Influence of Bioactive Glass Incorporation in Resin Adhesives of Orthodontic Brackets on Adhesion Properties and Calcium Release
Abstract
1. Introduction
2. Materials and Methods
2.1. Adhesive Preparation
- TXT (0% wt of bioactive glass-incorporated—negative control);
- TXT20 (20% wt of bioactive glass-incorporated);
- TXT30 (30% wt of bioactive glass-incorporated);
- TXT50 (50% wt of bioactive glass-incorporated);
- FLB (positive control—FL BOND II adhesive system with S-PRG biomaterial, SHOFU Inc. Kyoto, Japan)
2.2. Specimen Preparation
2.3. Bonding Brackets to the Enamel Surface
2.4. Shear Bond Strength
2.5. Analysis of the Index of Adhesive Residue Adhered to the Tooth After Bracket Detachment
- Score 0—no remaining amount of composite adhered to the tooth;
- Score 1—less than half the amount of composite adhered to the tooth;
- Score 2—more than half the amount of composite adhered to the tooth;
- Score 3—all the composite adhered to the tooth amount of composite adhered to the tooth.
2.6. Degree of Conversion
2.7. Calcium Release
2.8. Scanning Electron Microscopy (SEM)
2.9. Quantitative Analysis of SEM
2.10. Statistical Analyses
3. Results
3.1. Shear Bond Strength (MPa), Degree of Conversion (DC), Calcium Release and Scanning Electron Microscopy (SEM)
3.2. Adhesive Remnant Index
3.3. Scanning Electron Microscopy
3.4. Quantitative Analysis of SEM
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mei, L.; Chieng, J.; Wong, C.; Benic, G.; Farella, M. Factors affecting dental biofilm in patients wearing fixed orthodontic appliances. Prog. Orthod. 2017, 18, 4. [Google Scholar] [CrossRef]
- Peterson, B.W.; Tjakkes, G.H.; Renkema, A.M.; Manton, D.J.; Ren, Y. The oral microbiota and periodontal health in orthodontic patients. Periodontol 2000 2024. [Google Scholar] [CrossRef]
- Morrier, J.J. Leucomes et traitement orthodontique. Prévention, traitement. Orthod. Fr. 2014, 85, 235–244. [Google Scholar] [CrossRef]
- Mitchell, L. An investigation into the effect of a fluoride releasing adhesive on the prevalence of enamel surface changes associated with directly bonded orthodontic attachments. Br. J. Orthod. 1992, 19, 207–214. [Google Scholar] [CrossRef]
- Freitas, A.O.A.; Marquezan, M.; Nojima, M.C.G.; Alviano, D.S.; Maia, L.C. The influence of orthodontic fixed appliances on the oral microbiota: A systematic review. Dent. Press. J. Orthod. 2014, 19, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Aryeetey, E.J.; Benyahia, H.; Zaoui, F. Oral hygiene in the presence of orthodontic therapy. J. Biosci. Med. 2024, 12, 98–110. [Google Scholar] [CrossRef]
- Chapman, J.A.; Roberts, W.E.; Eckert, G.J.; Kula, K.S.; González-Cabezas, C. Risk factors for incidence and severity of white spot lesions during treatment with fixed orthodontic appliances. Am. J. Orthod. Dentofac. Orthop. 2010, 138, 188–194. [Google Scholar] [CrossRef]
- Lazar, L.; Vlasa, A.; Beresescu, L.; Bud, A.; Lazar, A.P.; Matei, L.; Bud, E. White spot lesions (WSLs)—Post-orthodontic occurrence, management and treatment alternatives: A narrative review. J. Clin. Med. 2023, 12, 1908. [Google Scholar] [CrossRef] [PubMed]
- Kachuie, M.; Khoroushi, M. Prevention and treatment of white spot lesions in orthodontic patients. Contemp. Clin. Dent. 2017, 8, 11. [Google Scholar] [CrossRef]
