Silk-Sericin Release from Polymeric Scaffold as Complementary Dermocosmetic Treatment for Acne
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of Sericin
2.3. Materials Characterization
2.3.1. Fourier Transform Infrared Spectroscopy with Attenuated Total Reflection (ATR-FTIR)
2.3.2. Humidity Percentage
2.3.3. Ash Content
2.3.4. M/G Ratio of Sodium Alginate
2.3.5. Deacetylation Degree (DD) of Chitosan
2.3.6. Hydrodynamic Radius and Molecular Weight
2.3.7. Sericin Solution Characterization (Total Protein Concentration and pH)
2.4. Polymer Solutions Preparation
2.5. Scaffold Preparation
2.6. Scaffold Characterization
2.6.1. Fourier Transform Infrared Spectroscopy with Attenuated Total Reflection (ATR-FTIR)
2.6.2. Swelling Test
2.6.3. Sericin Release Study
2.7. Statistical Analysis
3. Results
3.1. Materials Characterization
3.1.1. Fourier Transform Infrared Spectroscopy with Attenuated Total Reflection (ATR-FTIR)
3.1.2. Humidity Percentage
3.1.3. Ash Content
3.1.4. Alginate M/G Ratio
3.1.5. Deacetylation Degree of Chitosan
3.1.6. Hydrodynamic Radius and Molecular Weight
3.1.7. Sericin Dissolution Characterization (Total Protein Concentration and pH)
3.2. Scaffold Characterization
3.2.1. Fourier Transform Infrared Spectroscopy with Attenuated Total Reflection (ATR-FTIR)
3.2.2. Swelling Test
3.2.3. Sericin Release Study
3.3. Multivariate Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rojas Cortés, M.G.; Vallejo Díaz, B.M.; Perilla, J.E. Los biopolímeros como materiales para el desarrollo de productos en aplicaciones farmacéuticas y de uso biomédico. Ing. Investig. 2008, 28, 57–71. [Google Scholar] [CrossRef]
- Aggarwal, J.; Sharma, S.; Kamyab, H.; Kumar, A. The realm of biopolymers and their usage: An overview. J. Environ. Treat. Tech. 2020, 8, 1005–1016. [Google Scholar]
- Seifi, S.; Shamloo, A.; Barzoki, A.K.; Bakhtiari, M.A.; Zare, S.; Cheraghi, F.; Peyrovan, A. Engineering biomimetic scaffolds for bone regeneration: Chitosan/alginate/polyvinyl alcohol-based double-network hydrogels with carbon nanomaterials. Carbohydr. Polym. 2024, 339, 122232. [Google Scholar] [CrossRef] [PubMed]
- Corvi, R.; Spielmann, H.; Hartung, T. Chapter 3.6—Alternative Approaches for Carcinogenicity and Reproductive Toxicity. In The History of Alternative Test Methods in Toxicology; Balls, M., Combes, R., Worth, A., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 209–217. [Google Scholar]
- Williams, H.C.; Dellavalle, R.P.; Garner, S. Acne vulgaris. Lancet 2012, 379, 361–372. [Google Scholar] [CrossRef]
- Tan, J.; Alexis, A.; Baldwin, H.; Beissert, S.; Bettoli, V.; Del Rosso, J.; Dréno, B.; Gold, L.S.; Harper, J.; Luynde, C.; et al. The Personalised Acne Care Pathway—Recommendations to guide longitudinal management from the Personalising Acne: Consensus of Experts. J. Am. Acad. Dermatol. Int. 2021, 5, 101–111. [Google Scholar] [CrossRef]
- Ogé, L.K.; Broussard, A.; Marshall, M.D. Acne Vulgaris: Diagnosis and Treatment. Am. Fam. Physician 2019, 100, 475–484. [Google Scholar]
- Conforti, C.; Giuffrida, R.; Fadda, S.; Fai, A.; Romita, P.; Zalaudek, I.; Dianzani, C. Topical dermocosmetics and acne vulgaris. Dermatol. Ther. 2021, 34, e14436. [Google Scholar] [CrossRef]
