Polyimide Modified with Different Types and Contents of Polar/Nonpolar Groups: Synthesis, Structure, and Dielectric Properties
Abstract
:1. Introduction
2. Experimental Section
Synthesis and Preparation of PI Films
3. Results and Discussion
3.1. Synthesis and Characterization of PI Films: Thermal and Mechanical Properties
3.2. Electrical Insulation
3.3. Energy Storage Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kursumovic, A.; Li, W.W.; Cho, S.; Curran, P.J.; Tjhe, D.H.L.; MacManus-Driscoll, J.L. Lead-free relaxor thin films with huge energy density and low loss for high temperature applications. Nano Energy 2020, 71, 104536. [Google Scholar] [CrossRef]
- Qi, H.; Xie, A.; Zuo, R. Local structure engineered lead-free ferroic dielectrics for superior energy-storage capacitors: A review. Energy Storage Mater. 2022, 45, 541–567. [Google Scholar] [CrossRef]
- Su, Y.; Chen, C.; Wang, Y.; Yao, M.; Ma, R.; Zhang, W.; Yuan, Q.; Hu, D. Interface coupling and energy storage of inorganic–organic nanocomposites. J. Mater. Chem. A 2022, 10, 14187–14220. [Google Scholar] [CrossRef]
- Wang, P.; Guo, Y.; Zhou, D.; Li, D.; Pang, L.; Liu, W.; Su, J.; Shi, Z.; Sun, S. High-Temperature Flexible Nanocomposites with Ultra-High Energy Storage Density by Nanostructured MgO Fillers. Adv. Funct. Mater. 2022, 32. [Google Scholar] [CrossRef]
- Zha, J.-W.; Tian, Y.; Zheng, M.-S.; Wan, B.; Yang, X.; Chen, G. High-temperature energy storage polyimide dielectric materials: Polymer multiple-structure design. Mater. Today Energy 2023, 31, 101217. [Google Scholar] [CrossRef]
- Xu, W.-H.; Tang, Y.-D.; Yao, H.-Y.; Zhang, Y.-H. Dipolar Glass Polymers for Capacitive Energy Storage at Room Temperatures and Elevated Temperatures. Chin. J. Polym. Sci. 2022, 40, 711–725. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Moran, T.J.; Ortiz, L.A.; Wu, C.; Konstantinou, A.C.; Nguyen, H.; Zhou, J.; Huo, J.; Davis-Amendola, K.; et al. Interfacial 2D Montmorillonite Nanocoatings Enable Sandwiched Polymer Nanocomposites to Exhibit Ultrahigh Capacitive Energy Storage Performance at Elevated Temperatures. Adv. Sci. 2022, 9, 2204760. [Google Scholar] [CrossRef]
- Ai, D.; Li, H.; Zhou, Y.; Ren, L.; Han, Z.; Yao, B.; Zhou, W.; Zhao, L.; Xu, J.; Wang, Q. Tuning Nanofillers in In Situ Prepared Polyimide Nanocomposites for High-Temperature Capacitive Energy Storage. Adv. Energy Mater. 2020, 10, 1903881. [Google Scholar] [CrossRef]
- Liu, X.-J.; Zheng, M.-S.; Chen, G.; Dang, Z.-M.; Zha, J.-W. High-temperature polyimide dielectric materials for energy storage: Theory, design, preparation and properties. Energy Environ. Sci. 2022, 15, 56–81. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, X.m.; Pan, Z.; Liu, P.; Mao, M.; Song, K.; Mao, Z.; Sun, R.; Wang, D.; Zhang, S. Superior High-Temperature Energy Density in Molecular Semiconductor/Polymer All-Organic Composites. Adv. Funct. Mater. 2022, 33, 2210050. [Google Scholar] [CrossRef]
- Wang, P.-J.; Zhou, D.; Guo, H.-H.; Liu, W.-F.; Su, J.-Z.; Fu, M.-S.; Singh, C.; Trukhanov, S.; Trukhanov, A. Ultrahigh enhancement rate of the energy density of flexible polymer nanocomposites using core–shell BaTiO3@MgO structures as the filler. J. Mater. Chem. A 2020, 8, 11124–11132. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H.; Li, X.; Zhang, C.; Yu, W.; Zhou, L.; Yang, Q.; Shi, Z.; Xiong, C. Flexible dielectric film with high energy density based on chitin/boron nitride nanosheets. Chem. Eng. J. 2020, 383, 123147. [Google Scholar] [CrossRef]