- Akin, M.; Tezcan, M.; Ileri, Z.; Ayhan, F. Incidence of white spot lesions among patients treated with self- and conventional ligation systems. Clin. Oral Investig. 2015, 19, 1501–1506. [Google Scholar] [CrossRef]
- Weyland, M.I.; Jost-Brinkmann, P.G.; Bartzela, T. Management of white spot lesions induced during orthodontic treatment with multibracket appliance: A national-based survey. Clin. Oral Investig. 2022, 26, 4871–4883. [Google Scholar] [CrossRef] [PubMed]
- Wolff, M.S.; Larson, C. The cariogenic dental biofilm: Good, bad or just something to control? Braz. Oral Res. 2009, 23 (Suppl. S1), 31–38. [Google Scholar] [CrossRef] [PubMed]
- Al Mulla, A.H.; Kharsa, S.A.; Kjellberg, H.; Birkhed, D. Caries risk profiles in orthodontic patients at follow-up using Cariogram. Angle Orthod. 2009, 79, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, L. Decalcification during orthodontic treatment with fixed appliances—An overview. Br. J. Orthod. 1992, 19, 199–205. [Google Scholar] [CrossRef]
- Cury, J.A.; Tenuta, L.M.A. Enamel remineralization: Controlling the caries disease or treating early caries lesions? Braz. Oral Res. 2009, 23 (Suppl. S1), 23–30. [Google Scholar] [CrossRef]
- Derks, A.; Kuijpers-Jagtman, A.M.; Frencken, J.E.; Van’t Hof, M.A.; Katsaros, C. Caries preventive measures used in orthodontic practices: An evidence-based decision? Am. J. Orthod. Dentofac. Orthop. 2007, 132, 165–170. [Google Scholar] [CrossRef]
- Enaia, M.; Bock, N.; Ruf, S. White-spot lesions during multibracket appliance treatment: A challenge for clinical excellence. Am. J. Ozrthod Dentofac. Orthop. 2011, 140, e17–e24. [Google Scholar] [CrossRef]
- Kaur, G.; Pandey, O.P.; Singh, K.; Homa, D.; Scott, B.; Pickrell, G. A review of bioactive glasses: Their structure, properties, fabrication and apatite formation. J. Biomed. Mater. Res. A 2014, 102, 254–274. [Google Scholar] [CrossRef]
- Imazato, S.; Ma, S.; Chen, J.; Xu, H.H.K. Therapeutic polymers for dental adhesives: Loading resins with bio-active components. Dent. Mater. 2014, 30, 97–104. [Google Scholar] [CrossRef]
- Melo, M.A.S.; Wu, J.; Weir, M.D.; Xu, H.H.K. Novel antibacterial orthodontic cement containing quaternary ammonium monomer dimethylaminododecyl methacrylate. J. Dent. 2014, 42, 1193–1201. [Google Scholar] [CrossRef]
- Zehdner, M.; Soderling, E.; Salonen, J.; Waltimo, T. Preliminary evaluation of bioactive glass S53P4 as an endodontic medication in vitro. J. Endod. 2004, 30, 220–224. [Google Scholar] [CrossRef]
- Feng, X.; Zhang, N.; Xu, H.H.K.; Weir, M.D.; Melo, M.A.S.; Bai, Y.; Zhang, K. Novel orthodontic cement containing dimethylaminohexadecyl methacrylate with strong antibacterial capability. Dent. Mater. J. 2017, 36, 669–676. [Google Scholar] [CrossRef]
- Andersson, H.; Kangasniemi, I. Calcium phosphate formation at the surface of bioactive glass in vitro. J. Biomed. Mater. Res. 1991, 25, 1019–1030. [Google Scholar] [CrossRef]
