Innovative Fluorinated Polyimides with Superior Thermal, Mechanical, and Dielectric Properties for Advanced Soft Electronics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simulation
2.1.1. Model Establishment
2.1.2. Mechanical Property Simulation
2.1.3. Polarizability
2.2. Experiment
2.2.1. Chemicals and Materials
2.2.2. Preparation of TPIn
2.3. Characterization and Measurement
3. Results and Discussion
3.1. Structure
3.2. Thermal Properties
3.3. Mechanical Properties
3.4. Dielectric Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, H.Y.; Shen, D.W.; Chen, Y.H.; Feng, X. Flexible modular strategy for tailored, human–machine fusion wearable electronics. Wearable Electron. 2024, 12, 244–250. [Google Scholar] [CrossRef]
- Libanori, A.; Chen, G.; Zhao, X.; Zhou, Y.; Chen, J. Smart textiles for personalized healthcare. Nat. Electron. 2022, 5, 142–156. [Google Scholar] [CrossRef]
- Jat, A.S.; Grønli, T.-M. Smart watch for smart health monitoring: A literature review Lect. In International Work-Conference on Bioinformatics and Biomedical Engineering; Springer: Berlin/Heidelberg, Germany, 2022; pp. 256–268. [Google Scholar]
- Yoon, J.; Joo, Y.; Oh, E.; Lee, B.; Kim, D.; Lee, S.; Kim, T.; Byun, J.; Hong, Y. Soft modular electronic blocks (SMEBs): A strategy for tailored wearable health-monitoring systems. Adv. Sci. 2019, 6, 1801682. [Google Scholar] [CrossRef]
- Bayoumy, K.; Gaber, M.; Elshafeey, A.; Mhaimeed, O.; Dineen, E.H.; Marvel, F.A.; Martin, S.S.; Muse, E.D.; Turakhia, M.P.; Tarakji, K.G.; et al. Smart wearable devices in cardiovascular care: Where we are and how to move forward. Nat. Rev. Cardiol. 2021, 18, 581–599. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Liu, S.; Zhou, T.; Li, Y.; Luo, Z.; Pan, Y.; Liao, X.; Pan, J. A flexible porous polyimide/copper composite film toward high-mass-loading anodes in lithium-ion batteries. J. Energy Storage 2024, 103, 114363. [Google Scholar] [CrossRef]
- Lauro, S.N.; Burrow, J.N.; Mullins, C.B. Restructuring the lithium-ion battery: A perspective on electrode architectures. eScience 2023, 3, 100152. [Google Scholar] [CrossRef]
- Wu, H.; Fahy, W.P.; Kim, S.; Kim, H.; Zhao, N.; Pilato, L.; Kafi, A.; Bateman, S.; Koo, J.H. Recent developments in polymers/polymer nanocomposites for additive manufacturing Prog. Mater. Sci. 2020, 111, 100638. [Google Scholar]
- Xu, Y.; Yu, X.; Wang, X.; Yu, J.; Huang, P. Application of additive-free, ultra-stable polyimide-derived porous carbon with controllable structure in flexible supercapacitors. J. Energy Storage 2024, 103, 114359. [Google Scholar] [CrossRef]
- Shah, S.A.A.; Idrees, R.; Saeed, S. A critical review on polyimide derived carbon materials for high-performance supercapacitor electrodes. J. Energy Storage 2022, 55, 105667. [Google Scholar] [CrossRef]
- Tan, W.; Liang, B.; Chen, M.; Xiao, H.; He, X.; Yang, W.; Hu, J.; Zeng, K.; Yang, G. Rigid-flexible mediated Co-polyimide enabling stable silicon anode in lithium-ion batteries. Chem. Eng. J. 2024, 496, 153822. [Google Scholar] [CrossRef]
- Han, K.; Ji, X.; Li, Y. Multi-functional flexible sensor based on composite of polyimide aerogel and TiO2 nanoparticles with applications in humidity sensing, water sensing in liquid and photocatalysis. Surf. Interfaces 2024, 54, 105189. [Google Scholar] [CrossRef]
