Biodegradation of Polyhydroxybutyrate, Polylactide, and Their Blends by Microorganisms, Including Antarctic Species: Insights from Weight Loss, XRD, and Thermal Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Polymers
2.1.2. Culture of the Microorganism
2.2. Methods
2.2.1. Polymer Film Production
2.2.2. Media and Conditions for Cultivating Microorganisms
2.2.3. Determination of Weight Loss
2.2.4. X-Ray Diffraction Analysis (XRD)
2.2.5. Thermal Analyses (TGA and DTA)
3. Results and Discussion
3.1. Mass Loss of the Polymer During Microorganism Cultivation
3.1.1. Impact of the Cultivation of Microorganisms on PHB Degradation
3.1.2. Impact of the Cultivation of Microorganisms on PLA Degradation
3.1.3. Impact of the Cultivation of Microorganisms on the Degradation PHB/PLA Blend
3.2. X-Ray Analysis of Biodegradation of Polymer: Impact of Weight Loss on Crystallinity
3.3. Thermal Analysis of Biodegradation of Polymer
3.3.1. Thermal Analysis of Biodegradation of PHB
3.3.2. Thermal Analysis of Biodegradation of PLA
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Galloway, T.S.; Cole, M.; Lewis, C. Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 2017, 1, 0116. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.; McGonigle, D.; Russell, A.E. Lost at sea: Where is all the plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef] [PubMed]
- Geyer, R. Production, use, and fate of synthetic polymers. In Plastic Waste and Recycling; Elsevier: Amsterdam, The Netherlands, 2020; pp. 13–32. [Google Scholar] [CrossRef]
- Bao, Q.; Wong, W.; Liu, S.; Tao, X. Accelerated Degradation of Poly(lactide acid)/Poly(hydroxybutyrate) (PLA/PHB) Yarns/Fabrics by UV and O2 Exposure in South China Seawater. Polymers 2022, 14, 1216. [Google Scholar] [CrossRef]
- Bergmann, M.; Tekman, M.B.; Gutow, L. Sea change for plastic pollution. Nature 2017, 544, 297. [Google Scholar] [CrossRef]
- Narancic, T.; O’Connor, K.E. Microbial biotechnology addressing the plastic waste disaster. Microb. Biotechnol. 2017, 10, 1232–1235. [Google Scholar] [CrossRef]
- Arrieta, M.P.; Perdiguero, M.; Fiori, S.; Kenny, J.M.; Peponi, L. Biodegradable electrospun PLA-PHB fibers plasticized with oligomeric lactic acid. Polym. Degrad. Stab. 2020, 179, 109226. [Google Scholar] [CrossRef]
- Aydemir, D.; Gardner, D.J. Biopolymer blends of polyhydroxybutyrate and polylactic acid reinforced with cellulose nanofibrils. Carbohydr. Polym. 2020, 250, 116867. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Tao, X.; Zhang, Z.; Chen, P. Properties and performances of fabrics made from bio-based and degradable polylactide acid/poly (hydroxybutyrate-co-hydroxyvalerate) (PLA/PHBV) filament yarns. Text. Res. J. 2016, 87, 2464–2474. [Google Scholar] [CrossRef]
- Abdelwahab, M.A.; Flynn, A.; Chiou, B.-S.; Imam, S.; Orts, W.; Chiellini, E. Thermal, mechanical and morphological characterization of plasticized PLA–PHB blends. Polym. Degrad. Stab. 2012, 97, 1822–1828. [Google Scholar] [CrossRef]
- Armentano, I.; Fortunati, E.; Burgos, N.; Dominici, F.; Luzi, F.; Fiori, S.; Jimenez, A.; Yoon, K.; Ahn, J.; Kang, S.; et al. Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. Express Polym. Lett. 2015, 9, 583–596. [Google Scholar] [CrossRef]
