Mechanochemical Synthesis of Advanced Materials for All-Solid-State Battery (ASSB) Applications: A Review
Abstract
1. Introduction
2. Mechanochemical Synthesis Method
2.1. Fundamental Principles of Mechanochemistry
2.2. Common Mechanochemistry Equipment, Techniques, and Process Parameters
2.2.1. Mechanical Ball Milling
2.2.2. Resonant Acoustic Mixing
2.2.3. Twin-Crew Extrusion
2.3. Mechanochemistry 2.0: Hybrid Energy-Assisted Approaches
3. Applications of Mechanochemically Synthesized Materials
4. Mechanochemical Synthesis for All-Solid-State Battery Materials
4.1. Solid-State Electrolytes (SEs)
4.1.1. Challenges Faced by Traditional Synthesis Methods
4.1.2. Mechanochemical Synthesis of Halide SEs
4.1.3. Mechanochemical Synthesis of Oxide SEs
4.1.4. Mechanochemical Synthesis of Sulfide-Based SEs
4.2. Anode Material
4.3. Cathode Material
5. Mechanochemically Induced Polymerization and Its Application in Energy Storage Materials
5.1. Mechanochemically Induced Polymerization
5.2. Mechanochemically Synthesized Polymer Materials for Energy Storage Applications
6. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Nam, Y.J.; Oh, D.Y.; Jung, S.H.; Jung, Y.S. Toward practical all-solid-state lithium-ion batteries with high energy density and safety: Comparative study for electrodes fabricated by dry- and slurry-mixing processes. J. Power Sources 2018, 375, 93–101. [Google Scholar] [CrossRef]
- Joshi, A.; Mishra, D.K.; Singh, R.; Zhang, J.; Ding, Y. A comprehensive review of solid-state batteries. Appl. Energy 2025, 386, 125546. [Google Scholar] [CrossRef]
- Yu, X.; Liu, Y.; Goodenough, J.B.; Manthiram, A. Rationally designed PEGDA–LLZTO composite electrolyte for solid-state lithium batteries. ACS Appl. Mater. Interfaces 2021, 13, 30703–30711. [Google Scholar] [CrossRef]
- Yu, X.; Manthiram, A. Electrode–electrolyte interfaces in lithium-based batteries. Energy Environ. Sci. 2018, 11, 527–543. [Google Scholar] [CrossRef]
- Zhou, L.; Zuo, T.-T.; Kwok, C.Y.; Kim, S.Y.; Assoud, A.; Zhang, Q.; Janek, J.; Nazar, L.F. High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nat. Energy 2022, 7, 83–93. [Google Scholar] [CrossRef]
- Balaish, M.; Gonzalez-Rosillo, J.C.; Kim, K.J.; Zhu, Y.; Hood, Z.D.; Rupp, J.L. Processing thin but robust electrolytes for solid-state batteries. Nat. Energy 2021, 6, 227–239. [Google Scholar] [CrossRef]
- Kokal, I.; Somer, M.; Notten, P.H.L.; Hintzen, H.T. Sol–gel synthesis and lithium ion conductivity of Li7La3Zr2O12 with garnet-related type structure. Solid. State Ion. 2011, 185, 42–46. [Google Scholar] [CrossRef]
- He, S.; Xu, Y. Hydrothermal-assisted solid-state reaction synthesis of high ionic conductivity Li1+xAlxTi2−x(PO4)3 ceramic solid electrolytes: The effect of Al3+ doping content. Solid. State Ion. 2019, 343, 115078. [Google Scholar] [CrossRef]
- Duan, H.; Meng, D.; Yuan, S. Solution Combustion Synthesis of High-Performance Nano-LiFePO4/C Cathode Material from Cost-Effective Mixed Fuels. Materials 2023, 16, 7155. [Google Scholar] [CrossRef]
- Liu, M.; Song, A.; Zhang, X.; Wang, J.; Fan, Y.; Wang, G.; Tian, H.; Ma, Z.; Shao, G. Interfacial lithium-ion transportation in solid-state batteries: Challenges and prospects. Nano Energy 2025, 136, 110749. [Google Scholar] [CrossRef]
- Schlem, R.; Burmeister, C.F.; Michalowski, P.; Ohno, S.; Dewald, G.F.; Kwade, A.; Zeier, W.G. Energy Storage Materials for Solid-State Batteries: Design by Mechanochemistry. Adv. Energy Mater. 2021, 11, 2101022. [Google Scholar] [CrossRef]
- Dong, L.; Li, L.; Chen, H.; Cao, Y.; Lei, H. Mechanochemistry: Fundamental Principles and Applications. Adv. Sci. 2024, 11, e2403949. [Google Scholar] [CrossRef]
