Characterization of Envira Fibers Endemic to the Amazon Rainforest and Their Potential for Reinforcement in Polymer Composites
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fiber Characterization
2.2.1. Dimensional Characterization
2.2.2. X-Ray Diffraction (XRD)
2.3. Thermogravimetric Analysis (TGA)
2.4. Fourier Transform Infrared Spectroscopy (FTIR)
2.5. Mechanical Characterization of Fiber
2.6. Preparation and Mechanical Characterization of Composites
2.7. Statistical Analysis
2.8. Scanning Electron Microscopy (SEM)
3. Results and Discussion
3.1. Characterization of the Envira Fiber
3.1.1. XRD
3.1.2. TGA Analysis
3.1.3. FTIR Analysis
3.1.4. Analysis of the Morphology of Envira Fiber
3.1.5. Mechanical Characterization of the Envira Fiber
3.2. Characterization of Composite Materials
3.2.1. Characterization of Epoxy Matrix Composites by FTIR
3.2.2. Tensile Mechanical Properties
Microstructural Analysis of Fractured Surface
3.2.3. Flexural Strength
Microstructural Analysis of Flexural Fractures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kerni, L.; Singh, S.; Patnaik, A.; Kumar, N. A review on natural fiber reinforced composites. Mater. Today Proc. 2020, 28, 1616–1621. [Google Scholar] [CrossRef]
- Islam, M.A.; Mobarak, M.H.; Rimon, M.I.H.; Al Mahmud, M.Z.; Ghosh, J.; Ahmed, M.M.S.; Hossain, N. Additive Manufacturing in Polymer Research: Advances, Synthesis, and Applications. Polym. Test. 2024, 132, 108364. [Google Scholar] [CrossRef]
- Nwankwo, C.O.; Mahachi, J.; Olukanni, D.O.; Musonda, I. Africa’s Natural Fibres Used in Polymer Composites: A Systematic Review. Polym. Compos. 2024, 45, 9677–9702. [Google Scholar] [CrossRef]
- Cavalcanti, D.K.K.; Banea, M.D.; Neto, J.S.S. Comparative Analysis of the Mechanical and Thermal Properties of Polyester and Epoxy Natural Fiber-Reinforced Hybrid Composites. J. Compos. Mater. 2021, 55, 1683–1692. [Google Scholar] [CrossRef]
- Kumar, S.; Prasad, L.; Bijlwan, P.P.; Yadav, A. Thermogravimetric Analysis of Lignocellulosic Leaf-Based Fiber-Reinforced Thermosets Polymer Composites: An Overview. Biomass Convers. Biorefinery 2024, 14, 12673–12698. [Google Scholar] [CrossRef]
- Haris, N.I.N.; Hassan, M.Z.; Ilyas, R.A.; Suhot, M.A.; Sapuan, S.M.; Dolah, R.; Mohammad, R.L.; Asyraf, M.R.M. Dynamic Mechanical Properties of Natural Fiber Reinforced Hybrid Polymer Composites: A Review. J. Mater. Res. Technol. 2022, 19, 167–182. [Google Scholar] [CrossRef]
- Bachchan, A.A.; Das, P.P.; Chaudhary, V. Effect of Moisture Absorption on the Properties of Natural Fiber Reinforced Polymer Composites: A Review. Mater. Today Proc. 2021, 49, 3403–3408. [Google Scholar] [CrossRef]
- Sharath, B.N.; Yashas Gowda, T.G.; Madhu, P.; Pradeep Kumar, C.B.; Jain, N.; Verma, A.; Siengchin, S. Fabrication of Raw and Chemically Treated Biodegradable Luffa aegyptica Fruit Fibre-Based Hybrid Epoxy Composite: A Mechanical and Morphological Investigation. Biomass Convers. Biorefin. 2025, 15, 8473–8486. [Google Scholar] [CrossRef]
- Muthalagu, R.; Kumar, S.S.; Pati, P.R.; Giri, J.; Sathish, T.; Fatehmulla, A. Influence of Prosopis juliflora Bark Powder/Fillers on the Mechanical, Thermal and Damping Properties of Jute Fabric Hybrid Composites. J. Mater. Res. Technol. 2024, 33, 3452–3461. [Google Scholar] [CrossRef]
- Karimah, A.; Ridho, M.R.; Munawar, S.S.; Adi, D.S.; Damayanti, R.; Subiyanto, B.; Fatriasari, W.; Fudholi, A. A review on natural fibers for development of eco-friendly bio-composite: Characteristics, and utilizations. J. Mater. Res. Technol. 2021, 13, 2442–2458. [Google Scholar] [CrossRef]
- Hossain, S.; Jalil, M.A.; Islam, T.; Rahman, M.M. A Low-Density Cellulose Rich New Natural Fiber Extracted from the Bark of Jack Tree Branches and Its Characterizations. Heliyon 2022, 8, e11667. [Google Scholar] [CrossRef]