- Li, Y.; Huang, T.; Chen, M.; Wu, L. Simultaneous exfoliation and functionalization of large-sized boron nitride nanosheets for enhanced thermal conductivity of polymer composite film. Chem. Eng. J. 2022, 442, 136237. [Google Scholar] [CrossRef]
- Wu, X.; Gandla, D.; Lei, L.; Chen, C.; Tan, D.Q. Superior discharged energy density in polyetherimide composites enabled by ultra-low ZnO@BN core-shell fillers. Mater. Lett. 2021, 290, 129434. [Google Scholar] [CrossRef]
- Zhang, K.; Ma, Z.; Fu, Q.; Deng, H. Multi-layered boron nitride/polyimide high-temperature capacitor dielectric film. Mater. Today Energy 2022, 29. [Google Scholar] [CrossRef]
- Coleman, J.N.; Lotya, M.; O’Neill, A.; Bergin, S.D.; King, P.J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R.J.; et al. Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science 2011, 331, 568–571. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Zhou, Y.; Zhu, Y.; Liang, J.; Wang, S.; Peng, S.; Li, Y.; Cheng, S.; Yang, M.; Hu, J.; et al. Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage. Nat. Commun. 2020, 11, 1–8. [Google Scholar] [CrossRef]
- Wu, C.; Deshmukh, A.A.; Li, Z.; Chen, L.; Alamri, A.; Wang, Y.; Ramprasad, R.; Sotzing, G.A.; Cao, Y. Flexible Temperature-Invariant Polymer Dielectrics with Large Bandgap. Adv. Mater. 2020, 32, 2000499. [Google Scholar] [CrossRef]
- Huang, X.; Sun, B.; Zhu, Y.; Li, S.; Jiang, P. High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Prog. Mater. Sci. 2019, 100, 187–225. [Google Scholar] [CrossRef]
- Luo, H.; Zhou, X.; Ellingford, C.; Zhang, Y.; Chen, S.; Zhou, K.; Zhang, D.; Bowen, C.R.; Wan, C. Interface design for high energy density polymer nanocomposites. Chem. Soc. Rev. 2019, 48, 4424–4465. [Google Scholar] [CrossRef]
- Zhu, T.; Yu, Q.; Zheng, W.; Bei, R.; Wang, W.; Wu, M.; Liu, S.; Chi, Z.; Zhang, Y.; Xu, J. Intrinsic high-k–low-loss dielectric polyimides containing ortho-position aromatic nitrile moieties: Reconsideration on Clausius–Mossotti equation. Polym. Chem. 2021, 12, 2481–2489. [Google Scholar] [CrossRef]
- Wu, Z.; Guo, Q.; Liu, Y.; Zhou, H.; Zheng, H.; Lei, X.; Gong, L.; Chen, Y.; Liu, Z.; Zhang, Q. Excellent Polyimide Dielectrics Containing Conjugated ACAT for High-Temperature Polymer Film Capacitor. Macromol. Mater. Eng. 2021, 306, 2100456. [Google Scholar] [CrossRef]
- Zhuang, Y.; Seong, J.G.; Lee, Y.M. Polyimides containing aliphatic/alicyclic segments in the main chains. Prog. Polym. Sci. 2019, 92, 35–88. [Google Scholar] [CrossRef]
- Ahmad, A.; Tong, H.; Fan, T.; Xu, J. All-organic polymer blend dielectrics of poly (arylene ether urea) and polyimide: Toward high energy density and high temperature applications. J. Polym. Sci. 2021, 59, 1414–1423. [Google Scholar] [CrossRef]
- Xiao, Y.; Chung, T.; Guan, H.; Guiver, M. Synthesis, cross-linking and carbonization of co-polyimides containing internal acetylene units for gas separation. J. Membr. Sci. 2007, 302, 254–264. [Google Scholar] [CrossRef]