- Tsuzuki, T. Mechanochemical synthesis of metal oxide nanoparticles. Commun. Chem. 2021, 4, 143. [Google Scholar] [CrossRef]
- Yan, P.; Zhao, W.; McBride, F.; Cai, D.; Dale, J.; Hanna, V.; Hasell, T. Mechanochemical synthesis of inverse vulcanized polymers. Nat. Commun. 2022, 13, 4824. [Google Scholar] [CrossRef]
- Laidler, K.J. The development of the Arrhenius equation. J. Chem. Educ. 1984, 61, 494. [Google Scholar] [CrossRef]
- Bhuiyan, F.H.; Li, Y.S.; Kim, S.H.; Martini, A. Shear-activation of mechanochemical reactions through molecular deformation. Sci. Rep. 2024, 14, 2992. [Google Scholar] [CrossRef]
- Schmidt, W.; Losch, P.; Petersen, H.; Etter, M.; Baum, F.; Ternieden, J.; Weidenthaler, C. Pressure as the driving force for mechanochemical reactions on the example of ion metathesis of alkali halides upon ball milling. RSC Mechanochem. 2025, 2, 273–284. [Google Scholar] [CrossRef]
- Jafter, O.F.; Lee, S.; Park, J.; Cabanetos, C.; Lungerich, D. Navigating Ball Mill Specifications for Theory-to-Practice Reproducibility in Mechanochemistry. Angew. Chem. Int. Ed. Engl. 2024, 63, e202409731. [Google Scholar] [CrossRef]
- Bian, X.; Wang, G.; Wang, H.; Wang, S.; Lv, W. Effect of lifters and mill speed on particle behaviour, torque, and power consumption of a tumbling ball mill: Experimental study and DEM simulation. Miner. Eng. 2017, 105, 22–35. [Google Scholar] [CrossRef]
- Schwanninger, M.; Rodrigues, J.C.; Pereira, H.; Hinterstoisser, B. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib. Spectrosc. 2004, 36, 23–40. [Google Scholar] [CrossRef]
- Hagedorn, M.; Liebich, L.; Bogershausen, A.; Massing, U.; Hoffmann, S.; Mende, S.; Rischer, M. Rapid development of API nano-formulations from screening to production combining dual centrifugation and wet agitator bead milling. Int. J. Pharm. 2019, 565, 187–198. [Google Scholar] [CrossRef]
- Nicholson, W.I.; Barreteau, F.; Leitch, J.A.; Payne, R.; Priestley, I.; Godineau, E.; Battilocchio, C.; Browne, D.L. Direct Amidation of Esters by Ball Milling. Angew. Chem. Int. Ed. Engl. 2021, 60, 21868–21874. [Google Scholar] [CrossRef]
- Yntema, F.; Webster, C.; Broumidis, E. A new planetary ball mill device with adjustable speed ratio for enhanced mechanochemical processes. RSC Mechanochem. 2025, 2, 20–24. [Google Scholar] [CrossRef]
- Gonnet, L.; Lennox, C.B.; Do, J.L.; Malvestiti, I.; Koenig, S.G.; Nagapudi, K.; Friscic, T. Metal-Catalyzed Organic Reactions by Resonant Acoustic Mixing. Angew. Chem. Int. Ed. Engl. 2022, 61, e202115030. [Google Scholar] [CrossRef]
- Solares-Briones, M.; Coyote-Dotor, G.; Paez-Franco, J.C.; Zermeno-Ortega, M.R.; de la, O.C.C.M.; Canseco-Gonzalez, D.; Avila-Sorrosa, A.; Morales-Morales, D.; German-Acacio, J.M. Mechanochemistry: A Green Approach in the Preparation of Pharmaceutical Cocrystals. Pharmaceutics 2021, 13, 790. [Google Scholar] [CrossRef]
- Sezer, H.; Werner, D.; Sykes, J.A.; Bazin, N.; Bolton, P.; Windows-Yule, C.R.K. Exploring the internal dynamics of resonant acoustic mixing using positron emission particle tracking. Chem. Eng. Sci. 2025, 306, 121166. [Google Scholar] [CrossRef]
- Bolt, R.R.A.; Leitch, J.A.; Jones, A.C.; Nicholson, W.I.; Browne, D.L. Continuous flow mechanochemistry: Reactive extrusion as an enabling technology in organic synthesis. Chem. Soc. Rev. 2022, 51, 4243–4260. [Google Scholar] [CrossRef]
- Gomollón-Bel, F. Ten Chemical Innovations That Will Change Our World: IUPAC identifies emerging technologies in Chemistry with potential to make our planet more sustainable. Chem. Int. 2019, 41, 12–17. [Google Scholar] [CrossRef]