- Leitune, V.C.B.; Mezzomo Collares, F.; Takimi, A.; de Lima, G.B.; Petzhold, C.L.; Bergmann, C.P.; Samuel, S.M.W. Niobium pentoxide as a novel filler for dental adhesive resin. J. Dent. 2013, 41, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Liu, S.; Zhou, X.; Hannig, M.; Rupf, S.; Feng, J.; Peng, X.; Cheng, L. Modifying adhesive materials to improve the longevity of resinous restorations. Int. J. Mol. Sci. 2019, 20, 723. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, K.; Araujo, T.; Carvalho, E.; Meier, M.; Tanaka, A.; Carvalho, C.; Bauer, J. Bioactivity and properties of an adhesive system functionalized with an experimental niobium-based glass. J. Mech. Behav. Biomed. Mater. 2018, 78, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Rêgo, H.M.; Alves, T.S.; Bresciani, E.; Niu, L.N.; Tay, F.R.; Pucci, C.R. Can long-term dentine bonding created in real life be forecasted by parameters established in the laboratory? Sci. Rep. 2016, 6, 37799. [Google Scholar] [CrossRef]
- Pucci, C.R.; de Oliveira, R.S.; Caneppele, T.M.; Torres, C.R.; Borges, A.B.; Tay, F.R. Effects of surface treatment, hydration and application method on the bond strength of a silorane adhesive and resin system to dentine. J. Dent. 2013, 41, 278–286. [Google Scholar] [CrossRef]
- Pucci, C.R.; Gu, L.S.; Zeng, C.; Gou, Y.P.; Tay, F.R.; Niu, L.N. Susceptibility of contemporary single-bottle self-etch dentine adhesives to intrinsic water permeation. J. Dent. 2017, 66, 52–61. [Google Scholar] [CrossRef]
- Årtun, J.; Bergland, S. Clinical trials with crystal growth conditioning as an alternative to acid-etch enamel pretreatment. Am. J. Orthod. 1984, 85, 333–340. [Google Scholar] [CrossRef]
- Xu, H.H.; Moreau, J.L.; Sun, L.; Chow, L.C. Nanocomposite containing amorphous calcium phosphate nanoparticles for caries inhibition. Dent. Mater. 2011, 27, 762–769. [Google Scholar] [CrossRef]
- Hannig, C.; Hamkens, A.; Becker, K.; Attin, R.; Attin, T. Erosive effects of different acids on bovine enamel: Release of calcium and phosphate in vitro. Arch. Oral Biol. 2005, 50, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Attin, T.; Becker, K.; Hannig, C.; Buchalla, W.; Hilgers, R. Method to detect minimal amounts of calcium dissolved in acidic solutions. Caries Res. 2005, 39, 432–436. [Google Scholar] [CrossRef] [PubMed]
- Sleibi, A.; Ozel, B.; Anderson, P.; Baysan, A. Comparison of different bioglass applications on root caries—A laboratory-based study. Saudi Dent. J. 2022, 34, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Barcellos, D.C.; Fonseca, B.M.; Pucci, C.R.; Cavalcanti, B.N.; Persici, E.D.S.; Gonçalves, S.E.P. Zn-doped etch-and-rinse model dentin adhesives: Dentin bond integrity, biocompatibility, and properties. Dent. Mater. 2016, 32, 940–950. [Google Scholar] [CrossRef]
- Yang, S.Y.; Kim, S.H.; Choi, S.Y.; Kim, K.M. Acid neutralizing ability and shear bond strength using orthodontic adhesives containing three different types of bioactive glass. Materials 2016, 9, 125. [Google Scholar] [CrossRef]
- Mitchell, J.C. In-vivo aging of bioactive glasses and other graft materials. In In Vivo Aging of Dental Biomaterials: Aging and Related Phenomena; Eliades, G., Eliades, T., Brantley, W., Watts, D., Eds.; Quintessence: Shinagawa, Tokyo, 2003; pp. 263–276. [Google Scholar]
- Forsback, A.; Areva, S.; Salonen, J.I. Mineralization of dentin induced by treatment with bioactive glass S534P4 in vitro. Acta Odontol. Scand. 2004, 62, 14–20. [Google Scholar] [CrossRef]
