), 850. https://doi.org/10.3390/polym16060850