- Martinez, V.; Stolar, T.; Karadeniz, B.; Brekalo, I.; Uzarevic, K. Advancing mechanochemical synthesis by combining milling with different energy sources. Nat. Rev. Chem. 2023, 7, 51–65. [Google Scholar] [CrossRef]
- Seo, T.; Ishiyama, T.; Kubota, K.; Ito, H. Solid-state Suzuki–Miyaura cross-coupling reactions: Olefin-accelerated C–C coupling using mechanochemistry. Chem. Sci. 2019, 10, 8202–8210. [Google Scholar] [CrossRef]
- Tao, C.-A.; Wang, J.-F. Synthesis of Metal Organic Frameworks by Ball-Milling. Crystals 2020, 11, 15. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Z.; Ng, M.; Milner, P.J. Rapid mechanochemical synthesis of metal-organic frameworks using exogenous organic base. Dalton Trans. 2020, 49, 16238–16244. [Google Scholar] [CrossRef]
- Karadeniz, B.; Zilic, D.; Huskic, I.; Germann, L.S.; Fidelli, A.M.; Muratovic, S.; Loncaric, I.; Etter, M.; Dinnebier, R.E.; Barisic, D.; et al. Controlling the Polymorphism and Topology Transformation in Porphyrinic Zirconium Metal-Organic Frameworks via Mechanochemistry. J. Am. Chem. Soc. 2019, 141, 19214–19220. [Google Scholar] [CrossRef] [PubMed]
- Hofer, M.; Grube, M.; Burmeister, C.F.; Michalowski, P.; Zellmer, S.; Kwade, A. Effective mechanochemical synthesis of sulfide solid electrolyte Li3PS4 in a high energy ball mill by process investigation. Adv. Powder Technol. 2023, 34, 104004. [Google Scholar] [CrossRef]
- Xue, B.; Fan, B.; Li, B.; Chen, L.; Wang, F.; Luo, Z.; Zhang, X.; Ma, H. Solvent-assisted ball milling for synthesizing solid electrolyte Li7P3S11. J. Am. Ceram. Soc. 2018, 102, 3402–3410. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, D.; Bowden, M.; El Khoury, P.Z.; Han, K.S.; Deng, Z.D.; Xiao, J.; Zhang, J.-G.; Liu, J. Mechanism of Formation of Li7P3S11 Solid Electrolytes through Liquid Phase Synthesis. Chem. Mater. 2018, 30, 990–997. [Google Scholar] [CrossRef]
- Shen, X.; Zhou, Q.; Han, M.; Qi, X.; Li, B.; Zhang, Q.; Zhao, J.; Yang, C.; Liu, H.; Hu, Y.-S. Rapid mechanochemical synthesis of polyanionic cathode with improved electrochemical performance for Na-ion batteries. Nat. Commun. 2021, 12, 2848. [Google Scholar] [CrossRef]
- Mohanty, D.; Wu, Z.-Y.; Kuan, W.-F.; Hung, I.M. Solid-state composite electrolytes with LATP/TiO2 ceramic fillers for secondary lithium batteries. Ceram. Int. 2025, 51, 22831–22840. [Google Scholar] [CrossRef]
- Sun, H.; Kang, S.; Cui, L. Prospects of LLZO type solid electrolyte: From material design to battery application. Chem. Eng. J. 2023, 454, 140375. [Google Scholar] [CrossRef]
- Reddy, M.V.; Julien, C.M.; Mauger, A.; Zaghib, K. Sulfide and Oxide Inorganic Solid Electrolytes for All-Solid-State Li Batteries: A Review. Nanomaterials 2020, 10, 1606. [Google Scholar] [CrossRef]
- Li, X.; Liang, J.; Luo, J.; Norouzi Banis, M.; Wang, C.; Li, W.; Deng, S.; Yu, C.; Zhao, F.; Hu, Y.; et al. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries. Energy Environ. Sci. 2019, 12, 2665–2671. [Google Scholar] [CrossRef]
- Ren, Z.; Mei, P.; Wang, C.; Chen, D.; Zhang, L.; Zhang, W.; Wang, Z.; Zhang, Z. Mechanochemical Reversible Complexation Mediated Polymerization Enabled Synthesis of Fluorinated Polyacrylate Copolymers for Room Temperature Solid-State Lithium Batteries. Macromolecules 2025, 58, 3199–3207. [Google Scholar] [CrossRef]
- Zhang, P.; Li, R.; Huang, J.; Liu, B.; Zhou, M.; Wen, B.; Xia, Y.; Okada, S. Flexible poly(vinylidene fluoride-co-hexafluoropropylene)-based gel polymer electrolyte for high-performance lithium-ion batteries. RSC Adv. 2021, 11, 11943–11951. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hu, R.; Zhou, H.; Tao, S.; Wang, Y. Nano-SiO2@PMMA-doped composite polymer PVDF-HFP/PMMA/PEO electrolyte for lithium metal batteries. J. Mater. Sci. Mater. Electron. 2020, 31, 2708–2719. [Google Scholar] [CrossRef]