- Prasad, V.; Alliyankal Vijayakumar, A.; Jose, T.; George, S.C. A Comprehensive Review of Sustainability in Natural-Fiber-Reinforced Polymers. Sustainability 2024, 16, 1223. [Google Scholar] [CrossRef]
- Mohammed, M.; Oleiwi, J.K.; Mohammed, A.M.; Mohamad Jawad, A.J.A.M.; Osman, A.F.; Adam, T.; Gopinath, S.C.B. A Review on the Advancement of Renewable Natural Fiber Hybrid Composites: Prospects, Challenges, and Industrial Applications. J. Renew. Mater. 2024, 12, 1237–1290. [Google Scholar] [CrossRef]
- Akter, M.; Uddin, M.H.; Anik, H.R. Plant Fiber-Reinforced Polymer Composites: A Review on Modification, Fabrication, Properties, and Applications. Polym. Bull. 2024, 81, 1–85. [Google Scholar] [CrossRef]
- Rajak, D.K.; Wagh, P.H.; Linul, E. A Review on Synthetic Fibers for Polymer Matrix Composites: Performance, Failure Modes and Applications. Materials 2022, 15, 4790. [Google Scholar] [CrossRef] [PubMed]
- Oladele, I.O.; Bichang’a, D.O.; Borisade, S.G.; Isola-Makinde, B.A.; Akinbamiyorin, I.; Githinji, D.N. Recent Advancements in the Application of Natural Fibre/Particulate Based Polymer Composites in Automotive Industry: A Review on Sustainable Development. Matér. Tech. 2024, 112, 402. [Google Scholar] [CrossRef]
- Skosana, S.J.; Khoathane, C.; Malwela, T. Driving towards Sustainability: A Review of Natural Fiber Reinforced Polymer Composites for Eco-Friendly Automotive Light-Weighting. J. Thermoplast. Compos. Mater. 2024, 38, 754–780. [Google Scholar] [CrossRef]
- Akhil, U.V.; Radhika, N.; Saleh, B.; Krsna, S.A.; Nobre, N.; Rajeshkumar, L. Uma Revisão Abrangente Sobre Compósitos Poliméricos Reforçados Uma revisão abrangente sobre compósitos poliméricos reforçados com fibra natural à base de plantas: Fabricação, propriedades e aplicações. Polím. Compós. 2023, 44, 2598–2633. [Google Scholar]
- Hindi, J.; Abdul Salam, A.A.; K, M.; Basha, G.; S, Y.; Ibrahim, A. Characterization of Novel Cellulosic Salvadora persica Fiber for Potentiality in Polymer Matrix Composites. J. Nat. Fibers 2024, 21, 2409874. [Google Scholar] [CrossRef]
- Getu, D.; Nallamothu, R.B.; Masresha, M.; Nallamothu, S.K.; Nallamothu, A.K. Production and characterization of bamboo and sisal fiber reinforced hybrid composite for interior automotive body application. Mater. Today Proc. 2021, 38, 2853–2860. [Google Scholar] [CrossRef]
- Huzaifa, M.; Zahoor, S.; Akhtar, N.; Abdullah, M.H.; Haider, S.; Khan, S.U.; Alam, K. Exploring Mechanical Properties of Eco-Friendly Hybrid Epoxy Composites Reinforced with Sisal, Hemp, and Glass Fibers. J. Mater. Res. Technol. 2024, 33, 2785–2793. [Google Scholar] [CrossRef]
- Islam, T.; Chaion, M.H.; Jalil, M.A.; Rafi, A.S.; Mushtari, F.; Dhar, A.K.; Hossain, S. Advancements and Challenges in Natural Fiber-Reinforced Hybrid Composites: A Comprehensive Review. SPE Polym. 2024, 5, 481–506. [Google Scholar] [CrossRef]
- Mylsamy, B.; Shanmugam, S.K.M.; Aruchamy, K.; Palanisamy, S.; Nagarajan, R.; Ayrilmis, N. A Review on Natural Fiber Composites: Polymer Matrices, Fiber Surface Treatments, Fabrication Methods, Properties, and Applications. Polym. Eng. Sci. 2024, 64, 2345–2373. [Google Scholar] [CrossRef]
- Soni, A.; Das, P.K.; Gupta, S.K.; Saha, A.; Rajendran, S.; Kamyab, H.; Yusuf, M. An Overview of Recent Trends and Future Prospects of Sustainable Natural Fiber-Reinforced Polymeric Composites for Tribological Applications. Ind. Crop. Prod. 2024, 222, 119501. [Google Scholar] [CrossRef]
- Oliveira, M.S.; Luz, F.S.D.; Teixeira Souza, A.; Demosthenes, L.C.D.C.; Pereira, A.C.; Braga, F.D.O.; Monteiro, S.N. Tucum Fiber from Amazon Astrocaryum vulgare Palm Tree: Novel Reinforcement for Polymer Composites. Polymers 2020, 12, 2259. [Google Scholar] [CrossRef] [PubMed]
- Marchi, B.Z.; Oliveira, M.S.; Bezerra, W.B.A.; de Sousa, T.G.; Candido, V.S.; da Silva, A.C.R.; Monteiro, S.N. Ubim Fiber (Geonoma baculífera): A Less Known Brazilian Amazon Natural Fiber for Engineering Applications. Sustainability 2022, 14, 421. [Google Scholar] [CrossRef]