- Chiriac, A.P.; Constantin, C.P.; Asandulesa, M.; Melinte, V.; Jankowski, A.; Damaceanu, M.D. Repurposing trityl-substituted triphenylamine-based polyimides for gas separation membranes by blending with a fluorinated polyimide. React. Funct. Polym. 2024, 205, 106081. [Google Scholar] [CrossRef]
- Chen, J.; Wang, B.; Zhong, J.; Li, J. Semi-carbonized fluorinated polyimide-assisted preparation of TiO2 with strikingly boosted photocatalytic CO2 reduction performance. Surf. Interfaces 2024, 55, 105457. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Q.; Li, P. Influence of direct fluorination treatment on surface and optical properties of colorless and transparent polyimides. Mater. Chem. Phys. 2023, 308, 128247. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, J.; Yuan, X.; Zhang, Y.; Wang, L.; Xie, Y.; Xing, Y.; Hou, C. In situ fluorine migration in ZIF-67/F-TiO2 Z-type heterojunction and its photocatalytic degradation mechanism of tetracycline hydrochloride. Appl. Surf. Sci. 2023, 637, 157881. [Google Scholar] [CrossRef]
- Zhao, Y.; Qiao, W.; Wang, H.; Xie, Y.; Teng, B.; Li, J.; Sun, Y.; Alsubaie, A.S.; Wan, T.; El-Bahy, S.M.; et al. Introducing phosphoric acid to fluorinated polyimide towards high performance laser induced graphene electrodes for high energy micro-supercapacitors. Carbon 2024, 230, 119665. [Google Scholar] [CrossRef]
- Yuan, G.Y.; Wan, T.; BaQais, A.; Mu, Y.R.; Cui, D.P.; Amin, M.A.; Li, X.D.; Xu, B.B.; Zhu, X.H.; Algadi, H.; et al. Boron and fluorine Co-doped laser-induced graphene towards high-performance micro-supercapacitors. Carbon 2023, 212, 9. [Google Scholar] [CrossRef]
- Qin, S.; Song, J.; Qin, H.; Fu, Y.; Liu, M.; Yu, S.; Zhou, L.; Xiong, C.; Wang, S. Fluorinated aromatic polyimide with large bandgap exhibiting superior capacitive performance at elevated temperatures. J. Energy Storage 2024, 87, 111458. [Google Scholar] [CrossRef]
- Xing, W.; Ma, Y.; Ma, Z.; Bai, Y.; Chen, J.; Zhao, S. Improved ferroelectric and leakage current properties of Er-doped BiFeO3 thin films derived from structural transformation. Smart Mater. Struct. 2014, 23, 085030. [Google Scholar] [CrossRef]
- Chen, H.; Wu, Q.; Chen, L.; Zhang, W.; Li, X.; Peng, J.; Wang, J. Dual-processable semi-aromatic fluorinated polyimides with outstanding optical transparency and low dielectric constants prepared from in situ [2 + 2] thermal polymerization. Polym. Chem. 2024, 15, 3492–3500. [Google Scholar] [CrossRef]
- Zhao, W.; Cao, X.; Li, R.K.; Wu, W. Engineering designed functional covalent organic frameworks via pore surface modifications for effectively reducing the dielectric constant of polyimide-based electronic packaging materials. Polymer 2024, 11, 127751. [Google Scholar] [CrossRef]
- Liu, S.; Hao, C.; Meng, C.; Liu, S.; Zhai, W.; Zhu, Q.; Li, W.; Wei, S.; Wang, Z.; Lu, X. Nanoporous fluorinated covalent organic framework for efficient C2H2/CO2 separation with high C2H2 uptake. ACS Appl. Nano Mater. 2023, 6, 12124–12131. [Google Scholar] [CrossRef]
- Zhu, T.; Yu, Q.; Zheng, W.; Bei, R.; Wang, W.; Wu, M.; Liu, S.; Chi, Z.; Zhang, Y.; Xu, J. Intrinsic high-k-low-loss dielectric polyimides containing ortho-position aromatic nitrile moieties: Reconsideration on clausius-mossotti equation. Polym. Chem. 2021, 12, 2481–2489. [Google Scholar] [CrossRef]
