Ultra-Stretchable Polymer Fibers Anchored with a Triple-Level Self-Assembled Conductive Network for Wide-Range Strain Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of MXene Suspension
2.3. Preparation of CNC Suspension
2.4. Preparation of AuNP Suspension
2.5. Preparation of TPU Fiber Membrane Flexible Substrates
2.6. Preparation of Stretchable Strain Sensors
2.7. Characterization
3. Results
3.1. Design and Fabrication of Tri-LICN M/C/A@T Composite Sensors
3.2. Structure and Morphology
3.3. Mechanical Properties
3.4. Strain Sensing Performance
3.5. Applications: Physiological Perception Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, L.; Luo, T.; Kuang, X.; Wan, X.; Liang, X.; Jiang, G.; Cong, H.; He, H. Highly Stretchable and Multimodal MXene/CNTs/TPU Flexible Resistive Sensor with Hierarchical Structure Inspired by Annual Ring for Hand Rehabilitation. ACS Sens. 2024, 9, 2476–2487. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, S.; Li, Z.; Lu, T.J.; Lin, H.; Zhu, Y.; Ahadian, S.; Emaminejad, S.; Dokmeci, M.R.; Xu, F.; et al. Harnessing the wide-range strain sensitivity of bilayered PEDOT:PSS films for wearable health monitoring. Matter 2021, 4, 2886–2901. [Google Scholar] [CrossRef]
- Chen, C.; Wang, H.; Wang, Y.; Liu, H.; Tian, M. Highly sensitive and ultra-durable microfiber-based sensor with synergistic conductive network for motion detection. Surf. Interfaces 2024, 48, 104276. [Google Scholar] [CrossRef]
- Cui, M.; Wu, S.; Li, J.; Zhao, Y.; Zhai, W.; Dai, K.; Liu, C.; Shen, C. An ultrasensitive flexible strain sensor based on CNC/CNTs/MXene/TPU fibrous mat for human motion, sound and visually personalized rehabilitation training monitoring. Compos. Sci. Technol. 2023, 244, 110309. [Google Scholar] [CrossRef]
- Xu, C.; Chen, J.; Zhu, Z.; Liu, M.; Lan, R.; Chen, X.; Tang, W.; Zhang, Y.; Li, H. Flexible Pressure Sensors in Human–Machine Interface Applications. Small 2023, 20, 2306655. [Google Scholar] [CrossRef]
- Tian, Z.; Qin, W.; Wang, Y.; Li, X.; Gu, C.; Chen, J.; Yang, M.; Feng, L.; Chen, J.; Qiao, H.; et al. Ultra-stable strain/ humidity dual-functional flexible wearable sensor based on brush-like AgNPs@CNTs@TPU heterogeneous structure. Colloids Surf. A Physicochem. Eng. Asp. 2023, 670, 131398. [Google Scholar] [CrossRef]
- Cao, Z.; Zhu, Y.B.; Chen, K.; Wang, Q.; Li, Y.; Xing, X.; Ru, J.; Meng, L.G.; Shu, J.; Shpigel, N.; et al. Super-Stretchable and High-Energy Micro-Pseudocapacitors Based on MXene Embedded Ag Nanoparticles. Adv. Mater. 2024, 36, 2401271. [Google Scholar] [CrossRef]
- Zhao, H.; Xiao, X.; Xing, H.; Jia, X.; Jin, S. Synthesis of an ultrathin, self-adhesive, tough, and frigostable BP@PVP/TPU ionogel for strain sensors by electrospinning. Mater. Today Chem. 2024, 38, 102102. [Google Scholar] [CrossRef]
- Lee, G.S.; Kim, J.G.; Kim, J.T.; Lee, C.W.; Cha, S.; Choi, G.B.; Lim, J.; Sasikala, S.P.; Kim, S.O. 2D Materials Beyond Post-AI Era: Smart Fibers, Soft Robotics, and Single Atom Catalysts. Adv. Mater. 2023, 36, 2307689. [Google Scholar] [CrossRef]