- Souza, A.T.; Pereira Junio, R.F.; Neuba, L.D.M.; Candido, V.S.; da Silva, A.C.R.; de Azevedo, A.R.G.; Nascimento, L.F.C. Caranan Fiber from Mauritiella armata Palm Tree as Novel Reinforcement for Epoxy Composites. Polymers 2020, 12, 2037. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, F.V.; Pinheiro, I.F.; Mariano, M.; Cividanes, L.S.; Costa, J.C.; Nascimento, N.R.; Lona, L.M. Environmentally Friendly Polymer Composites Based on PBAT Reinforced with Natural Fibers from the Amazon Forest. Polym. Compos. 2019, 40, 3351–3360. [Google Scholar] [CrossRef]
- Islam, S.; Hasan, M.B.; Karim, F.E.; Kodrić, M.; Islam, M.R.; Khatun, M.M.; Motaleb, K.A. Thermoset and thermoplastic polymer composites reinforced with flax fiber: Properties and application—A review. SPE Polym. 2025, 6, e10172. [Google Scholar] [CrossRef]
- Helaili, S.; Chafra, M.; Chevalier, Y. Natural Fiber Alfa/Epoxy Randomly Reinforced Composite Mechanical Properties Identification. Structures 2021, 34, 542–549. [Google Scholar] [CrossRef]
- Belouadah, Z.; Rokbi, M.; Ati, A. Manufacturing and characterization of new composite based on epoxy resin and Lygeum Spartum L. Plant. J. Nat. Fibers 2022, 19, 4236–4248. [Google Scholar] [CrossRef]
- Rekha, R.; Rajesh, P.V.; Sham, I.; Sanjai, S.; Kishore, V.; Farook, S.J. Experimental Evaluation of Macroscopic Surface Characteristics of Bamboo Fibre Epoxy Polymer Matrix Composite. Mater. Today Proc. 2024, 238, 2185–2204. [Google Scholar] [CrossRef]
- Maguteeswaran, R.; Prathap, P.; Satheeshkumar, S.; Madhu, S. Effect of Alkali Treatment on Novel Natural Fiber Extracted from the Stem of Lankaran Acacia for Polymer Composite Applications. Biomass Conv. Biorefin. 2024, 14, 8091–8101. [Google Scholar] [CrossRef]
- Tasgin, Y.; Demircan, G.; Kandemir, S.; Acikgoz, A. Mechanical, wear and thermal properties of natural fiber-reinforced epoxy composite: Cotton, sisal, coir and wool fibers. J. Mater. Sci. 2024, 59, 10844–10857. [Google Scholar] [CrossRef]
- Owen, M.M.; Achukwu, E.O.; Md Akil, H. Preparation and Mechanical Characterizations of Water Hyacinth Fiber Based Thermoset Epoxy Composite. J. Nat. Fibers 2022, 19, 13970–13984. [Google Scholar] [CrossRef]
- Bavanam Nagaraja Reddy, S.; Buddha, K.; Chandra Babu Naidu, K.; Baba Basha, D. Development and Evaluation of a Polymer Composite Material Reinforced by Tectona Grandis Fiber, with Static Analysis. Polymers 2025, 17, 634. [Google Scholar] [CrossRef]
- Maciel, N.D.O.R.; Ferreira, J.B.; da Silva Vieira, J.; Ribeiro, C.G.D.; Lopes, F.P.D.; Margem, F.M.; da Silva, L.C. Comparative Tensile Strength Analysis Between Epoxy Composites Reinforced with Curaua Fiber and Glass Fiber. J. Mater. Res. Technol. 2018, 7, 561–565. [Google Scholar] [CrossRef]
- Santos, C.C.J.; Oliveira, N.H.E.; Giacon, V.M.; Manzato, L.; Silva, C.G. Study on Mechanical and Thermal Properties of Amazon Fibers on the Polymeric Biocomposites: Malva and Tucum. Fibers Polym. 2021, 22, 3203–3211. [Google Scholar] [CrossRef]
- Demosthenes, L.C.C.; Nascimento, L.F.C.; Monteiro, S.N.; Costa, U.O.; da Costa Garcia Filho, F.; da Luz, F.S.; Braga, F.O. Thermal and Structural Characterization of Buriti Fibers and Their Relevance in Fabric Reinforced Composites. J. Mater. Res. Technol. 2020, 9, 115–123. [Google Scholar] [CrossRef]
- Lima Lopes Junior, J.; Rodrigues Brabo, D.; Leandro Santos Amaral, E.; Wilson da Cruz Reis, A.; Bastos do Amarante, C.; Gilda Barroso Tavares Dias, C. Characterization of the Natural Fibers Extracted from the Aninga’s Stem and Development of a Unidirectional Polymeric Sheet. Sci. Rep. 2024, 14, 24780. [Google Scholar] [CrossRef]
- Couto, R.J.C.; Colares, A. History of Amazonian Knowledge and Political Emancipation: Handicraft in Juruti-PA. Rev. Cocar 2021, 15, 1–21. Available online: https://periodicos.uepa.br/index.php/cocar/article/view/4589 (accessed on 15 May 2025).
