Development of Biodegradable Foam Trays from Brewer’s Malt Bagasse and Potato Residues from Agricultural Crops
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials and Reagents
2.2. Methodology for Obtaining Brewer’s Malt Bagasse Flour and Potato Starch
2.3. Development of Foam Trays with Biodegradable Potential
2.4. Chemical Characterization of Raw Materials
2.5. Characterization of Foam Trays
2.6. Fourier Transform Infrared Spectroscopy (FTIR)
2.7. Thermogravimetric Analysis (TGA)
2.8. Differential Scanning Calorimetry (DSC)
2.9. Statistical Analysis
3. Results and Discussion
3.1. Raw Material Characterization
3.2. Characterization of Foam Trays
3.2.1. Physical Properties
3.2.2. Mechanical Properties
3.2.3. Molecular Vibration
3.2.4. Thermal Properties
3.3. Perspectives of T2 Formulation in the Development of Biodegradable Trays
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BMBF | Brewer’s Malt Bagasse Flour |
PS | Potato Starch |
References
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2021, 7, eabc9747. [Google Scholar] [CrossRef]
- Rochman, C.M.; Kross, S.M.; Armstrong, J.B.; Bogan, A.E.; De La Cruz, E. The Ecological Impacts of Marine Plastic Pollution. Science 2021, 372, 1216–1219. [Google Scholar] [CrossRef]
- Harrison, J.P.; Nocker, A. Microplastics in the Marine Environment: A Review of the Literature. Mar. Pollut. Bull. 2020, 161, 111500. [Google Scholar] [CrossRef]
- OECD. Global Plastics Outlook: Economic Drivers, Environmental Impacts and Policy Options; Organisation for Economic Co-operation and Development: Paris, France, 2022. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP). The Plastic Wave: Accelerating Efforts to Tackle Marine Plastic Pollution; United Nations Environment Programme: Nairobi, Kenya, 2022; Available online: https://www.unep.org/topics/ocean-seas-and-coasts/ecosystem-degradation-pollution/plastic-pollution-marine-litter (accessed on 6 June 2024).
- MINAM. Law No. 30884 Regulates the Consumption of Single-Use Plastic Products That Pose Risks to Public Health and/or the Environment. Sistema Nacional de Información Ambiental (Sinia). 2019. Available online: https://www.gob.pe/institucion/minam/normas-legales/290809-006-2019-minam (accessed on 20 December 2024).
- Hahladakis, J.N.; Iacovidou, E. The Environmental Impacts of Plastic Degradation. Environ. Pollut. 2021, 273, 116553. [Google Scholar] [CrossRef]
- Tsermentzi, S.; Skourou, F. Biodegradable Plastics: A Sustainable Alternative to Conventional Plastics. J. Polym. Environ. 2021, 29, 2757–2770. [Google Scholar] [CrossRef]
- Mehmood, A.; Raina, N.; Phakeenuya, V.; Wonganu, B.; Cheenkachorn, K. The Current Status and Market Trend of Polylactic Acid as Biopolymer: Awareness and Needs for Sustainable Development. Mater. Today Proc. 2022, 72, 3049–3055. [Google Scholar] [CrossRef]
- Andrade, J.P.S.; Cecchin, D.; Vieira, C.M.F.; Delaqua, G.C.G.; Silva, F.C.; Hamacher, L.S.; da Silva, T.R.; Amran, M.; Paes, J.L.; Moll Hüther, C.; et al. Residues from Agroindustrial Malt Bagasse: Perspectives for the Development of Ecological Ceramic Materials. Sustainability 2023, 15, 9120. [Google Scholar] [CrossRef]