- Jiang, B.; Liu, Z.; Chen, H.; Zhang, Y.; Tsukruk, V.V.; Hu, J.; Qiang, Z.; Nafisa, M.T.; Klein, B.; Joshi, T. Ceramic-in-Polymer Composite Solid Electrolyte Enabled by Metal–Sulfur Interactions with Enhanced Li-Ion Conductivity. ACS Appl. Energy Mater. 2025, 8, 11884–11895. [Google Scholar] [CrossRef]
- Angulakshmi, N.; Yoo, D.J.; Nahm, K.S.; Gerbaldi, C.; Stephan, A.M. MgAl2SiO6-incorporated poly(ethylene oxide)-based electrolytes for all-solid-state lithium batteries. Ionics 2013, 20, 151–156. [Google Scholar] [CrossRef]
- Sathya, S.; Soosaimanickam, C.; Bella, F.; Yoo, D.J.; Stephan, A.M. Cycling performance of SiOx-Si-C composite anode with different blend ratios of PAA-CMC as binder for lithium sulfur batteries. J. Polym. Res. 2024, 31, 205. [Google Scholar] [CrossRef]
- Banik, A.; Famprikis, T.; Ghidiu, M.; Ohno, S.; Kraft, M.A.; Zeier, W.G. On the underestimated influence of synthetic conditions in solid ionic conductors. Chem. Sci. 2021, 12, 6238–6263. [Google Scholar] [CrossRef]
- Warren, Z.; Seghers, M.; Boissière, P.; Aparicio, M.; Rosero-Navarro, N.C. Effect of Temperature during Open Vessel Sintering on Li6PS5Cl Solid-State Electrolyte Powders for Use in Cathode Composite Electrodes. ACS Electrochem. 2025, 1, 1093–1100. [Google Scholar] [CrossRef]
- Yubuchi, S.; Uematsu, M.; Hotehama, C.; Sakuda, A.; Hayashi, A.; Tatsumisago, M. Argyrodite sulfide-based superionic conductor synthesized by liquid-phase technique with tetrahydrofuran and ethanol. J. Mater. Chem. A 2019, 7, 558–566. [Google Scholar] [CrossRef]
- Luo, X.; Zhong, Y.; Wang, X.; Xia, X.; Gu, C.; Tu, J. Ionic Conductivity Enhancement of Li2ZrCl6 Halide Electrolytes via Mechanochemical Synthesis for All-Solid-State Lithium-Metal Batteries. ACS Appl. Mater. Interfaces 2022, 14, 49839–49846. [Google Scholar] [CrossRef] [PubMed]
- Lutz, H.; Steiner, H.-J. Phase diagrams of the systems Li2ZnCl4-Na2ZnCl4 Li2ZnCl4 Li2MnCl4. The spinel—Olivine phase transition of Li2ZnCl4. Thermochim. Acta 1992, 211, 189–197. [Google Scholar] [CrossRef]
- Solinas, I.; Lutz, H. Nonceramic Preparation Techniques for Ternary Halides AB2X4 with A = Mg, Mn, Zn; B = Li, Na; X = Cl, Br. J. Solid. State Chem. 1995, 117, 34–38. [Google Scholar] [CrossRef]
- Tao, B.; Zhong, D.; Li, H.; Wang, G.; Chang, H. Halide solid-state electrolytes for all-solid-state batteries: Structural design, synthesis, environmental stability, interface optimization and challenges. Chem. Sci. 2023, 14, 8693–8722. [Google Scholar] [CrossRef]
- Schlem, R.; Muy, S.; Prinz, N.; Banik, A.; Shao-Horn, Y.; Zobel, M.; Zeier, W.G. Mechanochemical Synthesis: A Tool to Tune Cation Site Disorder and Ionic Transport Properties of Li3MCl6 (M = Y, Er) Superionic Conductors. Adv. Energy Mater. 2019, 10, 1903719. [Google Scholar] [CrossRef]
- Kwak, H.; Han, D.; Lyoo, J.; Park, J.; Jung, S.H.; Han, Y.; Kwon, G.; Kim, H.; Hong, S.T.; Nam, K.W.; et al. New Cost-Effective Halide Solid Electrolytes for All-Solid-State Batteries: Mechanochemically Prepared Fe3+-Substituted Li2ZrCl6. Adv. Energy Mater. 2021, 11, 2003190. [Google Scholar] [CrossRef]