- Cao, W.-T.; Chen, F.-F.; Zhu, Y.-J.; Zhang, Y.-G.; Jiang, Y.-Y.; Ma, M.-G.; Chen, F. Binary Strengthening and Toughening of MXene/Cellulose Nanofiber Composite Paper with Nacre-Inspired Structure and Superior Electromagnetic Interference Shielding Properties. ACS Nano 2018, 12, 4583–4593. [Google Scholar] [CrossRef]
- Zheng, Z.; Yang, Q.; Song, S.; Pan, Y.; Xue, H.; Li, J. Anti-Oxidized Self-Assembly of Multilayered F-Mene/MXene/TPU Composite with Improved Environmental Stability and Pressure Sensing Performances. Polymers 2024, 16, 1337. [Google Scholar] [CrossRef]
- Mercadillo, V.O.; Chan, K.C.; Caironi, M.; Athanassiou, A.; Kinloch, I.A.; Bissett, M.; Cataldi, P. Electrically Conductive 2D Material Coatings for Flexible and Stretchable Electronics: A Comparative Review of Graphenes and MXenes. Adv. Funct. Mater. 2022, 32, 2204772. [Google Scholar] [CrossRef]
- Pan, K.; Wang, J.; Li, Y.; Lu, X.; Hu, D.; Jia, Z.; Lin, J. Sandwich-Like Flexible Breathable Strain Sensor with Tunable Thermal Regulation Capability for Human Motion Monitoring. ACS Appl. Mater. Interfaces 2024, 16, 10633–10645. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Li, Z.; Ma, S.; Zhang, W.; Chen, Y.; Luo, Y.; Jia, D.; Zhong, B.; Razal, J.M.; Wang, X.; et al. Constructing conductive titanium carbide nanosheet (MXene) network on polyurethane/polyacrylonitrile fibre framework for flexible strain sensor. J. Colloid Interface Sci. 2021, 584, 1–10. [Google Scholar] [CrossRef]
- Luo, Y.; Zhao, L.; Luo, G.; Dong, L.; Xia, Y.; Li, M.; Li, Z.; Wang, K.; Maeda, R.; Jiang, Z. Highly sensitive piezoresistive and thermally responsive fibrous networks from the in situ growth of PEDOT on MWCNT-decorated electrospun PU fibers for pressure and temperature sensing. Microsyst. Nanoeng. 2023, 9, 113. [Google Scholar] [CrossRef]
- Jin, X.; Wang, S.; Sang, C.; Yue, Y.; Xu, X.; Mei, C.; Xiao, H.; Lou, Z.; Han, J. Patternable Nanocellulose/Ti3C2Tx Flexible Films with Tunable Photoresponsive and Electromagnetic Interference Shielding Performances. ACS Appl. Mater. Interfaces 2022, 14, 35040–35052. [Google Scholar] [CrossRef] [PubMed]
- Otgonbayar, Z.; Oh, W.-C. Comprehensive and multi-functional MXene based sensors: An updated review. FlatChem 2023, 40, 100524. [Google Scholar] [CrossRef]
- He, P.; Guo, R.; Hu, K.; Liu, K.; Lin, S.; Wu, H.; Huang, L.; Chen, L.; Ni, Y. Tough and super-stretchable conductive double network hydrogels with multiple sensations and moisture-electric generation. Chem. Eng. J. 2021, 414, 128726. [Google Scholar] [CrossRef]
- Taromsari, S.M.; Shi, H.H.; Saadatnia, Z.; Park, C.B.; Naguib, H.E. Design and development of ultra-sensitive, dynamically stable, multi-modal GnP@MXene nanohybrid electrospun strain sensors. Chem. Eng. J. 2022, 442, 136138. [Google Scholar] [CrossRef]
- Cho, H.; Shakil, A.; Polycarpou, A.A.; Kim, S. Enabling Selectively Tunable Mechanical Properties of Graphene Oxide/Silk Fibroin/Cellulose Nanocrystal Bionanofilms. ACS Nano 2021, 15, 19546–19558. [Google Scholar] [CrossRef]