- Kuchler, A.; Wongsuwan, T. Utilization of Potato Residues for Sustainable Agricultural Practices. Waste Biomass Valor. 2022, 13, 1513–1525. [Google Scholar] [CrossRef]
- Ferreira, A.M.; Martins, J.; Carvalho, L.H.; Magalhães, F.D. Biosourced Disposable Trays Made of Brewer’s Spent Grain and Potato Starch. Polymers 2019, 11, 923. [Google Scholar] [CrossRef]
- Mussatto, S.I. Brewer’s Spent Grain: A Valuable Feedstock for Industrial Applications. J. Sci. Food Agric. 2013, 94, 1264–1275. [Google Scholar] [CrossRef]
- Singh, N.; Singh, J.; Kaur, L.; Sodhi, N.S.; Gill, B.S. Morphological, Thermal and Rheological Properties of Starches from Different Botanical Sources. Food Chem. 2003, 81, 219–231. [Google Scholar] [CrossRef]
- Di Bartolo, A.; Infurna, G.; Dintcheva, N.T. A Review of Bioplastics and Their Adoption in the Circular Economy. Polymers 2021, 13, 1229. [Google Scholar] [CrossRef] [PubMed]
- Leal Filho, W.; Barbir, J.; Özuyar, P.G.; Núñez, E.; Díaz Sarachaga, J.M.; Guillaume, B.; Anholon, R.; Rampasso, I.S.; Swart, J.; Velázquez, L.; et al. Assessing Provisions and Requirements for the Sustainable Production of Plastics: Towards Achieving SDG 12 from the Consumers’ Perspective. Sustainability 2022, 14, 16542. [Google Scholar] [CrossRef]
- Aguiar, S.; Estrella, M.E.; Cabadiana, H.U. Residuos Agroindustriales: Su Impacto, Manejo y Aprovechamiento. AXIOMA 2022, 1, 5–11. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Yuan, S.; Hussain, M.; Ye, X.; Fang, Y.; Yu, B.; Zhu, F. Polylactic Acid Meltblown Nonwovens with High Filterability and Low Charge Decay: A Commercially Viable Strategy for Liquid Electret Charging Solutions. Ind. Eng. Chem. Res. 2024, 63, 13230–13237. [Google Scholar] [CrossRef]
- AOAC. Moisture in Animal Feed: AOAC Official Method 931.04. J. Assoc. Off. Agric. Chem. 1931, 14, 529. [Google Scholar]
- AOAC. Fat in Foods: AOAC Official Method 920.39. In Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- AOAC. Ash in Animal Feed: AOAC Official Method 923.03. In Official Methods of Analysis, 16th ed.; AOAC International: Gaithersburg, MD, USA, 1997. [Google Scholar]
- AOAC. Crude Fiber in Animal Feed: AOAC Official Method 962.09. In Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- AOAC. Protein (Crude) in Animal Feed: AOAC Official Method 920.87. In Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Ruiloba, I.; Li, M.; Quintero, R.; Correa, J. Elaboración de Bioplástico a Partir de Almidón de Semillas de Mango. Rev. Inic. Científica 2018, 4, 28–32. [Google Scholar] [CrossRef]
- Hassan, L.G. Extraction and Characterisation of Starches from Four Varieties of Mangifera indica Seeds. IOSR J. Appl. Chem. 2013, 3, 16–23. [Google Scholar] [CrossRef]
- Aguirre, E.; Dominguez, J.; Villanueva, E.; Ponce, R.; Arevalo, O.; Siche, R.; González, C.; Rodríguez, G. Biodegradable Trays Based on Manihot esculenta Crantz Starch and Zea mays Husk Flour. Food Packag. Shelf Life 2023, 38, 101129. [Google Scholar] [CrossRef]
- NBR NM ISO 535; Papel e Papelão—Determinação da Capacidade de Absorção de Água—Método da Superfície Cobb. Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2014.