- Segal, L.E.A. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Text. Res. J. 1959, 29, 786–794. [Google Scholar] [CrossRef]
- Cave, I.D. X-ray Measurement of Microfibril Angle. Wood Sci. Technol. 1966, 16, 37–42. [Google Scholar]
- ASTM C1557-20; Standard Test Method for Tensile Strength and Young’s Modulus of Fibers. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM D 638-12; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM D 790-17; Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- Ferreira, D.C.D.O.N.; Ferreira, A.D.S.; Monteiro, S.N. Weibull Analysis of Tensile Tested Piassava Fibers with Different Diameters. Matéria 2018, 23, e12254. [Google Scholar] [CrossRef]
- Alcock, M.; Ahmed, S.; DuCharme, S.; Ulven, C.A. Influence of Stem Diameter on Fiber Diameter and the Mechanical Properties of Technical Flax Fibers from Linseed Flax. Fibers 2018, 6, 10. [Google Scholar] [CrossRef]
- Sadeghi, P.; Cao, Q.; Abouzeid, R.; Shayan, M.; Koo, M.; Wu, Q. Experimental and Statistical Investigations for Tensile Properties of Hemp Fibers. Fibers 2024, 12, 94. [Google Scholar] [CrossRef]
- Castro, R.G.; Amorim, F.C.; Reis, J.M.L. Effects of Fiber Length on the Performance of Piassava Reinforced Epoxy Composites. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2020, 234, 1431–1438. [Google Scholar] [CrossRef]
- Pinheiro, M.A.; Ribeiro, M.M.; Rosa, D.L.S.; Nascimento, D.D.C.B.; da Silva, A.C.R.; Dos Reis, M.A.L.; Monteiro, S.N.; Candido, V.S. Periquiteira (Cochlospermum orinocense): A Promising Amazon Fiber for Application in Composite Materials. Polymers 2023, 15, 2120. [Google Scholar] [CrossRef]
- Fonseca, A.S.; Raabe, J.; Baliza, A.E.R.; Costa, T.G.; Silva, L.E.; Vasconcelos, R.P.; Marconcini, J.M.; Savastano, H., Jr.; Mendes, L.M.; Yu, A.; et al. Main Characteristics of Underexploited Amazonian Palm Fibers for Using as Potential Reinforcing Materials. Waste Biomass Valoriz. 2019, 10, 3125–3142. [Google Scholar] [CrossRef]
- Silva, T.T.D.; Silveira, P.H.P.M.D.; Ribeiro, M.P.; Lemos, M.F.; Silva, A.P.; Monteiro, S.N.; Nascimento, L.F.C. Thermal and Chemical Characterization of Kenaf Fiber (Hibiscus cannabinus) Reinforced Epoxy Matrix Composites. Polymers 2021, 13, 2016. [Google Scholar] [CrossRef]
- Fonseca, P.L.; Garavello, M.E.D.P.E.; Baruque, R.J.; Kohan, L.; Oliveira, D.L.; Fernandes, P.R.B.; Siqueira, U.M.; Fangueiro, R. Banana Pseudostem Fibers (Musa sp.—Cultivar AAB Prata): Physicochemical Characteristics. Mater. Cir. Econ. 2022, 4, 21. [Google Scholar] [CrossRef]
- Khan, A.; Vijay, R.; Singaravelu, D.L.; Sanjay, M.R.; Siengchin, S.; Verpoort, F.; Asiri, M. Extraction and Characterization of Natural Fiber from Eleusine indica Grass as Reinforcement of Sustainable Fiber Reinforced Polymer Composites. J. Nat. Fibers 2021, 18, 1742–1750. [Google Scholar] [CrossRef]
- Reis, R.H.M.; Nunes, L.F.; Oliveira, M.S.; Veiga, V.F.; Garcia, F.F.D.C.; Pinheiro, M.A.; Candido, V.S.; Monteiro, S.N. Guaruman Fiber: Another Possible Reinforcement in Composites. J. Mater. Res. Technol. 2020, 9, 622–628. [Google Scholar] [CrossRef]
- Senthamaraikannan, P.; Kathiresan, M. Characterization of Raw and Alkali Treated New Natural Cellulosic Fiber from Coccinia grandis L. Carbohydr. Polym. 2018, 186, 332–343. [Google Scholar] [CrossRef]
- Manimaran, P.; Senthamaraikannan, P.; Sanjay, M.R.; Marichelvam, M.K.; Jawaid, M. Study on Characterization of Furcraea foetida New Natural Fiber as Composite Reinforcement for Lightweight Applications. Carbohydr. Polym. 2018, 181, 650–658. [Google Scholar] [CrossRef]