- Zhang, W.; Ji, X.-X.; Ma, M.-G. Emerging MXene/cellulose composites: Design strategies and diverse applications. Chem. Eng. J. 2023, 458, 141402. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Z.; Xu, S.; Wang, H.; Li, Y.; Fang, C. Flexible bilayer Ti3C2Tx MXene/cellulose nanocrystals/waterborne polyurethane composite film with excellent mechanical properties for electromagnetic interference shielding. Colloids Surf. A Physicochem. Eng. Asp. 2023, 669, 131556. [Google Scholar] [CrossRef]
- Li, Q.; Yin, R.; Zhang, D.; Liu, H.; Chen, X.; Zheng, Y.; Guo, Z.; Liu, C.; Shen, C. Flexible conductive MXene/cellulose nanocrystal coated nonwoven fabrics for tunable wearable strain/pressure sensors. J. Mater. Chem. A 2020, 8, 21131–21141. [Google Scholar] [CrossRef]
- Qin, W.; Geng, J.; Lin, C.; Li, G.; Peng, H.; Xue, Y.; Zhou, B.; Liu, G. Flexible multifunctional TPU strain sensors with improved sensitivity and wide sensing range based on MXene/AgNWs. J. Mater. Sci. Mater. Electron. 2023, 34, 564. [Google Scholar] [CrossRef]
- Huang, C.B.; Yao, Y.; Montes-García, V.; Stoeckel, M.A.; Von Holst, M.; Ciesielski, A.; Samorì, P. Highly Sensitive Strain Sensors Based on Molecules–Gold Nanoparticles Networks for High-Resolution Human Pulse Analysis. Small 2021, 17, 2007593. [Google Scholar] [CrossRef]
- Yu, Q.; Pan, J.; Li, J.; Su, C.; Huang, Y.; Bi, S.; Jiang, J.; Chen, N. A general strategy to immobilize metal nanoparticles on MXene composite fabrics for enhanced sensing performance and endowed multifunctionality. J. Mater. Chem. C 2022, 10, 13143–13156. [Google Scholar] [CrossRef]
- Li, M.; Dong, X.; Li, Q.; Liu, Y.; Cao, S.; Hou, C.C.; Sun, T. Engineering MXene Surface via Oxygen Functionalization and Au Nanoparticle Deposition for Enhanced Electrocatalytic Hydrogen Evolution Reaction. Small Methods 2024, 2401569. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yao, Z.; Zhang, C.; Song, H.; Ding, H.; Li, B.; Niu, S.; Huang, X.; Chen, C.; Han, Z.; et al. A Selective-Response Hypersensitive Bio-Inspired Strain Sensor Enabled by Hysteresis Effect and Parallel Through-Slits Structures. Nano-Micro Lett. 2023, 16, 26. [Google Scholar] [CrossRef]
- Li, W.; Zhou, T.; Zhang, Z.; Li, L.; Lian, W.; Wang, Y.; Lu, J.; Yan, J.; Wang, H.; Wei, L.; et al. Ultrastrong MXene film induced by sequential bridging with liquid metal. Science 2024, 385, 62–68. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, S.; Zhang, J.; Zhou, G.; Sun, X.; Wang, Y.; Wang, Y.; Zhang, K. High-sensitivity piezoresistive sensors based on cellulose handsheets using origami-inspired corrugated structures. Carbohydr. Polym. 2024, 328, 121742. [Google Scholar] [CrossRef]
- Hong, W.; Guo, X.; Zhang, T.; Zhang, A.; Yan, Z.; Zhang, X.; Li, X.; Guan, Y.; Liao, D.; Lu, H.; et al. Flexible Capacitive Pressure Sensor with High Sensitivity and Wide Range Based on a Cheetah Leg Structure via 3D Printing. ACS Appl. Mater. Interfaces 2023, 15, 46347–46356. [Google Scholar] [CrossRef] [PubMed]