- Mello, L.R.; Mali, S. Use of Malt Bagasse to Produce Biodegradable Baked Foams Made from Cassava Starch. Ind. Crops Prod. 2014, 55, 187–193. [Google Scholar] [CrossRef]
- Steinmacher, N.C.; Honna, F.A.; Gasparetto, A.V.; Anibal, D.; Grossmann, M.V. Bioconversion of Brewer’s Spent Grains by Reactive Extrusion and Their Application in Bread-Making. LWT 2011, 46, 542–547. [Google Scholar] [CrossRef]
- Santos, M.; Jiménez, J.; Bartolomé, B.; Gómez-Cordovés, C.; Del Nozal, M. Variability of Brewer’s Spent Grain within a Brewery. Food Chem. 2002, 80, 17–21. [Google Scholar] [CrossRef]
- Kita, A.; Rytel, E.; Miedzianka, J.; Turski, W.; Wicha-Komsta, K.; Kucharska, A.; Lenartowicz, T. The Content of Biologically Active Compounds in Potato Tubers of Ismena and Provita Varieties—A Comparison. J. Food Compos. Anal. 2022, 115, 104898. [Google Scholar] [CrossRef]
- Alam, M.; Rana, Z.; Islam, S. Comparison of the Proximate Composition, Total Carotenoids and Total Polyphenol Content of Nine Orange-Fleshed Sweet Potato Varieties Grown in Bangladesh. Foods 2016, 5, 64. [Google Scholar] [CrossRef] [PubMed]
- Vargas, N.; Flores, N. Evaluación Fisicoquímica y de las Propiedades Funcionales del Almidón del Araq Papa (Solanum Tuberosum); Repositorio UNH: Durham, NH, USA, 2021; Available online: https://repositorio.unh.edu.pe/items/584ec890-696d-42dd-9fc0-17644502044a (accessed on 27 April 2025).
- Montoya-Anaya, D.G.; Madera-Santana, T.J.; Aguirre-Mancilla, C.L.; Grijalva-Verdugo, C.; Gonzales-Garcia, G.; Nuñez-Colín, C.A.; Rodriguez-Nuñez, J.R. Physicochemical Characterization of Residual Potato Starch Recovered from the Potato Chips Industry in Mexico. Biotecnología 2023, 25, 60–72. [Google Scholar] [CrossRef]
- Martínez, P.; Miano, A.C.; Obregón, J.; Peña, F.; Jara, R.S.; Soriano-Colchado, J.; Velezmoro, C.; Barraza-Jáuregui, G. Propiedades Fisicoquímicas, Funcionales y Estructurales de Almidones de Papas Nativas. In Proceedings of the 18th LACCEI International Multi-Conference for Engineering, Education and Technology, Virtual, 27-31 July 2020. [Google Scholar] [CrossRef]
- Aguilar, D. Análisis Químico del Almidón de Papa para la Obtención de Papel Higiénico. Ingenium 2016, 1, 2. [Google Scholar] [CrossRef][Green Version]
- Vercelheze, A.; Oliveira, A.; Rezende, M.; Muller, C.; Yamashita, F.; Mali, S. Physical Properties, Photo- and Bio-Degradation of Baked Foams Based on Cassava Starch, Sugarcane Bagasse Fibers and Montmorillonite. J. Polym. Environ. 2013, 21, 266–274. [Google Scholar] [CrossRef]
- Huertas, A.; Barrios, P.; Arevalo-Oliva, M.F.; Córdova-Chang, A.; Hurtado-Soria, B.Z.; Villanueva, E.; González-Cabeza, J.; Rodríguez, G.; Aguirre, E. Biodegradable Trays Made from Poraqueiba sericea Seed Starch and Zea mays Cob Flour. Sci. Agropecu. 2024, 16, 17–26. [Google Scholar] [CrossRef]
- Ampuero, O.; Vila, N. Consumer Perceptions of Product Packaging. J. Consum. Mark. 2006, 23, 100–112. [Google Scholar] [CrossRef]
- Marsh, K.; Bugusu, B. Food Packaging—Roles, Materials, and Environmental Issues. J. Food Sci. 2007, 72, R39–R55. [Google Scholar] [CrossRef]