- Arrieta, M.P.; Samper, M.D.; Aldas, M.; López, J. On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications. Materials 2017, 10, 1008. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Dean, K.; Li, L. Polymer blends and composites from renewable resources. Prog. Polym. Sci. 2006, 31, 576–602. [Google Scholar] [CrossRef]
- Pavan, F.A.; Junqueira, T.L.; Watanabe, M.D.B.; Bonomi, A.; Quines, L.K.; Schmidell, W.; De Aragao, G.M.F. Economic analysis of polyhydroxybutyrate production by Cupriavidus necator using different routes for product recovery. Biochem. Eng. J. 2019, 146, 97–104. [Google Scholar] [CrossRef]
- Balogová, A.F.; Hudák, R.; Tóth, T.; Schnitzer, M.; Feranc, J.; Bakoš, D.; Živčák, J. Determination of geometrical and viscoelastic properties of PLA/PHB samples made by additive manufacturing for urethral substitution. J. Biotechnol. 2018, 284, 123–130. [Google Scholar] [CrossRef]
- Santos, A.J.D.; Valentina, L.V.O.D.; Schulz, A.A.H.; Duarte, M.A.T. From obtaining to degradation of PHB:Material Properties. Part I. Ing. Y Cienc. 2017, 13, 269–298. [Google Scholar] [CrossRef]
- DeStefano, V.; Khan, S.; Tabada, A. Applications of PLA in modern medicine. Eng. Regen. 2020, 1, 76–87. [Google Scholar] [CrossRef]
- Hiraishi, T.; Taguchi, S. Protein engineering of enzymes involved in bioplastic metabolism. In Protein Engineering—Technology and Application; IntechOpen: London, UK, 2013. [Google Scholar] [CrossRef]
- Handrick, R.; Reinhardt, S.; Focarete, M.L.; Scandola, M.; Adamus, G.; Kowalczuk, M.; Jendrossek, D. A New Type of Thermoalkalophilic Hydrolase of Paucimonas lemoignei with High Specificity for Amorphous Polyesters of Short Chain-length Hydroxyalkanoic Acids. J. Biol. Chem. 2001, 276, 36215–36224. [Google Scholar] [CrossRef]
- Jendrossek, D. Extracellular polyhydroxyalkanoate (PHA) depolymerases: The key enzymes of PHA degradation. In Biopolymer Online; Wiley-VCH: Hoboken, NJ, USA, 2002. [Google Scholar] [CrossRef]
- Volova, T.G.; Boyandin, A.N.; Vasiliev, A.D.; Karpov, V.A.; Prudnikova, S.V.; Mishukova, O.V.; Boyarskikh, U.A.; Filipenko, M.L.; Rudnev, V.P.; Xuân, B.B.; et al. Biodegradation of polyhydroxyalkanoates (PHAs) in tropical coastal waters and identification of PHA-degrading bacteria. Polym. Degrad. Stab. 2010, 95, 2350–2359. [Google Scholar] [CrossRef]
- Martínez-Tobón, D.I.; Gul, M.; Elias, A.L.; Sauvageau, D. Polyhydroxybutyrate (PHB) biodegradation using bacterial strains with demonstrated and predicted PHB depolymerase activity. Appl. Microbiol. Biotechnol. 2018, 102, 8049–8067. [Google Scholar] [CrossRef]
- Karamanlioglu, M.; Preziosi, R.; Robson, G.D. Abiotic and biotic environmental degradation of the bioplastic polymer poly(lactic acid): A review. Polym. Degrad. Stab. 2017, 137, 122–130. [Google Scholar] [CrossRef]
- Sinclair, R.G. The case for polylactic acid as a commodity packaging plastic. J. Macromol. Sci. Part A 1996, 33, 585–597. [Google Scholar] [CrossRef]
- Shah, A.A.; Hasan, F.; Hameed, A.; Ahmed, S. Biological degradation of plastics: A comprehensive review. Biotechnol. Adv. 2008, 26, 246–265. [Google Scholar] [CrossRef] [PubMed]
- Pranamuda, H.; Tokiwa, Y.; Tanaka, H. Polylactide Degradation by an Amycolatopsis sp. Appl. Environ. Microbiol. 1997, 63, 1637–1640. [Google Scholar] [CrossRef] [PubMed]
- Shimao, M. Biodegradation of plastics. Curr. Opin. Biotechnol. 2001, 12, 242–247. [Google Scholar] [CrossRef]