- Qin, R.; Nong, J.; Wang, K.; Liu, Y.; Zhou, S.; Hu, M.; Zhao, H.; Shan, G. Recent Advances in Flexible Pressure Sensors Based on MXene Materials. Adv. Mater. 2024, 36, 2312761. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Miao, C.; Lu, S.; Liu, X.; Yang, Y.; Sun, J. Strain Sensors Made of MXene, CNTs, and TPU/PSF Asymmetric Structure Films with Large Tensile Recovery and Applied in Human Health Monitoring. ACS Appl. Mater. Interfaces 2023, 15, 59655–59670. [Google Scholar] [CrossRef]
- Liu, Z.; Zheng, Y.; Jin, L.; Chen, K.; Zhai, H.; Huang, Q.; Chen, Z.; Yi, Y.; Umar, M.; Xu, L.; et al. Highly Breathable and Stretchable Strain Sensors with Insensitive Response to Pressure and Bending. Adv. Funct. Mater. 2021, 31, 2007622. [Google Scholar] [CrossRef]
- Dang, S.; Guo, J.; Deng, Y.; Yu, H.; Zhao, H.; Wang, D.; Zhao, Y.; Song, C.; Chen, J.; Ma, M.; et al. Highly-Buckled Nanofibrous Ceramic Aerogels with Ultra-Large Stretchability and Tensile-Insensitive Thermal Insulation. Adv. Mater. 2025, 37, 2415159. [Google Scholar] [CrossRef]
- Fang, F.; Wang, H.; Wang, H.; Huang, W.M.; Chen, Y.; Cai, N.; Chen, X.; Chen, X. Stimulus-Responsive Shrinkage in Electrospun Membranes: Fundamentals and Control. Micromachines 2021, 12, 920. [Google Scholar] [CrossRef]
- Akhlamadi, G.; Goharshadi, E.K.; Liimatainen, H. Ultrahigh fluid sorption capacity of superhydrophobic and tough cryogels of cross-linked cellulose nanofibers, cellulose nanocrystals, and Ti3C2Tx MXene nanosheets. J. Mater. Chem. A 2022, 10, 24746–24760. [Google Scholar] [CrossRef]
- Echols, I.J.; Yun, J.; Cao, H.; Thakur, R.M.; Sarmah, A.; Tan, Z.; Littleton, R.; Radovic, M.; Green, M.J.; Lutkenhaus, J.L. Conformal Layer-by-Layer Assembly of Ti3C2Tz MXene-Only Thin Films for Optoelectronics and Energy Storage. Chem. Mater. 2022, 34, 4884–4895. [Google Scholar] [CrossRef]
- Pi, M.; Jiang, L.; Wang, Z.; Cui, W.; Shi, L.; Ran, R. Robust and ultrasensitive hydrogel sensors enhanced by MXene/cellulose nanocrystals. J. Mater. Sci. 2021, 56, 8871–8886. [Google Scholar] [CrossRef]
- Liu, W.; Xue, C.; Long, X.; Ren, Y.; Chen, Z.; Zhang, W. Highly flexible and multifunctional CNTs/TPU fiber strain sensor formed in one-step via wet spinning. J. Alloys Compd. 2023, 948, 169641. [Google Scholar] [CrossRef]
- Ai, J.; Wang, Q.; Li, Z.; Lu, D.; Liao, S.; Qiu, Y.; Xia, X.; Wei, Q. Highly Stretchable and Fluorescent Visualizable Thermoplastic Polyurethane/Tetraphenylethylene Plied Yarn Strain Sensor with Heterogeneous and Cracked Structure for Human Health Monitoring. ACS Appl. Mater. Interfaces 2023, 16, 1428–1438. [Google Scholar] [CrossRef]
- Pu, J.-H.; Zhao, X.; Zha, X.-J.; Bai, L.; Ke, K.; Bao, R.-Y.; Liu, Z.-Y.; Yang, M.-B.; Yang, W. Multilayer structured AgNW/WPU-MXene fiber strain sensors with ultrahigh sensitivity and a wide operating range for wearable monitoring and healthcare. J. Mater. Chem. A 2019, 7, 15913–15923. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Yang, Y.; Gu, J.-D.; Ke, K.; Yin, B.; Yang, M.-B. Aligned wave-like elastomer fibers with robust conductive layers via electroless deposition for stretchable electrode applications. J. Mater. Chem. B 2021, 9, 8801–8808. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Luo, X.; Song, Z.; Bai, Y.; Zhang, B.; Zhang, G. Ultra-Robust and Sensitive Flexible Strain Sensor for Real-Time and Wearable Sign Language Translation. Adv. Funct. Mater. 2023, 33, 2303504. [Google Scholar] [CrossRef]