- Ju, J.; Wang, Q.; Wang, T.; Wang, C. Low dielectric, nanoporous fluorinated polyimide films prepared from PCL-PI-PCL triblock copolymer using retro-Diels–Alder reaction. J. Colloid Interface Sci. 2023, 404, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Damaceanu, M.D.; Constantin, C.P.; Nicolescu, A.; Bruma, M.; Belomoina, N.; Begunov, R.S. Highly transparent and hydrophobic fluorinated polyimide films with ortho-kink structure. Eur. Polym. J. 2014, 1, 200–213. [Google Scholar] [CrossRef]
- Li, H.; Lan, X.; Bao, F.; Li, S.; Zhu, H.; Zhu, Z.; Li, Y.; Wang, M.; Zhu, C.; Xu, J. Preparation of triphenylamine polyimides with low dielectric constants with different side group sizes based on β-relaxation theory. Eur. Polym. J. 2024, 211, 112969. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, J.; Wu, D.; Li, H.; Jin, R. A methodology for the preparation of nanoporous polyimide films with low dielectric constants. Thin Solid Film. 2006, 510, 241–246. [Google Scholar] [CrossRef]
- Wang, L.; Yang, J.; Cheng, W.; Zou, J.; Zhao, D. Progress on polymer composites with low dielectric constant and low dielectric loss for high-frequency signal transmission. Front. Mater. 2021, 8, 774843. [Google Scholar] [CrossRef]
- Hu, K.; Ye, Q.; Fan, Y.; Nan, J.; Chen, F.; Gao, Y.; Shen, Y. Preparation and characterization of organic soluble polyimides with low dielectric constant containing trifluoromethyl for optoelectronic application. Eur. Polym. J. 2021, 157, 110566. [Google Scholar] [CrossRef]
- Xu, B.; Feng, R.; Zhao, T.; Zhou, L.; Ju, Y.; Chen, J.; Zhang, Q.; Dong, L. Fluorinated polyimide with enhanced ultraviolet-resistant radiation via a self-sacrificial strategy. Eur. Polym. J. 2024, 5, 112627. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Min, Y. Reducing the Permittivity of Polyimides for Better Use in Communication Devices. Polymers 2023, 15, 1256. [Google Scholar] [CrossRef] [PubMed]
- Ernzerhof, M.; Perdew, J.P. Generalized gradient approximation to the angle- and system-averaged exchange hole. J. Chem. Phys. 1998, 109, 3313–3320. [Google Scholar] [CrossRef]
- McLean, A.D.; Chandler, G.S. Contracted Gaussian-basis sets for molecular calculations. 1. 2nd row atoms, Z = 11–18. J. Chem. Phys. 1980, 72, 5639–5648. [Google Scholar] [CrossRef]
- Raghavachari, K.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-Consistent Molecular Orbital Methods. 20. Basis set for correlated wave-functions. J. Chem. Phys. 1980, 72, 650–654. [Google Scholar] [CrossRef]
- Kendall, R.A.; Dunning, T.H., Jr.; Harrison, R.J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96, 6796–6806. [Google Scholar] [CrossRef]
- Woon, D.E.; Dunning, T.H., Jr. Gaussian-basis sets for use in correlated molecular calculations. 3. The atoms aluminum through argon. J. Chem. Phys. 2001, 98, 1358–1371. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Lu, T. A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. J. Chem. Phys. 2024, 161, 082503. [Google Scholar] [CrossRef] [PubMed]
Ensemble | Temperature | Timestep | Pressure | Thermostat | Barostat |
---|---|---|---|---|---|