- Mitterer-Daltoé, M.L.; Baroni, K.C.; Oldoni, T.C.; Kaushik, N.; Choudhary, S.; Bilck, A.P. Biodegradable Packaging with Natural Colorants Added to Increase the Consumption of Eco-Friendly Packaging. J. Clean. Prod. 2024, 477, 143894. [Google Scholar] [CrossRef]
- Luna, P.; Darniadi, S.; Chatzifragkou, A.; Charalampopoulos, D. Biodegradable Foams Based on Extracted Fractions from Sorghum By-Products. IOP Conf. Ser. Earth Environ. Sci. 2021, 749, 012057. [Google Scholar] [CrossRef]
- Cruz-Tirado, J.P.; Siche, R.; Cabanillas, A.; Díaz-Sánchez, L.; Vejarano, R.; Tapia-Blácido, D.R. Properties of Baked Foams from Oca (Oxalis tuberosa) Starch Reinforced with Sugarcane Bagasse and Asparagus Peel Fiber. Procedia Eng. 2017, 200, 178–185. [Google Scholar] [CrossRef]
- Machado, C.M.; Benelli, P.; Tessaro, I.C. Study of Interactions between Cassava Starch and Peanut Skin on Biodegradable Foams. Int. J. Biol. Macromol. 2020, 147, 1343–1353. [Google Scholar] [CrossRef] [PubMed]
- Cruz, G.D. Efecto de la Proporción de Fibra y Almidón Obtenidos del Pseudotallo de Banano en las Propiedades de Bandejas Biodegradables. Bachelor’s Thesis, Universidad Nacional de Trujillo, Trujillo, Peru, 2021. Available online: https://dspace.unitru.edu.pe/items/1b223e46-6841-42bf-99b9-be3da07d00a2 (accessed on 6 May 2024).
- Machado, C.; Benelli, P.; Tessaro, I. Sesame Cake Incorporation on Cassava Starch Foams for Packaging Use. Ind. Crops Prod. 2017, 102, 115–121. [Google Scholar] [CrossRef]
- Ferreira, D.; Molina, G.; Pelissari, F. Biodegradable Trays Based on Cassava Starch Blended with Agroindustrial Residues. Compos. B Eng. 2020, 183, 107682. [Google Scholar] [CrossRef]
- Cabanillas, A.; Nuñez, J.; Cruz-Tirado, J.; Vejarano, R.; Tapia-Blácido, D.R.; Arteaga, H.; Siche, R. Pineapple Shell Fiber as Reinforcement in Cassava Starch Foam Trays. Polym. Polym. Compos. 2019, 27, 496–506. [Google Scholar] [CrossRef]
- Bergel, B.F.; Dias Osorio, S.; Da Luz, L.M.; Santana, R.M.C. Effects of Hydrophobized Starches on Thermoplastic Starch Foams Made from Potato Starch. Carbohydr. Polym. 2018, 200, 106–114. [Google Scholar] [CrossRef]
- Vercelheze, A.E.S.; Fakhouri, F.M.; Dall’Antonia, L.H.; Urbano, A.; Youssef, E.Y.; Yamashita, F.; Mali, S. Properties of Baked Foams Based on Cassava Starch, Sugarcane Bagasse Fibers and Montmorillonite. Carbohydr. Polym. 2012, 87, 1302–1310. [Google Scholar] [CrossRef]
- Kaisangsri, N.; Kerdchoechuen, O.; Laohakunjit, N. Characterization of Cassava Starch-Based Foam Blended with Plant Proteins, Kraft Fiber, and Palm Oil. Carbohydr. Polym. 2014, 110, 70–77. [Google Scholar] [CrossRef]
- Tapia-Blácido, D.R.; Aguilar, G.J.; De Andrade, M.T.; Rodrigues-Júnior, M.F.; Guareschi-Martins, F.C. Trends and Challenges of Starch-Based Foams for Use as Food Packaging and Food Container. Trends Food Sci. Technol. 2021, 119, 257–271. [Google Scholar] [CrossRef]
- Xu, R.; Yin, C.; You, J.; Zhang, J.; Mi, Q.; Wu, J.; Zhang, J. Sustainable, Thermoplastic and Hydrophobic Coating from Natural Cellulose and Cinnamon to Fabricate Eco-Friendly Catering Packaging. Green Energy Environ. 2022, 9, 927–936. [Google Scholar] [CrossRef]