- Cai, C.; Meng, X.; Zhang, L.; Luo, B.; Liu, Y.; Liu, T.; Zhang, S.; Wang, J.; Chi, M.; Gao, C.; et al. High Strength and Toughness Polymeric Triboelectric Materials Enabled by Dense Crystal-Domain Cross-Linking. Nano Lett. 2024, 24, 3826–3834. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Qiao, Y.; Qiu, D. Coordinatively Stiffen and Toughen Hydrogels with Adaptable Crystal-Domain Cross-Linking. Adv. Mater. 2023, 35, e2209913. [Google Scholar] [CrossRef] [PubMed]
- Mannodi-Kanakkithodi, A.; Pilania, G.; Huan, T.D.; Lookman, T.; Ramprasad, R. Machine Learning Strategy for Accelerated Design of Polymer Dielectrics. Sci. Rep. 2016, 6, 20952. [Google Scholar] [CrossRef] [PubMed]
- Mannodi-Kanakkithodi, A.; Treich, G.M.; Huan, T.D.; Ma, R.; Tefferi, M.; Cao, Y.; Sotzing, G.A.; Ramprasad, R. Rational Co-Design of Polymer Dielectrics for Energy Storage. Adv. Mater. 2016, 28, 6277–6291. [Google Scholar] [CrossRef]
- Sharma, V.; Wang, C.; Lorenzini, R.G.; Ma, R.; Zhu, Q.; Sinkovits, D.W.; Pilania, G.; Oganov, A.R.; Kumar, S.; Sotzing, G.A.; et al. Rational design of all organic polymer dielectrics. Nat. Commun. 2014, 5, 4845. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xie, J.; Fan, X.; Guo, X.; Xiao, Y.; Zhu, Q.; Jin, M. Charge transfer complexes (CTCs) with iodonium salts: Efficient initiators for single/two-photon polymerization. Eur. Polym. J. 2024, 210. [Google Scholar] [CrossRef]
- Gary, D.P.; Ngo, D.; Bui, A.; Pojman, J.A. Charge transfer complexes as dual thermal/photo initiators for free-radical frontal polymerization. J. Polym. Sci. 2022, 60, 1624–1630. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, X.; Zhu, G.; Li, M.; Zhang, X.; Yang, H.; Lin, B. Twisted ladder-like donor-acceptor polymers as electrode materials for flexible electrochromic supercapacitors. Electrochim. Acta 2020, 333, 135495. [Google Scholar] [CrossRef]
- Ding, X.; Pan, Z.; Zhang, Y.; Shi, S.; Cheng, Y.; Chen, H.; Li, Z.; Fan, X.; Liu, J.; Yu, J.; et al. Regulation of Interfacial Polarization and Local Electric Field Strength Achieved Highly Energy Storage Performance in Polyetherimide Nanocomposites at Elevated Temperature via 2D Hybrid Structure. Adv. Mater. Interfaces 2022, 9, 2201100. [Google Scholar] [CrossRef]
- Guo, Y.; Yang, X.; Ruan, K.; Kong, J.; Dong, M.; Zhang, J.; Gu, J.; Guo, Z. Reduced Graphene Oxide Heterostructured Silver Nanoparticles Significantly Enhanced Thermal Conductivities in Hot-Pressed Electrospun Polyimide Nanocomposites. ACS Appl. Mater. Interfaces 2019, 11, 25465–25473. [Google Scholar] [CrossRef]
- Ren, W.; Yang, M.; Zhou, L.; Fan, Y.; He, S.; Pan, J.; Tang, T.; Xiao, Y.; Nan, C.W.; Shen, Y. Scalable Ultrathin All-Organic Polymer Dielectric Films for High-Temperature Capacitive Energy Storage. Adv. Mater. 2022, 34, 7421. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.-x.; Takahara, H.; Imai, Y.; Aota, H. Electrical Conductivities of Narrow-Bandgap Polymers with Two Types of π-Conjugated Post-Crosslinking. Polymers 2022, 14, 2472. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Y.; Liu, Y.; Li, L.; Liu, Y.; Wang, Q. Dielectric polymers for high-temperature capacitive energy storage. Chem. Soc. Rev. 2021, 50, 6369–6400. [Google Scholar] [CrossRef]