- Tokiwa, Y.; Jarerat, A. Biodegradation of poly(l-lactide). Biotechnol. Lett. 2004, 26, 771–777. [Google Scholar] [CrossRef]
- Ahn, H.K.; Huda, M.S.; Smith, M.C.; Mulbry, W.; Schmidt, W.F.; Reeves, J.B. Biodegradability of injection molded bioplastic pots containing polylactic acid and poultry feather fiber. Bioresour. Technol. 2011, 102, 4930–4933. [Google Scholar] [CrossRef]
- Bubpachat, T.; Sombatsompop, N.; Prapagdee, B. Isolation and role of polylactic acid-degrading bacteria on degrading enzymes productions and PLA biodegradability at mesophilic conditions. Polym. Degrad. Stab. 2018, 152, 75–85. [Google Scholar] [CrossRef]
- Castro-Aguirre, E.; Auras, R.; Selke, S.; Rubino, M.; Marsh, T. Insights on the aerobic biodegradation of polymers by analysis of evolved carbon dioxide in simulated composting conditions. Polym. Degrad. Stab. 2017, 137, 251–271. [Google Scholar] [CrossRef]
- Kolstad, J.J.; Vink, E.T.H.; De Wilde, B.; Debeer, L. Assessment of anaerobic degradation of IngeoTM polylactides under accelerated landfill conditions. Polym. Degrad. Stab. 2012, 97, 1131–1141. [Google Scholar] [CrossRef]
- Boonmee, C.; Kositanont, C.; Leejarkpai, T. Degradation of Poly(lactic acid) under Simulated Landfill Conditions. DOAJ Dir. Open Access J. 2017, 14, 1–9. [Google Scholar] [CrossRef]
- Krause, M.J.; Townsend, T.G. Life-Cycle assumptions of landfilled polylactic acid underpredict methane generation. Environ. Sci. Technol. Lett. 2016, 3, 166–169. [Google Scholar] [CrossRef]
- Chariyachotilert, C.; Joshi, S.; Selke, S.E.; Auras, R. Assessment of the properties of poly(L-lactic acid) sheets produced with differing amounts of postconsumer recycled poly(L-lactic acid). J. Plast. Film Sheeting 2012, 28, 314–335. [Google Scholar] [CrossRef]
- Hamad, K.; Kaseem, M.; Deri, F. Recycling of waste from polymer materials: An overview of the recent works. Polym. Degrad. Stab. 2013, 98, 2801–2812. [Google Scholar] [CrossRef]
- Piemonte, V.; Sabatini, S.; Gironi, F. Chemical recycling of PLA: A great opportunity towards the sustainable development? J. Polym. Environ. 2013, 21, 640–647. [Google Scholar] [CrossRef]
- Tokiwa, Y.; Calabia, B.P. Biodegradability and biodegradation of poly(lactide). Appl. Microbiol. Biotechnol. 2006, 72, 244–251. [Google Scholar] [CrossRef]
- Nakamura, K.; Tomita, T.; Abe, N.; Kamio, Y. Purification and Characterization of an Extracellular Poly(l-Lactic Acid) Depolymerase from a Soil Isolate, Amycolatopsis sp. Strain K104-1. Appl. Environ. Microbiol. 2001, 67, 345–353. [Google Scholar] [CrossRef]
- Williams, D.F. Enzymic hydrolysis of polylactic acid. Eng. Med. 1981, 10, 5–7. [Google Scholar] [CrossRef]
- Oda, Y.; Yonetsu, A.; Urakami, T.; Tonomura, K. Degradation of polylactide by commercial proteases. J. Polym. Environ. 2000, 8, 29–32. [Google Scholar] [CrossRef]
- Sakai, K.; Kawano, H.; Iwami, A.; Nakamura, M.; Moriguchi, M. Isolation of a thermophilic poly-l-lactide degrading bacterium from compost and its enzymatic characterization. J. Biosci. Bioeng. 2001, 92, 298–300. [Google Scholar] [CrossRef]
- Sukkhum, S.; Tokuyama, S.; Kitpreechavanich, V. Development of fermentation process for PLA-degrading enzyme production by a new thermophilic Actinomadura sp. T16-1. Biotechnol. Bioprocess Eng. 2009, 14, 302–306. [Google Scholar] [CrossRef]