- Sebti, E.; Evans, H.A.; Chen, H.; Richardson, P.M.; White, K.M.; Giovine, R.; Koirala, K.P.; Xu, Y.; Gonzalez-Correa, E.; Wang, C.; et al. Stacking Faults Assist Lithium-Ion Conduction in a Halide-Based Superionic Conductor. J. Am. Chem. Soc. 2022, 144, 5795–5811. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, Y.; Gao, H.; Huang, J.; Li, C.; Liu, P. An all-solid-state lithium battery using the Li7La3Zr2O12 and Li6.7La3Zr1.7Ta0.3O12 ceramic enhanced polyethylene oxide electrolytes with superior electrochemical performance. Ceram. Int. 2020, 46, 11397–11405. [Google Scholar] [CrossRef]
- Liu, J.; Gao, X.; Hartley, G.O.; Rees, G.J.; Gong, C.; Richter, F.H.; Janek, J.; Xia, Y.; Robertson, A.W.; Johnson, L.R. The interface between Li6.5LZr1.5Ta0.5O12 and liquid electrolyte. Joule 2020, 4, 101–108. [Google Scholar] [CrossRef]
- Dashjav, E.; Gellert, M.; Yan, G.; Grüner, D.; Kaiser, N.; Spannenberger, S.; Kraleva, I.; Bermejo, R.; Gerhards, M.-T.; Ma, Q. Microstructure, ionic conductivity and mechanical properties of tape-cast Li1.5Al0.5Ti1.5P3O12 electrolyte sheets. J. Eur. Ceram. Soc. 2020, 40, 1975–1982. [Google Scholar] [CrossRef]
- Curcio, A.; Sabato, A.G.; Nuñez Eroles, M.; Gonzalez-Rosillo, J.C.; Morata, A.; Tarancón, A.; Ciucci, F. Ultrafast Crystallization and Sintering of Li1.5Al0.5Ge1.5(PO4)3 Glass and Its Impact on Ion Conduction. ACS Appl. Energy Mater. 2022, 5, 14466–14475. [Google Scholar] [CrossRef]
- Zhao, G.; Suzuki, K.; Yonemura, M.; Hirayama, M.; Kanno, R. Enhancing Fast Lithium Ion Conduction in Li4GeO4–Li3PO4 Solid Electrolytes. ACS Appl. Energy Mater. 2019, 2, 6608–6615. [Google Scholar] [CrossRef]
- Oeza, B.R.; Hapsari, A.U.; Raharjo, J.; Damisih; Pravitasari, R.D.; Deni, Y.; Agustanhakri; Widyastuti; Noerochim, L.; Suyanti; et al. Impact of diverse material precursors on microstructure and ionic conductivity Li0.33La0.56TiO3 solid-state electrolyte properties. J. Alloys Compd. 2024, 1006, 176169. [Google Scholar] [CrossRef]
- Kwon, G.; Gwon, H.; Bae, Y.; Jung, C.; Ko, D.-S.; Kim, M.G.; Yoon, K.; Yoon, G.; Kim, S.; Jung, I.-S. Disorder-driven sintering-free garnet-type solid electrolytes. Nat. Commun. 2025, 16, 3256. [Google Scholar] [CrossRef]
- Oleszak, D.; Pawlyta, M.; Pikula, T. Influence of Powder Milling and Annealing Parameters on the Formation of Cubic Li7La3Zr2O12 Compound. Materials 2021, 14, 7633. [Google Scholar] [CrossRef]
- Kozawa, T. Combined wet milling and heat treatment in water vapor for producing amorphous to crystalline ultrafine Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte particles. RSC Adv. 2021, 11, 14796–14804. [Google Scholar] [CrossRef]
- Randrema, X.; Barcha, C.; Chakir, M.; Viallet, V.; Morcrette, M. A detailed characterisation study of Li6PS5Cl ionic conductors from several synthetic routes. Solid. State Sci. 2021, 118, 106681. [Google Scholar] [CrossRef]
- Lee, J.M.; Park, Y.S.; Moon, J.W.; Hwang, H. Ionic and Electronic Conductivities of Lithium Argyrodite Li6PS5Cl Electrolytes Prepared via Wet Milling and Post-Annealing. Front. Chem. 2021, 9, 778057. [Google Scholar] [CrossRef]
- Zhu, Y.; Connell, J.G.; Tepavcevic, S.; Zapol, P.; Garcia-Mendez, R.; Taylor, N.J.; Sakamoto, J.; Ingram, B.J.; Curtiss, L.A.; Freeland, J.W.; et al. Dopant-Dependent Stability of Garnet Solid Electrolyte Interfaces with Lithium Metal. Adv. Energy Mater. 2019, 9, 1803440. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, L.; Zhang, Z.; Li, P.; Wang, H.; Yu, C.; Yan, X.; Wang, L.; Xu, B. Argyrodite Solid Electrolyte with a Stable Interface and Superior Dendrite Suppression Capability Realized by ZnO Co-Doping. ACS Appl. Mater. Interfaces 2019, 11, 40808–40816. [Google Scholar] [CrossRef]
- Park, S.H.; Hwang, Y.Y.; Park, I.; Park, H.B.; Lee, Y.J. Mechano-chemical solution process for Li3PS4 solid electrolyte using dibromomethane for enhanced conductivity and cyclability in all-solid-state batteries. Energy Storage Mater. 2023, 63, 102985. [Google Scholar] [CrossRef]