- Peyravian, N.; Deo, S.; Daunert, S.; Jimenez, J.J. The anti-inflammatory effects of Cannabidiol (CBD) on acne. J. Inflamm. Res. 2022, 15, 2795–2801. [Google Scholar] [CrossRef]
- Filippov, M.; Kohn, R. Determination of composition of alginates by infrared spectroscopic method. Chem. Zvesti 1974, 28, 817–819. [Google Scholar]
- Kasaai, M.R. A review of several reported procedures to determine the degree of N-acetylation for chitin and chitosan using infrared spectroscopy. Carbohydr. Polym. 2008, 71, 497–508. [Google Scholar] [CrossRef]
- Campos, Y.; Sola, F.J.; Fuentes, G.; Quintanilla, L.; Almirall, A.; Cruz, L.J.; Rodríguez-Cabello, J.C.; Tabata, Y. The Effects of Crosslinking on the Rheology and Cellular Behavior of Polymer-Based 3D-Multilayered Scaffolds for Restoring Articular Cartilage. Polymers 2021, 13, 907. [Google Scholar] [CrossRef] [PubMed]
- Rashedy, S.H.; Abd El Hafez, M.S.; Dar, M.A.; Cotas, J.; Pereira, L. Evaluation and characterization of alginate extracted from brown seaweed collected in the Red Sea. Appl. Sci. 2021, 11, 6290. [Google Scholar] [CrossRef]
- Pawlak, A.; Mucha, M. Thermogravimetric and FTIR studies of chitosan blends. Thermochim. Acta 2003, 396, 153–166. [Google Scholar] [CrossRef]
- Seo, S.J.; Das, G.; Shin, H.S.; Patra, J.K. Silk Sericin Protein Materials: Characteristics and Applications in Food-Sector Industries. Int. J. Mol. Sci. 2023, 24, 4951. [Google Scholar] [CrossRef]
- Hasan, M.M.; Uddin, M.F.; Zabin, N.; Shakil, M.S.; Alam, M.; Achal, F.J.; Ara Begum, M.H.; Hossen, M.S.; Hasan, M.A.; Morshed, M.M. Fabrication and Characterization of Chitosan-Polyethylene Glycol (Ch-Peg) Based Hydrogels and Evaluation of Their Potency in Rat Skin Wound Model. Int. J. Biomater. 2021, 2021, 4877344. [Google Scholar] [CrossRef]
- Hong, F.; Qiu, P.; Wang, Y.; Ren, P.; Liu, J.; Zhao, J.; Gou, D. Chitosan-based hydrogels: From preparation to applications, a review. Food Chem. X 2024, 21, 101095. [Google Scholar] [CrossRef]
- Nascimento, E.G.; Sampaio, T.B.; Medeiros, A.C.; Azevedo, E.P. Evaluation of chitosan gel with 1% silver sulfadiazine as an alternative for burn wound treatment in rats. Acta Cir. Bras. 2009, 24, 460–465. [Google Scholar] [CrossRef]
- He, A.; Yan, H.; Zheng, G.; Zhou, R.; Li, Y.; Ye, Z.; Zhang, C. A high-sensitive capacitive humidity sensor based on chitosan-sodium chloride composite material. Colloids Surf. A Physicochem. Eng. Asp. 2024, 699, 134740. [Google Scholar] [CrossRef]
- Dalal, S.R.; Hussein, M.H.; El-Naggar, N.E.-A.; Mostafa, S.I.; Shaaban-Dessuuki, S.A. Characterization of alginate extracted from Sargassum latifolium and its use in Chlorella vulgaris growth promotion and riboflavin drug delivery. Sci. Rep. 2021, 11, 16741. [Google Scholar] [CrossRef]
- Torres, B.S.O.; Torres, O.B.; López, J.A.H.; Esteban, P.P. Obtención de quitosano a partir de residuos pesqueros y su valoración potenciométrica. Braz. J. Sci. 2023, 2, 32–38. [Google Scholar] [CrossRef]
- Hernández Cocoletzi, H.; Águila Almanza, E.; Flores Agustin, O.; Viveros Nava, E.; Ramos Cassellis, E. Obtención y caracterización de quitosano a partir de exoesqueletos de camarón. Superf. Vacío 2009, 22, 57–60. [Google Scholar]