- Cheng, J.; Gao, R.; Zhu, Y.; Lin, Q. Applications of Biodegradable Materials in Food Packaging: A Review. Alex. Eng. J. 2024, 91, 70–83. [Google Scholar] [CrossRef]
- Schimidt, V.C.; Laurindo, J. Water Absorption and Mechanical Properties of Starch Foam Trays Impregnated with Starch Acetate. Braz. J. Food Technol. 2009, 12, 34–42. [Google Scholar] [CrossRef]
- Cruz-Tirado, J.P.; Vejarano, R.; Tapia, B.; Barraza, J.; Siche, R. Biodegradable Foam Tray Based on Starches Isolated from Different Peruvian Species. Int. J. Biol. Macromol. 2019, 125, 800–807. [Google Scholar] [CrossRef]
- Oliveira, R.; Bonametti, O.; Bilcka, A.; Zanela, J.C.; Grossmann, E.; Yamashita, F. Biodegradable Trays of Thermoplastic Starch/Poly(Lactic Acid) Coated with Beeswax. Ind. Crops Prod. 2018, 112, 481–487. [Google Scholar] [CrossRef]
- Lawton, J.W.; Shogren, R.L.; Tiefenbacher, K.F. Effect of Batter Solids and Starch Type on the Structure of Baked Starch Foams. Cereal Chem. 1999, 76, 682–687. [Google Scholar] [CrossRef]
- Dilkushi, H.; Jayarathna, S.; Manipura, A.; Chamara, H.; Edirisinghe, D.; Vidanarachchi, J.; Priyashantha, H. Development and Characterization of Biocomposite Films Using Banana Pseudostem, Cassava Starch and Poly(Vinyl Alcohol): A Sustainable Packaging Alternative. Carbohydr. Polym. Technol. Appl. 2024, 7, 100472. [Google Scholar] [CrossRef]
- Alptekin, A.; Çallioğlu, H. Mechanical Properties of Starch Bio-Composite and Molded Pulp Samples Manufactured Using Pine and Eucalyptus Fibers. Polym. Polym. Compos. 2023, 31. [Google Scholar] [CrossRef]
- Muñoz-Gimena, P.F.; Oliver-Cuenca, V.; Peponi, L.; López, D. A Review on Reinforcements and Additives in Starch-Based Composites for Food Packaging. Polymers 2023, 15, 2972. [Google Scholar] [CrossRef]
- Kale, G.; Kijchavengkul, T.; Auras, R.; Rubino, M.; Selke, S.E.; Singh, S.P. Compostability of Bioplastic Packaging Materials: An Overview. Macromol. Biosci. 2007, 7, 255–277. [Google Scholar] [CrossRef] [PubMed]
- Sierra, L.F.; Melaj, M.A.; Lorenzo, M.C.; Ribba, L.; Garcia, M.A. Biodegradable Composite Materials Based on Cassava Starch and Reinforced with Topinambur (Helianthus tuberosus) Aerial Part Fiber. Sustain. Polym. Energy 2024, 2, 10004. [Google Scholar] [CrossRef]
- Villanueva, E.; Glorio-Paulet, P.; Giusti, M.M.; Sigurdson, G.T.; Yao, S.; Rodríguez-Saona, L.E. Screening for Pesticide Residues in Cocoa (Theobroma cacao L.) by Portable Infrared Spectroscopy. Talanta 2023, 257, 124386. [Google Scholar] [CrossRef] [PubMed]
- Espina, M.; Cruz-Tirado, J.; Siche, R. Mechanical Properties of Trays Based on Starch of Native Plant Species and Fiber of Agroindustrial Wastes. Sci. Agropecu. 2016, 7, 133–143. [Google Scholar] [CrossRef]
- Iglesias-Montes, M.L.; D’Amico, D.A.; Malbos, L.B.; Seoane, I.T.; Manfredi, L.B.; Cyras, V.P. Cinética de Degradación Térmica de Mezclas de PLA/PHB Completamente Biodegradables y de Base Biológica. In Actas de Jornadas y Eventos Académicos; UTN: Buenos Aires, Argentina, 2023; Available online: https://rtyc.utn.edu.ar/index.php/ajea/article/view/1509 (accessed on 1 January 2025).