- Hikima, K.; Phuc, N.H.H.; Tsukasaki, H.; Mori, S.; Muto, H.; Matsuda, A. High ionic conductivity of multivalent cation doped Li6PS5Cl solid electrolytes synthesized by mechanical milling. RSC Adv. 2020, 10, 22304–22310. [Google Scholar] [CrossRef]
- Lu, X.; Windmuller, A.; Schmidt, D.; Schoner, S.; Tsai, C.L.; Kungl, H.; Liao, X.; Chen, Y.; Yu, S.; Tempel, H.; et al. Li-Ion Conductivity of Single-Step Synthesized Glassy-Ceramic Li10GeP2S12 and Post-heated Highly Crystalline Li10GeP2S12. ACS Appl. Mater. Interfaces 2023, 15, 34973–34982. [Google Scholar] [CrossRef] [PubMed]
- Kanazawa, K.; Yubuchi, S.; Hotehama, C.; Otoyama, M.; Shimono, S.; Ishibashi, H.; Kubota, Y.; Sakuda, A.; Hayashi, A.; Tatsumisago, M. Mechanochemical Synthesis and Characterization of Metastable Hexagonal Li4SnS4 Solid Electrolyte. Inorg. Chem. 2018, 57, 9925–9930. [Google Scholar] [CrossRef]
- Jetybayeva, A.; Aaron, D.S.; Belharouak, I.; Mench, M.M. Critical review on recently developed lithium and non-lithium anode-based solid-state lithium-ion batteries. J. Power Sources 2023, 566, 232914. [Google Scholar] [CrossRef]
- Miyazaki, R.; Hihara, T. Charge-discharge performances of Sn powder as a high capacity anode for all-solid-state lithium batteries. J. Power Sources 2019, 427, 15–20. [Google Scholar] [CrossRef]
- Han, X.; Zhou, W.; Chen, M.; Chen, J.; Wang, G.; Liu, B.; Luo, L.; Chen, S.; Zhang, Q.; Shi, S.; et al. Interfacial nitrogen engineering of robust silicon/MXene anode toward high energy solid-state lithium-ion batteries. J. Energy Chem. 2022, 67, 727–735. [Google Scholar] [CrossRef]
- Usui, H.; Domi, Y.; Izaki, S.-i.; Nasu, A.; Sakuda, A.; Hayashi, A.; Sakaguchi, H. Room-Temperature Preparation of All-Solid-State Lithium Batteries Using TiO2 Anodes and Oxide Electrolytes. J. Phys. Chem. C 2022, 126, 10320–10326. [Google Scholar] [CrossRef]
- Pan, J.; Peng, H.; Yan, Y.; Bai, Y.; Yang, J.; Wang, N.; Dou, S.; Huang, F. Solid-state batteries designed with high ion conductive composite polymer electrolyte and silicon anode. Energy Storage Mater. 2021, 43, 165–171. [Google Scholar] [CrossRef]
- Sugiawati, V.A.; Vacandio, F.; Djenizian, T. All-Solid-State Lithium Ion Batteries Using Self-Organized TiO2 Nanotubes Grown from Ti-6Al-4V Alloy. Molecules 2020, 25, 2121. [Google Scholar] [CrossRef]
- Lee, K.; Yoon, S.; Hong, S.; Kim, H.; Oh, K.; Moon, J. Al2O3-Coated Si-Alloy Prepared by Atomic Layer Deposition as Anodes for Lithium-Ion Batteries. Materials 2022, 15, 4189. [Google Scholar] [CrossRef] [PubMed]
- Du, F.-H.; Wang, K.-X.; Chen, J.-S. Strategies to succeed in improving the lithium-ion storage properties of silicon nanomaterials. J. Mater. Chem. A 2016, 4, 32–50. [Google Scholar] [CrossRef]
- Liu, B.; Huang, P.; Xie, Z.; Huang, Q. Large-scale production of a silicon nanowire/graphite composites anode via the CVD method for high-performance lithium-ion batteries. Energy Fuels 2021, 35, 2758–2765. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Huang, S.; Liu, L.; Wang, Y.; Jin, J.; Kong, D.; Zhang, L.; Schmidt, O.G. PVD customized 2D porous amorphous silicon nanoflakes percolated with carbon nanotubes for high areal capacity lithium ion batteries. J. Mater. Chem. A 2020, 8, 4836–4843. [Google Scholar] [CrossRef]
- Koraag, P.Y.E.; Firdaus, A.M.; Hawari, N.H.; Refino, A.D.; Dempwolf, W.; Iskandar, F.; Peiner, E.; Wasisto, H.S.; Sumboja, A. Covalently Bonded Ball-Milled Silicon/CNT Nanocomposite as Lithium-Ion Battery Anode Material. Batteries 2022, 8, 165. [Google Scholar] [CrossRef]