- Ren, M.; Zhou, Y.; Wang, Y.; Zheng, G.; Dai, K.; Liu, C.; Shen, C. Highly stretchable and durable strain sensor based on carbon nanotubes decorated thermoplastic polyurethane fibrous network with aligned wave-like structure. Chem. Eng. J. 2019, 360, 762–777. [Google Scholar] [CrossRef]
- Su, L.; Liang, M.; Wang, J.; Xin, X.; Jiao, Y.; Wang, C.; Zhang, Y.; Yao, Z. Robust orientation-3D conductive network enabled high-performance flexible sensor for traffic monitoring: Role of surface functionalization on self-assembled microspheres arrays. Chem. Eng. J. 2023, 468, 143564. [Google Scholar] [CrossRef]
- Zhao, X.; Guo, H.; Ding, P.; Zhai, W.; Liu, C.; Shen, C.; Dai, K. Hollow-porous fiber-shaped strain sensor with multiple wrinkle-crack microstructure for strain visualization and wind monitoring. Nano Energy 2023, 108, 108197. [Google Scholar] [CrossRef]
- Wang, M.; Ma, C.; Uzabakiriho, P.C.; Chen, X.; Chen, Z.; Cheng, Y.; Wang, Z.; Zhao, G. Stencil Printing of Liquid Metal upon Electrospun Nanofibers Enables High-Performance Flexible Electronics. ACS Nano 2021, 15, 19364–19376. [Google Scholar] [CrossRef]
- Yang, G.; Luo, H.; Ding, Y.; Yang, J.; Li, Y.; Ma, C.; Yan, J.; Zhuang, X. Hierarchically Structured Carbon Nanofiber-Enabled Skin-Like Strain Sensors with Full-Range Human Motion Monitoring and Autonomous Self-Healing Capability. ACS Appl. Mater. Interfaces 2023, 15, 7380–7391. [Google Scholar] [CrossRef]
- Guo, S.; Qi, J.; Wang, Y.; Liu, Z.; Li, J. A Flexible Impact Sensor of Interpenetrating-Phase Composite Architecture with High Mechanical Stability and Energy-Absorbing Capability. Adv. Funct. Mater. 2024, early view. 2419882. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Z.; Song, S.; Chen, X.; Li, X.; Li, J. Ultra-Stretchable Polymer Fibers Anchored with a Triple-Level Self-Assembled Conductive Network for Wide-Range Strain Detection. Polymers 2025, 17, 734. https://doi.org/10.3390/polym17060734
Zheng Z, Song S, Chen X, Li X, Li J. Ultra-Stretchable Polymer Fibers Anchored with a Triple-Level Self-Assembled Conductive Network for Wide-Range Strain Detection. Polymers. 2025; 17(6):734. https://doi.org/10.3390/polym17060734
Chicago/Turabian StyleZheng, Zhong, Shuyi Song, Xun Chen, Xixing Li, and Jing Li. 2025. "Ultra-Stretchable Polymer Fibers Anchored with a Triple-Level Self-Assembled Conductive Network for Wide-Range Strain Detection" Polymers 17, no. 6: 734. https://doi.org/10.3390/polym17060734
APA StyleZheng, Z., Song, S., Chen, X., Li, X., & Li, J. (2025). Ultra-Stretchable Polymer Fibers Anchored with a Triple-Level Self-Assembled Conductive Network for Wide-Range Strain Detection. Polymers, 17(6), 734. https://doi.org/10.3390/polym17060734