- Leroy, V.; Cancellieri, D.; Leoni, E. Thermal Degradation of Ligno-Cellulosic Fuels: DSC and TGA Studies. Thermochim. Acta 2006, 451, 131–138. [Google Scholar] [CrossRef]
- Bustamante, V.; Carrillo, A.; Prieto Ruíz, J.Á.; Corral-Rivas, J.J.; Hernández Díaz, J.C. Química de la Biomasa Vegetal y su Efecto en el Rendimiento Durante la Torrefacción: Revisión. Rev. Mex. Cienc. For. 2016, 7, 5–23. [Google Scholar]
- Da Rosa Zavareze, E.; Dias, A.R.G. Impact of Heat-Moisture Treatment and Annealing in Starches: A Review. Carbohydr. Polym. 2010, 83, 317–328. [Google Scholar] [CrossRef]
- Averous, L.; Boquillon, N. Biocomposites Based on Plasticized Starch: Thermal and Mechanical Behaviors. Carbohydr. Polym. 2004, 56, 111–122. [Google Scholar] [CrossRef]
- Auras, R.; Harte, B.; Selke, S. An Overview of Polylactides as Packaging Materials. Macromol. Biosci. 2004, 4, 835–864. [Google Scholar] [CrossRef]
- Bajer, D.; Janczak, K.; Bajer, K. Novel Starch/Chitosan/Aloe Vera Composites as Promising Biopackaging Materials. J. Polym. Environ. 2020, 28, 1021–1039. [Google Scholar] [CrossRef]
- Mohammed, A.A.B.A.; Hasan, Z.; Omran, A.A.B.; Elfaghi, A.M.; Khattak, M.A.; Ilyas, R.A.; Sapuan, S.M. Effect of Various Plasticizers in Different Concentrations on Physical, Thermal, Mechanical, and Structural Properties of Wheat Starch-Based Films. Polymers 2023, 15, 63. [Google Scholar] [CrossRef]
- Hazrati, K.Z.; Sapuan, S.M.; Zuhri, M.Y.M.; Jumaidin, R. Preparation and Characterization of Starch-Based Biocomposite Films Reinforced by Dioscorea hispida Fibers. J. Mater. Res. Technol. 2021, 15, 1342–1355. [Google Scholar] [CrossRef]
- Mahardika, M.; Abral, H.; Kasim, A.; Arief, S.; Hafizulhaq, F.; Asrofi, M. Properties of Cellulose Nanofiber/Bengkoang Starch Bionanocomposites: Effect of Fiber Loading. LWT–Food Sci. Technol. 2019, 116, 108554. [Google Scholar] [CrossRef]
- Syafri, E.; Sudirman; Mashadi; Yulianti, E.; Deswita; Asrofi, M.; Abral, H.; Sapuan, S.M.; Ilyas, R.A.; Fudholi, A. Effect of Sonication Time on the Thermal Stability, Moisture Absorption, and Biodegradation of Water Hyacinth (Eichhornia crassipes) Nanocellulose-Filled Bengkuang (Pachyrhizus erosus) Starch Biocomposites. J. Mater. Res. Technol. 2019, 8, 6223–6231. [Google Scholar] [CrossRef]
- Siracusa, V.; Rocculi, P.; Romani, S.; Rosa, M.D. Biodegradable Polymers for Food Packaging: A Review. Trends Food Sci. Technol. 2008, 19, 634–643. [Google Scholar] [CrossRef]
Formulation | BMBF (%) | PS (%) |