- Hanphakphoom, S.; Maneewong, N.; Sukkhum, S.; Tokuyama, S.; Kitpreechavanich, V. Characterization of poly(L-lactide)-degrading enzyme produced by thermophilic filamentous bacteria Laceyella sacchari LP175. J. Gen. Appl. Microbiol. 2014, 60, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Satti, S.M.; Shah, A.A.; Auras, R.; Marsh, T.L. Isolation and characterization of bacteria capable of degrading poly(lactic acid) at ambient temperature. Polym. Degrad. Stab. 2017, 144, 392–400. [Google Scholar] [CrossRef]
- Jarerat, A.; Tokiwa, Y.; Tanaka, H. Poly(l-lactide) degradation byKibdelosporangium aridum. Biotechnol. Lett. 2003, 25, 2035–2038. [Google Scholar] [CrossRef]
- Butbunchu, N.; Pathom-Aree, W. Actinobacteria as promising candidate for polylactic acid type bioplastic degradation. Front. Microbiol. 2019, 10, 2834. [Google Scholar] [CrossRef]
- Rüthi, J.; Cerri, M.; Brunner, I.; Stierli, B.; Sander, M.; Frey, B. Discovery of plastic-degrading microbial strains isolated from the alpine and Arctic terrestrial plastisphere. Front. Microbiol. 2023, 14, 1178474. [Google Scholar] [CrossRef] [PubMed]
- Semeniuk, I.; Pokynbroda, T.; Kochubei, V.; Midyana, H.; Karpenko, O.; Skorokhoda, V. Biosynthesis and Characteristics of Polyhydroxyalkanoates. 1. Polyhydroxybutyrates of Azotobacter vinelandii N-15. Chem. Chem. Technol. 2020, 14, 463–467. [Google Scholar] [CrossRef]
- Semeniuk, I.; Koretska, N.; Kochubei, V.; Lysyak, V.; Pokynbroda, T.; Karpenko, E.; Midyana, H. Biosynthesis and characteristics of metabolites of Rhodococcus erythropolis AU-1 STRAIN. J. Microbiol. Biotechnol. Food Sci. 2022, 11, e4714. [Google Scholar] [CrossRef]
- Hnatush, S.O.; Peretyatko, T.B.; Moroz, O.M.; Maslovska, O.D.; Komplikevych, S.Y. Certificate of deposition of bacterial strain Paenibacillus tundrae 5A–101 in the Depository of the Institute of Microbiology and Virology of the D. K. Zabolotnyi NAS of Ukraine with registration number Paenibacillus tundrae IMV B-7915. 2 December 2020. [Google Scholar]
- Hnatush, S.O.; Moroz, O.M.; Peretyatko, T.B.; Maslovska, O.D.; Komplikevych, S.Y. Certificate of deposition of bacterial strain Pseudomonas yamanorum 9.9_102 in the Depository of the Institute of Microbiology and Virology of the D. K. Zabolotnyi NAS of Ukraine with registration number Pseudomonas yamanorum IMV B-7916. 2 December 2020. [Google Scholar]
- Hnatush, S.O.; Peretyatko, T.B.; Moroz, O.M.; Maslovska, O.D.; Komplikevych, S.Y. Certificate of deposition of bacterial strain Pseudarthrobacter sp. 2B-K-54 in the Depository of the Institute of Microbiology and Virology of the D. K. Zabolotnyi NAS of Ukraine with registration number Pseudarthrobacter sp. IMV B-7981. 6 December 2021. [Google Scholar]
- Hnatush, S.; Komplikevych, S.; Maslovska, O.; Moroz, O.; Peretyatko, T.; Dzhulai, A.; Krasnozhon, T. Bacteria of the genus Pseudomonas isolated from Antarctic substrates. Ukr. Antarct. J. 2021, 2, 58–75. [Google Scholar] [CrossRef]
- Komplikevych, S.; Maslovska, O.; Peretyatko, T.; Moroz, O.; Diakiv, S.; Zaritska, Y.; Parnikoza, I.; Hnatush, S. Culturable microorganisms of substrates of terrestrial plant communities of the maritime Antarctic (Galindez Island, Booth Island). Polar Biol. 2022, 46, 1–19. [Google Scholar] [CrossRef]
- Semeniuk, I.; Kochubei, V.; Karpenko, E.; Melnyk, Y.; Skorokhoda, V.; Semenyuk, N. Thermal and physico-mechanical properties of biodegradable materials based on polyhydroxyalkanoates. Polimery 2023, 67, 561–566. [Google Scholar] [CrossRef]