- Kazlauskaitė, G.; Vaitiekūnas, R.; Lopatienė, K.; Jutas, A.; Palesik, B.; Smailienė, D. The impact of temperature on the shear bond strength of conventional multi-step and self-adhesive orthodontic adhesive systems: An in-vitro study. BMC Oral Health 2025, 25, 189. [Google Scholar] [CrossRef]
- Hellak, A.; Ebeling, J.; Schauseil, M.; Stein, S.; Roggendorf, M.; Korbmacher-Steiner, H. Shear bond strength of three orthodontic bonding systems on enamel and restorative materials. Biomed. Res. Int. 2016, 2016, 6307107. [Google Scholar] [CrossRef]
- Lourenço, A.S.C.; Ayres, A.P.A.; Mantilla, T.F.; Giannini, M.; Freitas, P.M. Bond strength of composite resin containing bio-material S-PRG to eroded dentin. Braz. J. Oral Sci. 2017, 16, 2017. [Google Scholar] [CrossRef]
- Zeinab, S.; Aisan, N.; Farzane, A.; Azin, N. The effect of addition of Bioglass 45S5 to orthodontic adhesive on shear bond strength of metal orthodontic brackets: An in vitro study. Iranian J. Orthod. 2024, 19, e1164. [Google Scholar] [CrossRef]
- Reynolds, J.R. A review of direct orthodontic bonding. Br. J. Orthod. 1975, 2, 171–178. [Google Scholar] [CrossRef]
- Di Guida, L.A.; Benetti, P.; Corazza, P.H.; Della Bona, A. The critical bond strength of orthodontic brackets bonded to dental glass-ceramics. Clin. Oral Investig. 2019, 23, 4345–4353. [Google Scholar] [CrossRef] [PubMed]
- Proença, M.A.; da Silva, K.T.; Costa ESilva, A.; Carvalho, E.M.; Bauer, J.; Carvalho, C.N. Shear strength of brackets bonded with universal adhesive containing 10-MDP after 20,000 thermal cycles. Int. J. Dent. 2020, 2020, 4265601. [Google Scholar] [CrossRef] [PubMed]
- Cervantes-Ganoza, L.; Castro-Ramirez, L.; Aroste-Andía, R.; Huamani-Echaccaya, J.; Ladera-Castañeda, M.; Cayo-Rojas, C. Comparison of the adhesive remnant index and shear bond strength of different metal bracket bases on artificially aged human teeth: An in vitro study. J. Int. Soc. Prev. Community Dent. 2024, 14, 396–404. [Google Scholar] [CrossRef]
- Ferracane, J.L. The effect of resin formulation on the degree of conversion and mechanical properties of dental restorative resins. J. Biomed. Mater. Res. 1986, 20, 121–131. [Google Scholar] [CrossRef]
- Profeta Krznar, I.; Par, M.; Tarle, Z.; Meštrović, S. Influence of the bracket material on the post-cure degree of conversion of resin-based orthodontic adhesive systems. Polymers 2024, 16, 318. [Google Scholar] [CrossRef]
- Oliveira, Y.T.; Oliveira, K.K.M.; Rifane, T.O.; Feitosa, V.P.; Picanço, P.R.B.; de Paula, D.M. Physicochemical properties of experimental self-adhesive resins containing 45S5 bioglass. Int. J. Adhes. Adhes. 2025, 138, 103949. [Google Scholar] [CrossRef]
- Rifane, T.O.; Cordeiro, K.E.M.; Silvestre, F.A.; Souza, M.T.; Zanotto, E.D.; Araújo-Neto, V.G.; Giannini, M.; Sauro, S.; De Paula, D.M.; Feitosa, V.P. Impact of silanization of different bioactive glasses in simplified adhesives on degree of conversion, dentin bonding and collagen remineralization. Dent. Mater. 2023, 39, 217–226. [Google Scholar] [CrossRef]
- Sauro, S.; Watson, T.F.; Thompson, I.; Toledano, M.; Nucci, C.; Banerjee, A. Influence of air-abrasion executed with polyacrylic acid-Bioglass 45S5 on the bonding performance of a resin-modified glass ionomer cement. Eur. J. Oral Sci. 2012, 120, 168–177. [Google Scholar] [CrossRef]
- Par, M.; Tarle, Z.; Hickel, N.; Ilie, N. Polymerization kinetics of experimental bioactive composites containing bioactive glass. J. Dent. 2018, 76, 83–88. [Google Scholar] [CrossRef]