- Nagata, H.; Kataoka, K. Influence of mechanochemical reactions between Si and solid electrolytes in the negative electrode on the performance of all-solid-state lithium-ion batteries. J. Power Sources 2024, 623, 235443. [Google Scholar] [CrossRef]
- Minnmann, P.; Strauss, F.; Bielefeld, A.; Ruess, R.; Adelhelm, P.; Burkhardt, S.; Dreyer, S.L.; Trevisanello, E.; Ehrenberg, H.; Brezesinski, T.; et al. Designing Cathodes and Cathode Active Materials for Solid-State Batteries. Adv. Energy Mater. 2022, 12, 2201425. [Google Scholar] [CrossRef]
- Nie, K.; Wang, X.; Qiu, J.; Wang, Y.; Yang, Q.; Xu, J.; Yu, X.; Li, H.; Huang, X.; Chen, L. Increasing Poly(ethylene oxide) Stability to 4.5 V by Surface Coating of the Cathode. ACS Energy Lett. 2020, 5, 826–832. [Google Scholar] [CrossRef]
- Mohamed, M.A.A.; Saadallah, H.A.A.; Gonzalez-Martinez, I.G.; Hantusch, M.; Valldor, M.; Büchner, B.; Hampel, S.; Gräßler, N. Mechanochemical synthesis of Li-rich (Li2Fe)SO cathode for Li-ion batteries. Green. Chem. 2023, 25, 3878–3887. [Google Scholar] [CrossRef]
- Chakma, P.; Zeitler, S.M.; Baum, F.; Yu, J.; Shindy, W.; Pozzo, L.D.; Golder, M.R. Mechanoredox Catalysis Enables a Sustainable and Versatile Reversible Addition-Fragmentation Chain Transfer Polymerization Process. Angew. Chem. Int. Ed. Engl. 2023, 62, e202215733. [Google Scholar] [CrossRef]
- Nothling, M.D.; Daniels, J.E.; Vo, Y.; Johan, I.; Stenzel, M.H. Mechanically Activated Solid-State Radical Polymerization and Cross-Linking via Piezocatalysis. Angew. Chem. Int. Ed. Engl. 2023, 62, e202218955. [Google Scholar] [CrossRef] [PubMed]
- Krusenbaum, A.; Gratz, S.; Tigineh, G.T.; Borchardt, L.; Kim, J.G. The mechanochemical synthesis of polymers. Chem. Soc. Rev. 2022, 51, 2873–2905. [Google Scholar] [CrossRef] [PubMed]
- Oprea, C.V.; Popa, M. Mechanochemically synthesized polymers with special properties. Polym.-Plast. Technol. Eng. 1989, 28, 1025–1058. [Google Scholar] [CrossRef]
- Simionescu, C.I.; Oprea, C.V.; Nicoleanu, J. Mechanochemically initiated polymerizations—5. Polymerization by vibratory milling of acrylamide and methacrylamide. Eur. Polym. J. 1983, 19, 525–528. [Google Scholar] [CrossRef]
- Diercks, C.S.; Yaghi, O.M. The atom, the molecule, and the covalent organic framework. Science 2017, 355, eaal1585. [Google Scholar] [CrossRef]
- Lv, H.; Zhao, X.; Niu, H.; He, S.; Tang, Z.; Wu, F.; Giesy, J.P. Ball milling synthesis of covalent organic framework as a highly active photocatalyst for degradation of organic contaminants. J. Hazard. Mater. 2019, 369, 494–502. [Google Scholar] [CrossRef]
- Kato, A.; Yamamoto, M.; Utsuno, F.; Higuchi, H.; Takahashi, M. Lithium-ion-conductive sulfide polymer electrolyte with disulfide bond-linked PS4 tetrahedra for all-solid-state batteries. Commun. Mater. 2021, 2, 112. [Google Scholar] [CrossRef]
- Yuan, H.; Lin, W.; Tian, C.; Huang, T.; Yu, A. In-situ coating strategy to synthesize ultra-soft sulfide solid-state electrolytes for dendrite-free lithium metal batteries. Nano Energy 2024, 128, 109835. [Google Scholar] [CrossRef]
Ball Mill Type | Ball Movement Mechanism | Cooling Feasibility | Scalability | Acceleration Level | Collision Frequency | Stressing Energy |
---|---|---|---|---|---|---|
Tumbling Mill | Drum rotation | ✖ Very limited | ★★★★☆ | ~1× g | Low | ★★★☆☆ |
Planetary Mill | Rotation in centrifugal field | ✖ Very poor | ★☆☆☆☆ | <150× g | Moderate | ★★★★☆ |
Vibratory Mill | High-frequency vibration | △ Moderate | ★★☆☆☆ | <30× g | High | ★★★☆☆ |