- Ravindran, D.; Padma, S.R.; Indran, S.; Divya, D. Characterization of Natural Cellulosic Fiber Extracted from Grewia damine Flowering Plant’s Stem. Int. J. Biol. Macromol. 2020, 164, 1246–1255. [Google Scholar] [CrossRef]
- Vârban, R.; Crișan, I.; Vârban, D.; Ona, A.; Olar, L.; Stoie, A.; Ștefan, R. Comparative FT-IR Prospecting for Cellulose in Stems of Some Fiber Plants: Flax, Velvet Leaf, Hemp and Jute. Appl. Sci. 2021, 11, 8570. [Google Scholar] [CrossRef]
- Eltahir, H.A.; Xu, W.; Lu, X.; Li, C.; Ren, L.; Liu, J.; Abedalwafa, M.A. Prospect and Potential of Adansonia digitata L. (Baobab) Bast Fiber in Composite Materials Reinforced with Natural Fibers. Part 1: Fiber Characterization. J. Nat. Fibers 2020, 18, 2197–2207. [Google Scholar] [CrossRef]
- Kale, R.D.; Alemayehu, T.G.; Gorade, V.G. Extraction and Characterization of Lignocellulosic Fibers from Girardinia bullosa (Steudel) Wedd. (Ethiopian Kusha Plant). J. Nat. Fibers 2018, 17, 906–920. [Google Scholar] [CrossRef]
- Sahayaraj, A.; Felix; Muthukrishnan, M.; Jenish, I. Extraction and Characterization of Sponge Gourd Outer Skin Fiber. J. Nat. Fibers 2023, 20, 219–229. [Google Scholar] [CrossRef]
- Geminiani, L.; Campione, F.P.; Corti, C.; Luraschi, M.; Motella, S.; Recchia, S.; Rampazzi, L. Differentiating between Natural and Modified Cellulosic Fibres Using ATR-FTIR Spectroscopy. Heritage 2022, 5, 4114–4139. [Google Scholar] [CrossRef]
- Yoganandam, K.; Ganeshan, P.; Nagaraja, G.B.; Raja, K. Characterization Studies on Calotropis procera Fibers and Their Performance as Reinforcements in Epoxy Matrix. J. Nat. Fibers 2019, 17, 1706–1718. [Google Scholar] [CrossRef]
- Hyness, N.R.J.; Vignesh, N.J.; Senthamaraikannan, P.; Saravanakumar, S.S.; Sanjay, M.R. Characterization of New Natural Cellulosic Fiber from Heteropogon contortus Plant. J. Nat. Fibers 2018, 15, 146–153. [Google Scholar] [CrossRef]
- Vijay, R.; Singaravelu, D.L.; Vinod, A.; Sanjay, M.R.; Siengchin, S.; Jawaid, M. Characterization of Raw and Alkali Treated New Natural Cellulosic Fibers from Tridax procumbens. Int. J. Biol. Macromol. 2019, 125, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Atangana, G.E.; Tchotang, T.; Wedaïna, A.G.; Olembe, Y.R.; Djaligue, A.; Mahondé, N. Effect of Alkaline Treatment on the Physical, Chemical, and Mechanical Properties of Coconut Palm Nucifera Rachis Fibres. J. Nat. Fibers 2025, 22, 2449439. [Google Scholar] [CrossRef]
- Jebadurai, S.G.; Raj, R.E.; Sreenjvasan, V.S.; Binoj, J.S. Comprehensive Characterization of Natural Cellulosic Fiber from Coccinia grandis Stem. Carbohydr. Polym. 2019, 207, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Maache, M.; Bezazi, A.; Amroune, S.; Scarpa, F.; Dufresne, A. Characterization of a Novel Natural Cellulosic Fiber from Juncus effusus L. Carbohydr. Polym. 2017, 171, 163–172. [Google Scholar] [CrossRef]
- Vijay, R.; Singaravelu, D.L.; Vino, A.; Raj, I.F.P.; Sanjay, M.R.; Siengchin, S. Characterization of Novel Natural Fiber from Saccharum bengalense Grass (Sarkanda). J. Nat. Fibers 2019, 17, 1739–1747. [Google Scholar] [CrossRef]
- Narayanasamy, P.; Balasundar, P.; Senthil, S.; Sanjay, M.R.; Siengchin, S.; Khan, A.; Asiri, A.M. Characterization of a Novel Natural Cellulosic Fiber from Calotropis gigantea Fruit Bunch for Ecofriendly Polymer Composites. J. Biol. Macromol. 2020, 150, 793–801. [Google Scholar] [CrossRef]