- Tan, D.Q. The search for enhanced dielectric strength of polymer-based dielectrics: A focused review on polymer nanocomposites. J. Appl. Polym. Sci. 2020, 137, 49379. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, Y.; Huang, X.; Yu, C.; Han, D.; Wang, A.; Zhu, Y.; Shi, K.; Kang, Q.; Li, P.; et al. Ladderphane copolymers for high-temperature capacitive energy storage. Nature 2023, 615, 62–66. [Google Scholar] [CrossRef]
- Wang, H.; Yang, L. Dielectric constant, dielectric loss, conductivity, capacitance and model analysis of electronic electroactive polymers. Polym. Test. 2023, 120, 107965. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Q. Ferroelectric Polymers and Their Energy-Related Applications. Macromol. Chem. Phys. 2016, 217, 1228–1244. [Google Scholar] [CrossRef]
- Artbauer, J. Electric strength of polymers. J. Phys. D Appl. Phys. 1996, 29, 446–456. [Google Scholar] [CrossRef]
- Diaham, S.; Lambkin, P.; O’Sullivan, L.; Chen, B. Intrinsic AC Dielectric Breakdown Strength of Polyimide Films at the Extreme: New Breakthrough Insights on Thickness Dependence. Adv. Mater. Interfaces 2023, 11, 2300822. [Google Scholar] [CrossRef]
- Yang, Z.; Yue, D.; Yao, Y.; Li, J.; Chi, Q.; Chen, Q.; Min, D.; Feng, Y. Energy Storage Application of All-Organic Polymer Dielectrics: A Review. Polymers 2022, 14, 1160. [Google Scholar] [CrossRef]
- Ahmad, A.; Tong, H.; Fan, T.; Xu, J. Binary polymer blend of ArPTU/PI with advanced comprehensive dielectric properties and ultra-high thermally stability. J. Appl. Polym. Sci. 2021, 138, 50997. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, Q. Enhanced Dielectric and Electromechanical Responses in High Dielectric Constant All-Polymer Percolative Composites. Adv. Funct. Mater. 2004, 14, 501–506. [Google Scholar] [CrossRef]
- Peng, X.; Xu, W.; Chen, L.; Ding, Y.; Xiong, T.; Chen, S.; Hou, H. Development of high dielectric polyimides containing bipyridine units for polymer film capacitor. React. Funct. Polym. 2016, 106, 93–98. [Google Scholar] [CrossRef]
- Yang, T.; Xu, W.; Peng, X.; Hou, H. Crown ether-containing polyimides with high dielectric constant. RSC Adv. 2017, 7, 23309–23312. [Google Scholar] [CrossRef]
- Liao, X.; Ding, Y.; Chen, L.; Ye, W.; Zhu, J.; Fang, H.; Hou, H. Polyacrylonitrile-derived polyconjugated ladder structures for high performance all-organic dielectric materials. Chem. Commun. 2015, 51, 10127–10130. [Google Scholar] [CrossRef]
- Xu, W.; Ding, Y.; Jiang, S.; Ye, W.; Liao, X.; Hou, H. High permittivity nanocomposites fabricated from electrospun polyimide/BaTiO3 hybrid nanofibers. Polym. Compos. 2014, 37, 794–801. [Google Scholar] [CrossRef]
- Mao, X.; Wu, B.; Zhang, F.; Wang, C.; Deng, T.; Tang, X. Synthesis and characterization of polyimide/liquid acrylonitrile-butadiene rubber composite films. J. Mater. Sci. Mater. Electron. 2019, 30, 16080–16086. [Google Scholar] [CrossRef]
- Cheng, D.; Wang, H.; Liu, B.; Wang, S.; Li, Y.; Xia, Y.; Xiong, C. Dielectric properties and energy-storage performance of two-dimensional molybdenum disulfide nanosheets/polyimide composite films. J. Appl. Polym. Sci. 2019, 136, 47991. [Google Scholar] [CrossRef]
- Yao, Z.; Song, Z.; Hao, H.; Yu, Z.; Cao, M.; Zhang, S.; Lanagan, M.T.; Liu, H. Homogeneous/Inhomogeneous-Structured Dielectrics and their Energy-Storage Performances. Adv. Mater. 2017, 29, 1601727. [Google Scholar] [CrossRef]