Agitator Mill | Rotating stirrer in fixed vessel | ✔ Excellent | ★★★★☆ | Several 100× g | Very High | ★★★☆☆ |
No. | Type | Electrolyte Composition | Synthesis Method | Li+ Conductivity (S/cm) | Testing Temp. (°C) | Key Features/Notes | Ref. |
---|---|---|---|---|---|---|---|
1 | Halide type | Li3ErCl6 | Ampoule synthesis | 1.7 × 10−5 | RT | High Er site disorder enhances ionic conductivity | [55] |
Ball milled | 3.1 × 10−4 | RT | |||||
2 | Halide type | Li2ZrCl6 | Ball milled and annealed | 4.46 × 10−4 | RT | Mild heat treatment (100 °C) can largely enhance ionic conductivity | [51] |
3 | Halide type | Li2.25Zr0.75Fe0.25Cl6 | Ball milled and heat-treated | 1 × 10−3 | 35 °C | The heterovalent ion substitution of Li2ZrCl6 with Fe3+ enhances Li+ conductivity | [56] |
4 | Halide type | Li3YCl6 | Ball milled | 4.9 × 10−4 | 25 °C | Stacking faults enhance lithium-ion conduction in Li3YCl6 by creating favorable pathways | [57] |
Solid-state synthesized | 6.7 × 10−5 | 25 °C | |||||
5 | Oxide garnet type | Li6.5La3Zr1.5Ta0.5O12 (LLZTO) | Ball milled, pelletized, and heat-treated | 3.5 × 10−4 | 25 °C | Sintering-free, cubic phase at 500 °C, high density | [64] |
6 | Oxide NASICON type | Li1.3Al0.3Ti1.7(PO4)3 (LATP) | Wet ball milled and heat-treated in water vapor | 3.5 × 10−4 | 25 °C | Crystallization from amorphous achieved at 350 °C in water vapor | [66] |
7 | Sulfide-Based type | Li6PS5Cl (LPSC) | Ball milled | 3.5 × 10−4 | 20 °C | Synthesis route affects phase purity, densification, and Li+ transport; Ampcera yields optimal microstructure | [67] |
Ball milled and annealed | 6.0 × 10−4 | 20 °C | |||||
Li6PS5Cl purchased from Ampcera | 1.1 × 10−3 | 20 °C | |||||
Li6PS5Cl purchased from NEI | 9.6 × 10−4 | 20 °C | |||||
8 | Sulfide-Based type | Br-doped Li3PS4 (LPS) | Ball milled with DBM | 1.3 × 10−3 | 30 °C | Use of (DBM) as Br-source and solvent in a ball-milling process | [71] |
9 | Sulfide-Based type | 0.98Li6PS5Cl–0.02YCl3 | Ball milled | 1.3 × 10−2 | 50 °C | Multivalent cation doping greatly boosted ionic conductivity above 50 °C | [72] |
10 | Sulfide-Based type | Li3PS4 (LPS) | Ball milled | 3 × 10−4 | RT | Maximum grinding efficiency with lowest specific energy consumption was achieved using large media, high speed, and moderate filling ratio | [34] |
11 | Phospho sulfide | Li10GeP2S12 | Ball milled | 1.07 × 10−3 | RT | A one-step method for synthesizing glassy-ceramic Li10GeP2S12 using high-energy ball milling was developed | [73] |
Heat-treated after ball milling | 3.27 × 10−3 | RT | |||||
12 | Sulfide-Based type | Li4SnS4 | Heat-treated after ball milling | 1.1 × 10−4 | RT | Crystalline Li4SnS4 with orthorhombic symmetry was obtained through mechanochemical synthesis and post-annealing | [74] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiang, Z.; Hu, J.; Jiang, B. Mechanochemical Synthesis of Advanced Materials for All-Solid-State Battery (ASSB) Applications: A Review. Polymers 2025, 17, 2340. https://doi.org/10.3390/polym17172340
Qiang Z, Hu J, Jiang B. Mechanochemical Synthesis of Advanced Materials for All-Solid-State Battery (ASSB) Applications: A Review. Polymers. 2025; 17(17):2340. https://doi.org/10.3390/polym17172340
Chicago/Turabian StyleQiang, Zhiming, Junjun Hu, and Beibei Jiang. 2025. "Mechanochemical Synthesis of Advanced Materials for All-Solid-State Battery (ASSB) Applications: A Review" Polymers 17, no. 17: 2340. https://doi.org/10.3390/polym17172340
APA StyleQiang, Z., Hu, J., & Jiang, B. (2025). Mechanochemical Synthesis of Advanced Materials for All-Solid-State Battery (ASSB) Applications: A Review. Polymers, 17(17), 2340. https://doi.org/10.3390/polym17172340