- Carranza, N.U.; Ramiro, V.G.S.; Flores, R.N.; Ahmed, A.G.H.; Luis, R.J.; Arizbe Santiago, A. Physicochemical Characterization of Natural Fibers Obtained from Seed Pods of Ceiba aesculifolia. BioResources 2021, 16, 4200–4211. [Google Scholar] [CrossRef]
- Teles, M.C.A.; Glória, G.O.; Altoé, G.R.; Amoy, N.P.; Margem, F.M.; Braga, F.O.; Monteiro, S.N. Evaluation of the Diameter Influence on the Tensile Strength of Pineapple Leaf Fibers (PALF) by Weibull Method. Mater. Res. 2015, 18, 185–192. [Google Scholar] [CrossRef]
- Barbosa, A.D.P.; Muylaert, M.F.; Monteiro, S.N.; Oliveira, C.G.; Tonini, S.N. Effect of the Fiber Equivalent Diameter on the Elastic Modulus of Eucalyptus Fibers. Mater. Sci. Forum 2016, 869, 396–401. [Google Scholar] [CrossRef]
- Neves, A.C.C.; Rohen, L.A.; Mantovani, D.P.; Carvalho, J.P.; Vieira, C.M.F.; Lopes, F.P.; Monteiro, S.N. Comparative Mechanical Properties between Biocomposites of Epoxy and Polyester Matrices Reinforced by Hemp Fiber. J. Mater. Res. Technol. 2020, 9, 1296–1304. [Google Scholar] [CrossRef]
- Gargol, M.; Klepka, T.; Klapiszewski, Ł.; Podkościelna, B. Synthesis and Thermo-Mechanical Study of Epoxy Resin-Based Composites with Waste Fibers of Hemp as an Eco-Friendly Filler. Polymers 2021, 13, 503. [Google Scholar] [CrossRef]
- Kumaar, A.S.; Senthilkumar, A.; Saravanakumar, S.S.; Senthamaraikannan, P.; Loganathan, L.; Muthu Chozha Rajan, B. Mechanical Properties of Alkali-Treated Carica papaya Fiber-Reinforced Epoxy Composites. J. Nat. Fibers 2022, 19, 269–279. [Google Scholar] [CrossRef]
- Reddy, B.M.; Reddy, P.V.; Reddy, Y.V.M.; Reddy, B.C.M.; Reddy, R.M. Mechanical, Thermal and Morphological Properties of Raw Cordia dichotoma Fiber Reinforced Epoxy Composites. Curr. Res. Green Sustain. Chem. 2022, 5, 100264. [Google Scholar] [CrossRef]
- Zhang, S.; Zheng, H.; Chang, W.; Lou, Y.; Qian, H. Microbiological Deterioration of Epoxy Coating on Carbon Steel by Pseudomonas aeruginosa. Coatings 2023, 13, 606. [Google Scholar] [CrossRef]
- Sabu, M.; Bementa, E.; Jaya Vinse Ruban, Y.; Ginil Mon, S. A Novel Analysis of the Dielectric Properties of Hybrid Epoxy Composites. Adv. Compos. Hybrid Mater. 2020, 3, 325–335. [Google Scholar] [CrossRef]
- Mamudu, U.; Dufresne, A.; Lim, R.C. Synthesis and Characterization of Phosphorylated Cellulose Nanocrystals for Enhanced UV Stability of Epoxy Nanocomposite Films. Compos. Part C Open Access 2023, 12, 100393. [Google Scholar] [CrossRef]
- Abd El-Baky, M.A.; Attia, M.A.; Abdelhaleem, M.M.; Hassan, M.A. Flax/Basalt/E-Glass Fibers Reinforced Epoxy Composites with Enhanced Mechanical Properties. J. Nat. Fibers 2022, 19, 954–968. [Google Scholar] [CrossRef]
- Khan, Z.; Yousif, B.F.; Islam, M. Fracture Behaviour of Bamboo Fiber Reinforced Epoxy Composites. Compos. Part B Eng. 2017, 116, 186–199. [Google Scholar] [CrossRef]
- Sepe, R.; Bollino, F.; Boccarusso, L.; Caputo, F. Influence of Chemical Treatments on Mechanical Properties of Hemp Fiber Reinforced Composites. Compos. Part B Eng. 2018, 133, 210–217. [Google Scholar] [CrossRef]
- Rizal, S.; Ikramullah; Gopakumar, D.A.; Thalib, S.; Huzni, S.; Abdul Khalil, H.P.S. Interfacial Compatibility Evaluation on the Fiber Treatment in the Typha Fiber Reinforced Epoxy Composites and Their Effect on the Chemical and Mechanical Properties. Polymers 2018, 10, 1316. [Google Scholar] [CrossRef]