- Aziz, S.B.; Woo, T.J.; Kadir, M.F.Z.; Ahmed, H.M. A conceptual review on polymer electrolytes and ion transport models. J. Sci. Adv. Mater. Devices 2018, 3, 1–17. [Google Scholar] [CrossRef]
- Zhang, G.; Li, Q.; Allahyarov, E.; Li, Y.; Zhu, L. Challenges and Opportunities of Polymer Nanodielectrics for Capacitive Energy Storage. ACS Appl. Mater. Interfaces 2021, 13, 37939–37960. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, C.; Feng, Y.; Zhang, T.; Chen, Q.; Chi, Q.; Liu, L.; Li, G.; Cui, Y.; Wang, X.; et al. Excellent energy storage performance and thermal property of polymer-based composite induced by multifunctional one-dimensional nanofibers oriented in-plane direction. Nano Energy 2019, 56, 138–150. [Google Scholar] [CrossRef]
- Palumbo, F.; Wen, C.; Lombardo, S.; Pazos, S.; Aguirre, F.; Eizenberg, M.; Hui, F.; Lanza, M. A Review on Dielectric Breakdown in Thin Dielectrics: Silicon Dioxide, High-k, and Layered Dielectrics. Adv. Funct. Mater. 2019, 30, 1900657. [Google Scholar] [CrossRef]
- Kudo, H.; Sudo, S.; Oka, T.; Hama, Y.; Oshima, A.; Washio, M.; Murakami, T. Ion-beam irradiation effects on polyimide-UV–vis and infrared spectroscopic study. Radiat. Phys. Chem. 2009, 78, 1067–1070. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687. [Google Scholar] [CrossRef]
- Yin, C.; Dong, J.; Tan, W.; Lin, J.; Chen, D.; Zhang, Q. Strain-induced crystallization of polyimide fibers containing 2-(4-aminophenyl)-5-aminobenzimidazole moiety. Polymer 2015, 75, 178–186. [Google Scholar] [CrossRef]
- Nørskov, J.K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J.R.; Bligaard, T.; Jónsson, H. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B 2004, 108, 17886–17892. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.J.; Sui, X.L.; Liu, C.; Zhuo, Y.L.; Li, Q.; Pan, H.; Wang, Z.B. Electrocatalysis Mechanism and Structure-Activity Relationship of Atomically Dispersed Metal-Nitrogen-Carbon Catalysts for Electrocatalytic Reactions. Small Methods 2023, 7, 2201524. [Google Scholar] [CrossRef]
PI-0 | PI-20% | PI-40% | PI-50% | PI-60% | PI-80% | PI-100% | |
---|---|---|---|---|---|---|---|
Eb (25 °C) | 247 | 295 | 372 | 211 | 493 | 323 | 450 |
b (25 °C) | 9 | 16 | 13 | 19 | 20 | 19 | 18 |
Eb (150 °C) | 186 | 217 | 264 | 144 | 474 | 260 | 434 |
b (150 °C) | 9 | 10 | 13 | 12 | 10 | 19 | 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Liu, J.; Yu, S.; Zhang, X.; Chen, Z. Polyimide Modified with Different Types and Contents of Polar/Nonpolar Groups: Synthesis, Structure, and Dielectric Properties. Polymers 2025, 17, 753. https://doi.org/10.3390/polym17060753
Li T, Liu J, Yu S, Zhang X, Chen Z. Polyimide Modified with Different Types and Contents of Polar/Nonpolar Groups: Synthesis, Structure, and Dielectric Properties. Polymers. 2025; 17(6):753. https://doi.org/10.3390/polym17060753
Chicago/Turabian StyleLi, Ting, Jie Liu, Shuhui Yu, Xiaojun Zhang, and Zhiqiang Chen. 2025. "Polyimide Modified with Different Types and Contents of Polar/Nonpolar Groups: Synthesis, Structure, and Dielectric Properties" Polymers 17, no. 6: 753. https://doi.org/10.3390/polym17060753
APA StyleLi, T., Liu, J., Yu, S., Zhang, X., & Chen, Z. (2025). Polyimide Modified with Different Types and Contents of Polar/Nonpolar Groups: Synthesis, Structure, and Dielectric Properties. Polymers, 17(6), 753. https://doi.org/10.3390/polym17060753