- Bonartsev, A.; Boskhomdzhiev, A.; Voinova, V.; Makhina, T.; Myshkina, V.; Yakovlev, S.; Zharkova, I.; Filatova, E.; Zernov, A.; Bagrov, D.; et al. Degradation of Poly(3-hydroxybutyrate) and its Derivatives: Characterization and Kinetic Behavior. Chem. Chem. Technol. 2012, 6, 385–392. [Google Scholar] [CrossRef]
- Hankermeyer, C.R.; Tjeerdema, R.S. Polyhydroxybutyrate: Plastic made and degraded by microorganisms. In Reviews of Environmental Contamination and Toxicology; Springer: New York, NY, USA, 1999; pp. 1–24. [Google Scholar] [CrossRef]
- Semeniuk, I.V.; Kochubei, V.V.; Skorokhoda, V.Y.; Melnyk, Y.Y.; Semenyuk, N.B.; Koretska, N.I.; Pokynbroda, T.Y. Temperature and physical-mechanical properties of thermoplastic materials based on polyhydroxybutyrate. Vopr. Khimii I Khimicheskoi Tekhnologii 2022, 6, 80–87. [Google Scholar] [CrossRef]
- Masyuk, A.S.; Kysil, K.V.; Katruk, D.S.; Skorokhoda, V.I.; Bilyi, L.M.; Humenetskyi, T.V. Elastoplastic Properties of Polylactide Composites with Finely Divided Fillers. Mater. Sci. 2020, 56, 319–326. [Google Scholar] [CrossRef]
- Levytskyi, V.; Katruk, D.; Masyuk, A.; Kysil, K.; Bratychak, M., Jr.; Chopyk, N. Resistance of polylactide materials to water mediums of the various natures. Chem. Chem. Technol. 2021, 15, 191–197. [Google Scholar] [CrossRef]
- Volova, T.G.; Prudnikova, S.V.; Vinogradova, O.N.; Syrvacheva, D.A.; Shishatskaya, E.I. Microbial degradation of polyhydroxyalkanoates with different chemical compositions and their biodegradability. Microb. Ecol. 2017, 73, 353–367. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Gupta, N.S.; Bezek, L.B.; Linn, J.; Bejagam, K.K.; Banerjee, S.; Dumont, J.H.; Nam, S.Y.; Kang, H.; Park, C.H.; et al. Biodegradation studies of polyhydroxybutyrate and polyhydroxybutyrate-co-polyhydroxyvalerate films in soil. Int. J. Mol. Sci. 2023, 24, 7638. [Google Scholar] [CrossRef] [PubMed]
- Iwata, T.; Doi, Y. Morphology and enzymatic degradation of poly (L-lactic acid) single crystals. Macromolecules 1998, 31, 2461–2467. [Google Scholar] [CrossRef]
- Tsuji, H.; Miyauchi, S. Poly (l-lactide): 7. Enzymatic hydrolysis of free and restricted amorphous regions in poly (l-lactide) films with different crystallinities and a fixed crystalline thickness. Polymer 2001, 42, 4463–4467. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, I.Y.; Song, W.S. Biodegradation of polylactic acid (PLA) fibers using different enzymes. Macromol. Res. 2014, 22, 657–663. [Google Scholar] [CrossRef]
- Sedničková, M.; Pekařová, S.; Kucharczyk, P.; Bočkaj, J.; Janigová, I.; Kleinová, A.; JochecMošková, D.; Omaníková, L.; Perďochová, D.; Koutný, M.; et al. Changes of physical properties of PLA-based blends during early stage of biodegradation in compost. Int. J. Biol. Macromol. 2018, 113, 434–442. [Google Scholar] [CrossRef]
№ | Microorganism | Conditions for Cultivating | Remarks | |
---|---|---|---|---|
Without Aeration (wa) | Aeration (a) | |||
Mold species (Sabouraud medium) | ||||
Control | + | + | ||
1m. | Aspergillus oryzae | + | + | |
2m. | Penicillium chrysogenum | + | + | |
3m. | Trichoderma lignorum | + | + | |
4m. | Aspergillus niger | + | + | |
5m | Aspergillus awamori | + | + | |
6m. | Trichothecium roseum | + | + | |