- Shimizu, S.; Kotake, H.; Takagaki, T.; Shinno, K.; Miyata, S.; Burrow, M.F.; Hotta, M.; Nikaido, T. Evaluation of bonding performance and multi-ion release of S-PRG fillercontaining self-adhesive resin composite. Dent. Mater. J. 2021, 40, 1257–1263. [Google Scholar] [CrossRef]
- Thanetchaloempong, W.; Koontongkaew, S.; Utispan, K. Fixed orthodontic treatment increases cariogenicity and virulence gene expression in dental biofilm. J. Clin. Med. 2022, 11, 5860. [Google Scholar] [CrossRef]
Material | Composition | Manufacturer |
---|---|---|
Transbond XT | Bis-GMA, TEGDMA, 4(DINETHYLAMINO)BENZOETHANOL, Camphorquinone, Hydroquinone | 3M ESPE, St. Paul, MN, USA |
FL BOND ll | UDMA, TEGMA and S-PRG glass particles | Shofu Inc., Kyoto, Japan |
Vitryxx® Bioactive Glass Powder G018144 | 45 wt% of SiO2, 24.5 wt% of CaO, 24.5 wt% of Na2O, and 6 wt% of P2O5 | SCHOTT AG, Landshut, Bayern, Germany |
Groups | MPa (±SD) * | % DC (±SD) * | Calcium Release (±SD) * |
---|---|---|---|
TXT | 19.50 ± 1.40 A | 60.28 ± 1.06 B | 0.14 ± 0.00 A |
TXT20 | 18.22 ± 1.04 AB | 73.02 ± 3.33 A | 0.55 ± 0.00 B |
TXT30 | 14.48 ± 1.46 C | 58.84 ± 4.06 B | 0.74 ± 0.00 C |
TXT50 | 14.13 ± 1.02 C | 40.67 ± 1.21 C | 2.23 ± 0.11 D |
FLB | 17.62 ± 1.45 B | 68.50 ± 1.09 A | 0.47 ± 0.04 B |
Groups | Scores | Total | |||
---|---|---|---|---|---|
0 | 1 | 2 | 3 | ||
TXT | 0 | 2 | 7 | 1 | 10 |
TXT20 | 0 | 5 | 5 | 0 | 10 |
TXT30 | 0 | 6 | 4 | 0 | 10 |
TXT50 | 1 | 7 | 2 | 0 | 10 |
FLB | 1 | 4 | 5 | 0 | 10 |
Total | 2 | 24 | 23 | 1 | 50 |
Image | Mean (±SD) | Median [IQR] (µm) | D10 (µm) | D50 (µm) | D90 (µm) |
---|---|---|---|---|---|
SEM (Figure 3A) | 0.233 ± 0.761 | 0.108 [0.071–0.333] | 0.071 | 0.108 | 0.333 |
SEM (Figure 3B) | 0.042 ± 0.163 | 0.020 [0.014–0.045] | 0.014 | 0.020 | 0.045 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mafetano, A.P.V.P.; Feitosa, F.A.; da Silva Chagas, G.; Gomes, N.M.; Rocha, M.B.; Mailart, M.C.; Yui, K.C.K.; Pucci, C.R. Influence of Bioactive Glass Incorporation in Resin Adhesives of Orthodontic Brackets on Adhesion Properties and Calcium Release. Polymers 2025, 17, 2282. https://doi.org/10.3390/polym17172282
Mafetano APVP, Feitosa FA, da Silva Chagas G, Gomes NM, Rocha MB, Mailart MC, Yui KCK, Pucci CR. Influence of Bioactive Glass Incorporation in Resin Adhesives of Orthodontic Brackets on Adhesion Properties and Calcium Release. Polymers. 2025; 17(17):2282. https://doi.org/10.3390/polym17172282
Chicago/Turabian StyleMafetano, Ana Paula Valente Pinho, Fernanda Alves Feitosa, Gabriela da Silva Chagas, Nathália Moreira Gomes, Marcella Batista Rocha, Mariane Cintra Mailart, Karen Cristina Kazue Yui, and Cesar Rogério Pucci. 2025. "Influence of Bioactive Glass Incorporation in Resin Adhesives of Orthodontic Brackets on Adhesion Properties and Calcium Release" Polymers 17, no. 17: 2282. https://doi.org/10.3390/polym17172282
APA StyleMafetano, A. P. V. P., Feitosa, F. A., da Silva Chagas, G., Gomes, N. M., Rocha, M. B., Mailart, M. C., Yui, K. C. K., & Pucci, C. R. (2025). Influence of Bioactive Glass Incorporation in Resin Adhesives of Orthodontic Brackets on Adhesion Properties and Calcium Release. Polymers, 17(17), 2282. https://doi.org/10.3390/polym17172282