NPT (compress) | 298 K | 1 fs | 0.5 GPa | Nose–Hoover [33] | Berendsen [34] |
Anneal | 300 K~500 K | 1 fs | - | - | - |
NPT (balance) | 298 K | 1 fs | 0.0001 GPa | Nose–Hoover | Berendsen |
Abb. | Explanation |
---|---|
TPI | Fluorinated PI containing TFMB |
TPPI | TPI prepared by TFMB/PDA/BPDA |
TOPI | TPI prepared by TFMB/ODA/BPDA |
TPIn | n represents the molar proportion of TFMB in diamine |
TPAA | The prepolymer of TPI (polyamide acid) |
Name | Tensile Strength/MPa | Elongation at Break/% | Modulus of Elasticity/GPa | Tg/ °C | T1% | T5% | Dk (1 MHz) | Df (1 MHz) |
---|---|---|---|---|---|---|---|---|
TPPI25 | 205.92 | 10.59 | 5.76 | 363 | 317 | 542 | 2.323 | 0.00708 |
TPPI50 | 232.73 | 26.26 | 5.53 | 402 | 435 | 565 | 2.312 | 0.00676 |
TPPI75 | 167.71 | 6.26 | 5.17 | 407 | 499 | 570 | 2.22 | 0.00685 |
TOPI25 | 133.50 | 9.22 | 4.89 | 352 | 448 | 560 | 2.445 | 0.00763 |
TOPI50 | 129.47 | 6.08 | 4.56 | 369 | 517 | 567 | 2.383 | 0.00732 |
TOPI75 | 129.85 | 5.79 | 4.80 | 375 | 473 | 574 | 2.31 | 0.00774 |
Name | Bulk Modulus (GPa) | Shear Modulus (GPa) | Young Modulus (GPa) | Poisson Ratios | ||
---|---|---|---|---|---|---|
max | min | max | min | |||
TPPI | 3.31 | 1.18 | Z = 4.60 | Y = 1.68 | Ezy = 0.54 | Exz = 0.11 |
TOPI | 2.76 | 0.70 | X = 1.76 | Z = 0.15 | Exz = 2.92 | Ezy = 0.35 |
Name | Static Polarizability/a.u. | Polarizability Anisotropy (Definition 2) | Eigenvalues of Polarizability Tensor | Isotropic Average Polarizability | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
XX | XY | YY | XZ | YZ | ZZ | X | Y | Z | |||
TPPI | 1172.27 | −45.36 | 566.87 | −1.25 | −19.97 | 490.84 | 646.78 | 485.69 | 568.63 | 1175.65 | 743.33 |
TOPI | 1023.22 | 27.05 | 928.61 | −60.29 | −16.32 | 471.23 | 511.29 | 464.35 | 921.42 | 1037.30 | 807.69 |
Name | Monomers | T5%/°C | Tg/°C | Tensile Strength/MPa | Elongation at Break/% | Modulus of Elasticity/GPa | Dk | Df |
---|---|---|---|---|---|---|---|---|
TPPI50 | TFMB/PDA/BPDA | 565 | 402 | 232.73 | 26.26 | 5.53 | 2.312 | 0.00676 |
TIA-PI [13] | TIA/6FDA/ODPA | - | 291 | 91.43 ± 7.96 | −14.93 ± 7.60 | 0.54 ± 0.07 | - | - |
6FDA/TFMB [19] | 6FDA/TFMB | 533 | 329 | 102 | 6.3 | - | 2.9 | - |
6FDA/CBDA [27] | 6FDA/CBDA | 520 | 338 | 59.8 | 7.2 | 1.05 | 2.26 | - |
TFOB [31] | TFMB/ODA/BPDA/PMDA | 587 | - | 56 | 9.23 | - | 2.29 | 0.00786 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Liu, Y.; Min, Y. Innovative Fluorinated Polyimides with Superior Thermal, Mechanical, and Dielectric Properties for Advanced Soft Electronics. Polymers 2025, 17, 339. https://doi.org/10.3390/polym17030339
Chen Y, Liu Y, Min Y. Innovative Fluorinated Polyimides with Superior Thermal, Mechanical, and Dielectric Properties for Advanced Soft Electronics. Polymers. 2025; 17(3):339. https://doi.org/10.3390/polym17030339
Chicago/Turabian StyleChen, Yuwei, Yidong Liu, and Yonggang Min. 2025. "Innovative Fluorinated Polyimides with Superior Thermal, Mechanical, and Dielectric Properties for Advanced Soft Electronics" Polymers 17, no. 3: 339. https://doi.org/10.3390/polym17030339
APA StyleChen, Y., Liu, Y., & Min, Y. (2025). Innovative Fluorinated Polyimides with Superior Thermal, Mechanical, and Dielectric Properties for Advanced Soft Electronics. Polymers, 17(3), 339. https://doi.org/10.3390/polym17030339