Bacterial species (Trypticase Soy Broth) | ||||
Control | + | + | ||
1b. | Paenibacillus tundrae IMV B-7915 | + | + | from Antarctic sourses |
2b. | Pseudomonas yamanorum IMV B-7916 | + | + | from Antarctic sourses |
3b. | Paenarthrobacter sp. 28-in-78 | + | + | from Antarctic sourses |
4b. | Pseudoarthrobacter sp. IMV B-7981 | + | + | from Antarctic sourses |
5b. | Flavobacterium sp. 2B-in-99 | + | + | from Antarctic sourses |
6b. | Bacillus mesentericus | + | + | |
7b. | Bacillus megaterium | + | + | |
8b. | Bacillus cereus | + | + | |
9b. | Bacillus mycoides | + | + | |
10b. | Bacillus subtilis | + | + | |
11b. | Streptomyces griseus | + | + |
The Type of Mold Fungi | PHB | PLA | PHB/PLA | |||
---|---|---|---|---|---|---|
Without Aeration | Aeration | Without Aeration | Aeration | Without Aeration | Under Aeration | |
Mold Fungi Species | ||||||
Aspergillus oryzae | ≈1 | 6.6 | 1.6 | 1.2 | 1.1 | 1.3 |
Penicillium chrysogenum | 1.1 | 3.8 | 1.5 | 2.6 | 1.4 | 1.6 |
Trichoderma lignorum | 2.2 | 3.4 | 2.0 | 1.5 | 1.2 | 1.4 |
Aspergillus niger | 1.4 | 2.0 | 1.7 | ≈1 | 1.1 | 1.2 |
Aspergillus awamori | 4.0 | 2.3 | 2.0 | 1.2 | 1.1 | 1.4 |
Trichothecium roseum | 2.1 | 4.3 | 1.6 | 1.3 | 1.2 | 1.3 |
Bacteria species | ||||||
Paenibacillus tundrae IMV B-7915 | 2.0 | 4.9 | 1.1 | 1.1 | 1.0 | ≈1 |
Pseudomonas yamanorum IMV B-7916 | 2.5 | 1.4 | 1.1 | 1.1 | 1.0 | ≈1 |
Paenarthrobacter sp. 28-in-78 | 2.5 | 1.2 | 1.0 | 1.3 | ≈1 | ≈1 |
Pseudoarthrobacter sp. IMV B-7981 | ≈1 | ≈1 | 1.1 | 1.3 | ≈1 | 1.7 |
Flavobacterium sp. 2B-in-99 | ≈1 | 2.2 | ≈1 | 1.4 | ≈1 | 1.5 |
Bacillus mesentericus | 1.1 | 1.5 | 1.0 | 1.0 | 1.0 | ≈1 |
Bacillus megaterium | 1.4 | ≈1 | 1.1 | 1.0 | ≈1 | 1.1 |
Bacillus cereus | 1.2 | 1.8 | 1.0 | 0.9 | ≈1 | 1.0 |
Bacillus mycoides | 1.0 | 6.3 | 1.0 | 1.2 | ≈1 | ≈1 |
Bacillus subtilis | 1.7 | 0.9 | 2.1 | 2.1 | ≈1 | ≈1 |
Streptomyces griseus | 3.1 | 1.0 | 0.9 | 1.0 | 1.4 | 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skorokhoda, V.; Semeniuk, I.; Peretyatko, T.; Kochubei, V.; Ivanukh, O.; Melnyk, Y.; Stetsyshyn, Y. Biodegradation of Polyhydroxybutyrate, Polylactide, and Their Blends by Microorganisms, Including Antarctic Species: Insights from Weight Loss, XRD, and Thermal Studies. Polymers 2025, 17, 675. https://doi.org/10.3390/polym17050675
Skorokhoda V, Semeniuk I, Peretyatko T, Kochubei V, Ivanukh O, Melnyk Y, Stetsyshyn Y. Biodegradation of Polyhydroxybutyrate, Polylactide, and Their Blends by Microorganisms, Including Antarctic Species: Insights from Weight Loss, XRD, and Thermal Studies. Polymers. 2025; 17(5):675. https://doi.org/10.3390/polym17050675
Chicago/Turabian StyleSkorokhoda, Volodymyr, Ihor Semeniuk, Taras Peretyatko, Viktoria Kochubei, Oleksandr Ivanukh, Yuriy Melnyk, and Yurij Stetsyshyn. 2025. "Biodegradation of Polyhydroxybutyrate, Polylactide, and Their Blends by Microorganisms, Including Antarctic Species: Insights from Weight Loss, XRD, and Thermal Studies" Polymers 17, no. 5: 675. https://doi.org/10.3390/polym17050675
APA StyleSkorokhoda, V., Semeniuk, I., Peretyatko, T., Kochubei, V., Ivanukh, O., Melnyk, Y., & Stetsyshyn, Y. (2025). Biodegradation of Polyhydroxybutyrate, Polylactide, and Their Blends by Microorganisms, Including Antarctic Species: Insights from Weight Loss, XRD, and Thermal Studies. Polymers, 17(5), 675. https://doi.org/10.3390/polym17050675