---|---|---|
T1 | 00.00 | 100.00 |
T2 | 10.00 | 90.00 |
T3 | 20.00 | 80.00 |
T4 | 30.00 | 70.00 |
T5 | 40.00 | 60.00 |
Characteristic | BMBF | PS |
---|---|---|
Moisture | 4.48 ± 0.30 a | 8.30 ± 0.662 b |
Ashes | 2.33 ± 0.92 a | 0.27 ± 0.041 b |
Fats | 4.08 ± 0.28 a | 0.24 ± 0.314 b |
Proteins | 17.99 ± 0.03 a | 1.27 ± 0.047 b |
Crude fiber | 30.15 ± 0.18 a | 0.00 ± 0.00 b |
Carbohydrates | 40.97 ± 0.15 a | 89.61 ± 0.02 b |
Amylose | ND | 33.29 ± 0.01 |
Amylopectin | ND | 66.70 ± 0.00 |
Formulation | L* | a* | b* | * |
---|---|---|---|---|
T1 | 73.07 ± 1.29 a | 0.03 ± 0.19 d | 11.49 ± 3.17 b | 73.68 ± 1.31 a |
T2 | 62.63 ± 1.02 b | 3.52 ± 0.19 c | 15.08 ± 0.22 a | 64.52 ± 0.94 b |
T3 | 56.01 ± 0.70 c | 4.62 ± 0.19 b | 15.34 ± 0.09 a | 58.25 ± 0.70 c |
T4 | 53.65 ± 1.18 c | 5.51 ± 0.14 a | 15.36 ± 0.15 a | 56.08 ± 1.20 c |
T5 | 49.11 ± 1.78 e | 5.80 ± 0.10 a | 15.52 ± 0.10 a | 51.54 ± 1.70 d |
Formulation | Thickness (mm) | Density (g.cm−3) | Moisture (%) | Water Absorption (%) |
---|---|---|---|---|
T1 | 2.63 ± 0.15 e | 0.28 ± 0.03 a | 4.69 ± 0.23 a | 38.71 ± 4.08 b |
T2 | 3.10 ± 0.10 d | 0.22 ± 0.00 b | 4.05 ± 0.13 b | 39.46 ± 7.45 b |
T3 | 3.60 ± 0.10 c | 0.23 ± 0.01 b | 3.51 ± 0.02 c | 45.39 ± 4.35 ab |
T4 | 4.00 ± 0.10 b | 0.19 ± 0.01 c | 3.51 ± 0.07 c | 56.70 ± 9.00 ab |
T5 | 4.77 ± 0.25 a | 0.15 ± 0.01 d | 3.42 ± 0.12 c | 69.70 ± 4.60 a |
Formulation | Tension (MPa) | Elongation (%) | Hardness (N) | Fracturability (mm) |
---|---|---|---|---|
T1 | 2.27 ± 0.56 b | 1.64 ± 0.26 a | 4.44 ± 0.32 ab | 2.05 ± 0.24 c |
T2 | 2.92 ± 0.23 a | 1.4233 ± 0.11 ab | 5.61 ± 0.89 a | 3.68 ± 0.17 a |
T3 | 2.31 ± 0.12 b | 1.2000 ± 0.02 bc | 3.72 ± 0.48 bc | 3.44 ± 0.34 ab |
T4 | 1.42 ± 0.15 bc | 1.0067 ± 0.14 bc | 2.99 ± 0.93 c | 3.08 ± 0.62 ab |
T5 | 0.85 ± 0.14 c | 0.5930 ± 0.276 c | 2.87 ± 0.49 c | 2.69 ± 0.73 bc |
Study/Material Used | Composition | Highlighted Mechanical Properties | Vibrational and Thermal Properties | Relevant Observations |
---|---|---|---|---|
Present study (T2) | 90% potato starch + 10% BMBF | Tensile strength: 2.92 MPa | Elongation: 1.42% | Hardness: 5.61 N; Tg: 152.88 °C; ∆Hf: 74.11 J.g−1; effective biodegradability; high thermal degradation |
Cruz-Tirado et al. [52] | Yuca starch + banana pseudostem | Tensile strength: 1.32 MPa | Lower mechanical performance | Tg: ~130 °C; FTIR indicates low compatibility; lower thermal stability |