- Kumar, S.; Prasad, L.; Patel, V.K.; Kumar, V.; Kumar, A.; Yadav, A.; Winczek, J. Physical and Mechanical Properties of Natural Leaf Fiber-Reinforced Epoxy Polyester Composites. Polymers 2021, 13, 1369. [Google Scholar] [CrossRef]
- Aruchamy, K.; Subramani, S.P.; Palaniappan, S.K.; Sethuraman, B.; Kaliyannan, G.V. Study on Mechanical Characteristics of Woven Cotton/Bamboo Hybrid Reinforced Composite Laminates. J. Mater. Res. Technol. 2020, 9, 718–726. [Google Scholar] [CrossRef]
Raw Materials | Compositions | ||||
---|---|---|---|---|---|
E0E | E10E | E20E | E30E | E40E | |
Fiber (%) | 0 | 10 | 20 | 30 | 40 |
Resin (%) | 100 | 90 | 80 | 70 | 60 |
Number of samples | 8 | 8 | 8 | 8 | 8 |
Maximum Strength (MPa) | ||||||
Source | Sum of Squares | Degrees of Freedom | Mean of Squares | F (Calculated) | p-Value | F Critical |
Between the groups | 59,770.61 | 4 | 14,942.65 | 19.661 | 8.14 × 10−12 | 2.467 |
Inside the group | 72,201.27 | 95 | 760.013 | |||
Total | 13,1971.9 | 99 | ||||
Young’s Modulus (GPa) | ||||||
Source | Sum of Squares | Degrees of Freedom | Mean of Squares | F (Calculated) | p-Value | F Critical |
Between the groups | 62.30349 | 4 | 15.57587 | 18.690 | 2.32 × 10−11 | 2.467 |
Inside the group | 79.17237 | 95 | 0.833393 | |||
Total | 141.4759 | 99 | ||||
Total Strain (mm/mm) | ||||||
Source | Sum of Squares | Degrees of Freedom | Mean of Squares | F (Calculated) | p-Value | F Critical |
Between the groups | 0.057186 | 4 | 0.014296 | 26.2243 | 3.56 × 10−14 | 2.479 |
Inside the group | 0.046338 | 85 | 0.000545 | |||
Total | 0.103524 | 89 |
Tensile Strength (m.s.d = 31.820) | Young’s Modulus (m.s.d = 1.054) | Total Strain (m.s.d = 0.027) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.22–0.39 | 0.40–0.59 | 0.60–0.79 | 0.80–0.99 | 1.00–1.20 | 0.22–0.39 | 0.40–0.59 | 0.60–0.79 | 0.80–0.99 | 1.00–1.20 | 0.22–0.39 | 0.40–0.59 | 0.60–0.79 | 0.80–0.99 | 1.00–1.20 | |
0.22–0.39 | 0 | 41.685 | 53.190 | 58.862 | 71.424 | 0 | 1.553 | 1.701 | 1.982 | 2.268 | 0 | 0.019 | 0.045 | 0.066 | 0.062 |
0.40–0.59 | 41.685 | 0 | 11.506 | 17.178 | 29.740 | 1.553 | 0 | 0.148 | 0.429 | 0.715 | 0.019 | 0 | 0.026 | 0.047 | 0.042 |
0.60–0.79 | 53.190 | 11.506 | 0 | 5.672 | 18.234 | 1.701 | 0.148 | 0 | 0.280 | 0.567 | 0.045 | 0.026 | 0 | 0.021 | 0.017 |
0.80–0.99 | 58.862 | 17.178 | 5.672 | 0 | 12.562 | 1.982 | 0.429 | 0.280 | 0 | 0.287 | 0.066 | 0.047 | 0.021 | 0 | 0.004 |
1.00–1.20 | 71.424 | 29.740 | 18.234 | 12.562 | 0 | 2.268 | 0.715 | 0.567 | 0.287 | 0 | 0.062 | 0.042 | 0.017 | 0.004 | 0 |
Maximum Strength (MPa) | ||||||
Source | Sum of Squares | Degrees of Freedom | Mean of Squares | F (Calculated) | p-Value | F Critical |
Between the groups | 1203.898 | 4 | 300.974 | 12.781 | 8.48 × 10−6 | 2.75 |
Inside the group | 588.726 | 25 | 23.549 | |||
Total | 1792.624 | 29 | ||||
Young’s Modulus (GPa) | ||||||
Source | Sum of Squares | Degrees of Freedom | Mean of Squares | F (Calculated) | p-Value | F Critical |
Between the groups | 0.157 | 4 | 0.039 | 9.018 | 1.19 × 10−4 | 2.75 |
Inside the group | 0.109 | 25 | 0.004 | |||
Total | 0.267 | 29 | ||||
Total Strain (mm/mm) | ||||||
Source | Sum of Squares | Degrees of Freedom | Mean of Squares | F (Calculated) | p-Value | F Critical |
Between the groups | 0.000328 | 4 | 8.19 × 10−5 | 3.492 | 0.021 | 2.75 |
Inside the group | 0.000587 | 25 | 235 × 10−5 | |||
Total | 0.000914 | 29 |
Maximum Strength (m.s.d = 8.222) | Young’s Modulus (m.s.d = 0.112) | Total Strain (m.s.d = 0.008) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E0E | E10E | E20E | E30E | E40E | E0E | E10E | E20E | E30E | E40E | E0E | E10E | E20E | E30E | E40E | |
