Open AccessArticle
Adhesion of Mesenchymal Stem Cells to Glycated Collagen—Comparative Analysis of Dynamic and Static Conditions
by
Regina Komsa-Penkova, Anika Alexandrova-Watanabe, Svetla Todinova, Violina Ivanova, Svetoslava Stoycheva, Petar Temnishki, Borislav Dimitrov, Dobromir Dimitrov, Pencho Tonchev, Galya Georgieva, Aleksandar Kukov, Izabela Ivanova, Tihomir Tiankov, Emilia Abadjieva, Velichka Strijkova and George Altankov
Viewed by 281
Abstract
Understanding mesenchymal stem cell (MSC) behavior on glycated collagen is crucial for advancing regenerative medicine and understanding pathological mechanisms in diseases such as diabetes, cancer, and aging. While previous research has demonstrated reduced MSC interaction with glycated collagen under static conditions due to
[...] Read more.
Understanding mesenchymal stem cell (MSC) behavior on glycated collagen is crucial for advancing regenerative medicine and understanding pathological mechanisms in diseases such as diabetes, cancer, and aging. While previous research has demonstrated reduced MSC interaction with glycated collagen under static conditions due to disrupted integrin signaling, these studies did not accurately replicate the dynamic mechanical environment that MSCs encounter in vivo. Here we present a comprehensive investigation comparing adipose-derived MSC (ADMSC) behavior under both dynamic flow conditions and static adhesion, revealing unexpected temporal dynamics and challenging existing paradigms of cell–matrix interactions. Using a sophisticated microfluidic BioFlux system combined with traditional static adhesion assays, we examined ADMSC interactions with native collagen for 1-day glycated (GL1), and 5-day glycated (GL5) samples. Under flow conditions, MSCs demonstrated remarkably rapid attachment—within 3–5 min—contrasting sharply with the classical 2 h static incubation protocol. This rapid adhesion was particularly enhanced on 5-day glycated collagen, though subsequent testing revealed significantly weaker adhesion strength under shear stress compared to native collagen. Static conditions also showed a distinct pattern: increased ADMSC adhesion to glycated samples within the first 30 min, followed by a progressive decrease in adhesion and compromised cell spreading over longer periods. Atomic force microscopy (AFM) analysis revealed significant changes in collagen surface properties upon glycation. These included a substantial reduction in the negative surface charge (from ~800 to 600 mV), altered surface roughness patterns (Rrms varying from 3.0 ± 0.4 nm in native collagen to 7.70 ± 0.6 nm in GL5), and decreased elasticity (Young’s modulus dropping from 34.8 ± 5.4 MPa to 2.07 ± 0.3 MPa in GL5). These physical alterations appear to facilitate rapid initial cell attachment while potentially compromising long-term stable adhesion through traditional integrin-mediated mechanisms. This study provides novel insights into the complex dynamics of MSC adhesion to glycated collagen, revealing previously unknown temporal patterns and challenging existing models of cell–matrix interactions. The findings suggest a need for revised approaches in tissue engineering and regenerative medicine, particularly in conditions where glycated collagen is prevalent.
Full article
►▼
Show Figures