Oliveira et al. [53] | Starch + natural fibers | Tensile strength: 6.10–11.5 MPa | High strength, but may imply higher production costs | TGA: thermal stability up to 200 °C; characteristic cellulose and starch vibrations present |
Cabanillas et al. [44] | Starch + natural materials | Elongation: <1% | PS brittleness: 5.54 mm | T2 shows better elasticity and balanced properties |
Machado et al. [40] | Yuca starch + peanut shell | Density: 0.15–0.28 g.cm−3 | Physical properties comparable to T2 | Thermal stability in the 150–180 °C range; vibrations attributed to lignin and starch |
Aguilar [32] | Commercial potato starches | Amylose: 20–30% | T2 has higher amylose content (33.29%) | FTIR spectra show differences in amylose and amylopectin bands; Tg varies with composition |
Bustamante et al. [64] | Biocomposites with hemicellulose | Thermal degradation: 180–220 °C | Matches the thermal degradation range observed in T2 | Thermal analysis reveals stability between 180 and 220 °C; FTIR shows hemicellulose–polymer interaction |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vásquez-Bacilio, E.F.; Mejia-Llontop, C.I.; Tirado-Rodríguez, C.E.; Arévalo-Oliva, M.d.F.; Hurtado-Soria, B.Z.; Villanueva, E.; Rodriguez, G.; Tapia-Blácido, D.R.; Aguirre, E. Development of Biodegradable Foam Trays from Brewer’s Malt Bagasse and Potato Residues from Agricultural Crops. Polymers 2025, 17, 2146. https://doi.org/10.3390/polym17152146
Vásquez-Bacilio EF, Mejia-Llontop CI, Tirado-Rodríguez CE, Arévalo-Oliva MdF, Hurtado-Soria BZ, Villanueva E, Rodriguez G, Tapia-Blácido DR, Aguirre E. Development of Biodegradable Foam Trays from Brewer’s Malt Bagasse and Potato Residues from Agricultural Crops. Polymers. 2025; 17(15):2146. https://doi.org/10.3390/polym17152146
Chicago/Turabian StyleVásquez-Bacilio, Evelyn F., Cesar I. Mejia-Llontop, Carlos E. Tirado-Rodríguez, María de Fátima Arévalo-Oliva, Beetthssy Z. Hurtado-Soria, Eudes Villanueva, Gilbert Rodriguez, Delia Rita Tapia-Blácido, and Elza Aguirre. 2025. "Development of Biodegradable Foam Trays from Brewer’s Malt Bagasse and Potato Residues from Agricultural Crops" Polymers 17, no. 15: 2146. https://doi.org/10.3390/polym17152146
APA StyleVásquez-Bacilio, E. F., Mejia-Llontop, C. I., Tirado-Rodríguez, C. E., Arévalo-Oliva, M. d. F., Hurtado-Soria, B. Z., Villanueva, E., Rodriguez, G., Tapia-Blácido, D. R., & Aguirre, E. (2025). Development of Biodegradable Foam Trays from Brewer’s Malt Bagasse and Potato Residues from Agricultural Crops. Polymers, 17(15), 2146. https://doi.org/10.3390/polym17152146