E0E | 0 | 2.420 | 7.601 | 12.837 | 17.053 | 0 | 0.015 | 0.045 | 0.147 | 0.18 | 0 | 0.007 | 0.009 | 0.002 | 0.004 |
E10E | 2.420 | 0 | 5.182 | 10.417 | 14.633 | 0.015 | 0 | 0.030 | 0.132 | 0.165 | 0.007 | 0 | 0.001 | 0.006 | 0.004 |
E20E | 7.601 | 5.182 | 0 | 5.235 | 9.452 | 0.045 | 0.030 | 0 | 0.101 | 0.134 | 0.009 | 0.001 | 0 | 0.006 | 0.005 |
E30E | 12.837 | 10.417 | 5.235 | 0 | 4.217 | 0.147 | 0.132 | 0.101 | 0 | 0.033 | 0.002 | 0.006 | 0.006 | 0 | 0.001 |
E40E | 17.053 | 14.633 | 9.452 | 4.217 | 0 | 0.18 | 0.165 | 0.134 | 0.033 | 0 | 0.004 | 0.004 | 0.005 | 0.001 | 0 |
Flexural Strength (MPa) | ||||||
Source | Sum of Squares | Degrees of Freedom | Mean of Squares | F (Calculated) | p-value | F Critical |
Between the groups | 239.582 | 4 | 59.895 | 2.205 | 0.097 | 2.75 |
Inside the group | 678.893 | 25 | 27.155 | |||
Total | 918.475 | 29 | ||||
Young’s Modulus (GPa) | ||||||
Source | Sum of Squares | Degrees of Freedom | Mean of Squares | F (calculated) | p-value | F critical |
Between the groups | 1.921 | 4 | 0.480 | 17.654 | 5.3 × 10−7 | 2.75 |
Inside the group | 0.680 | 25 | 0.027 | |||
Total | 2.601 | 29 | ||||
Total Strain (mm/mm) | ||||||
Source | Sum of Squares | Degrees of Freedom | Mean of Squares | F (calculated) | p-value | F critical |
Between the groups | 0.00089 | 4 | 0.000222 | 12.741 | 8.69 × 10−6 | 2.75 |
Inside the group | 0.00043 | 25 | 1.75 × 10−5 | |||
Total | 0.00132 | 29 |
Young’s Modulus (m.s.d = 0.279) | Total Strain (m.s.d = 0.007) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
E0E | E10E | E20E | E30E | E40E | E0E | E10E | E20E | E30E | E40E | |
E0E | 0 | 0.465 | 0.468 | 0.664 | 0.719 | 0 | 0.008 | 0.012 | 0.013 | 0.015 |
E10E | 0.465 | 0 | 0.002 | 0.198 | 0.254 | 0.008 | 0 | 0.004 | 0.005 | 0.007 |
E20E | 0.468 | 0.002 | 0 | 0.196 | 0.251 | 0.012 | 0.004 | 0 | 0.001 | 0.003 |
E30E | 0.664 | 0.198 | 0.196 | 0 | 0.055 | 0.013 | 0.005 | 0.001 | 0 | 0.002 |
E40E | 0.719 | 0.254 | 0.251 | 0.055 | 0 | 0.015 | 0.007 | 0.003 | 0.002 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinheiro, M.A.; Galvao Neto, L.S.; da Silva, A.C.R.; Monteiro, S.N.; Lopes, F.P.D.; dos Reis, M.A.L.; Candido, V.S. Characterization of Envira Fibers Endemic to the Amazon Rainforest and Their Potential for Reinforcement in Polymer Composites. Polymers 2025, 17, 2284. https://doi.org/10.3390/polym17172284
Pinheiro MA, Galvao Neto LS, da Silva ACR, Monteiro SN, Lopes FPD, dos Reis MAL, Candido VS. Characterization of Envira Fibers Endemic to the Amazon Rainforest and Their Potential for Reinforcement in Polymer Composites. Polymers. 2025; 17(17):2284. https://doi.org/10.3390/polym17172284
Chicago/Turabian StylePinheiro, Miriane Alexandrino, Leoncio Soares Galvao Neto, Alisson Clay Rios da Silva, Sérgio Neves Monteiro, Felipe Perisse Duarte Lopes, Marcos Allan Leite dos Reis, and Verônica Scarpini Candido. 2025. "Characterization of Envira Fibers Endemic to the Amazon Rainforest and Their Potential for Reinforcement in Polymer Composites" Polymers 17, no. 17: 2284. https://doi.org/10.3390/polym17172284
APA StylePinheiro, M. A., Galvao Neto, L. S., da Silva, A. C. R., Monteiro, S. N., Lopes, F. P. D., dos Reis, M. A. L., & Candido, V. S. (2025). Characterization of Envira Fibers Endemic to the Amazon Rainforest and Their Potential for Reinforcement in Polymer Composites. Polymers, 17(17), 2284. https://doi.org/10.3390/polym17172284