- Sáenz-Mendoza, A.; Zamudio-Flores, P.; Palomino-Artalejo, G.; Tirado-Gallegos, J.; García-Cano, V.; Ornelas-Paz, J.; Rios-Velasco, C.; Acosta-Muñiz, C.; Vargas-Torres, A.; Salgado-Delgado, R. Caracterización fisicoquímica, morfológica y estructural de la quitina y quitosano de los insectos Tenebrio molitor y Galleria mellonella. Rev. Mex. Ing. Química 2019, 18, 39–56. [Google Scholar]
- Chakavala, S.R.; Patel, N.G.; Pate, N.V.; Thakkar, V.T.; Patel, K.V.; Gandhi, T.R. Development and in vivo evaluation of silver sulfadiazine loaded hydrogel consisting polyvinyl alcohol and chitosan for severe burns. J. Pharm. Bioallied Sci. 2012, 4, S54–S56. [Google Scholar] [CrossRef] [PubMed]
- Ayala, A.; Colina, M.; Molina, J.; Vargas, J.; Rincón, D.; Medina, J.; Rosales, L.; Cárdenas, H. Evaluación de la actividad antifúngica del quitosano contra el hongo Mycosphaerella fijiensis Morelet que produce la sigatoka negra que ataca el plátano. Rev. Iberoam. Polímeros 2014, 15, 312–338. [Google Scholar]
- Rodríguez-Montesinos, Y.; Hernández-CarmonaI, G. Variación estacional y geográfica en la composición química de Macrocystis pyrifera en la costa occidental de Baja California. Cienc. Mar. 1991, 17, 91–97. [Google Scholar] [CrossRef]
- Fertah, M.; Belfkira, A.; Dahmane, E.m.; Taourirte, M.; Brouillette, F. Extraction and characterization of sodium alginate from Moroccan Laminaria digitata brown seaweed. Arab. J. Chem. 2017, 10, S3707–S3714. [Google Scholar] [CrossRef]
- Rehm, B.H.; Ghods, S.; Moradali, M.F. Alginate Biosynthesis and Biotechnological Production. In Alginates and Their Biomedical Applications; Rehm, B.H., Moradali, M.F., Eds.; Springer: Berlin, Germany, 2018; Volume 11, pp. 1–25. [Google Scholar]
- Şen, M. Effects of molecular weight and ratio of guluronic acid to mannuronic acid on the antioxidant properties of sodium alginate fractions prepared by radiation-induced degradation. Appl. Radiat. Isot. 2011, 69, 126–129. [Google Scholar] [CrossRef]
- Brugnerotto, J.; Lizardi, J.; Goycoolea, F.; Argüelles-Monal, W.; Desbrieres, J.; Rinaudo, M. An infrared investigation in relation with chitin and chitosan characterization. Polymer 2001, 42, 3569–3580. [Google Scholar] [CrossRef]
- Aranaz, I.; Alcántara, A.R.; Civera, M.C.; Arias, C.; Elorza, B.; Heras Caballero, A.; Acosta, N. Chitosan: An Overview of Its Properties and Applications. Polymers 2021, 13, 3256. [Google Scholar] [CrossRef]
- Dodero, A.; Donati, I.; Scarfì, S.; Mirata, S.; Alberti, S.; Lova, P.; Comoretto, D.; Alloisio, M.; Vicini, S.; Castellano, M. Effect of sodium alginate molecular structure on electrospun membrane cell adhesion. Mater. Sci. Eng. C 2021, 124, 112067. [Google Scholar] [CrossRef]
- Feng, L.; Cao, Y.; Xu, D.; Wang, S.; Zhang, J. Molecular weight distribution, rheological property and structural changes of sodium alginate induced by ultrasound. Ultrason. Sonochem. 2017, 34, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Román-Doval, R.; Torres-Arellanes, S.P.; Tenorio-Barajas, A.Y.; Gómez-Sánchez, A.; Valencia-Lazcano, A.A. Chitosan: Properties and Its Application in Agriculture in Context of Molecular Weight. Polymers 2023, 15, 2867. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Kishor, R. Chapter 1—Chitin and chitosan: Origin, properties, and applications. In Handbook of Chitin and Chitosan; Gopi, S., Thomas, S., Pius, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–33. [Google Scholar]
- Arancibia, M.Y.; López-Caballero, M.E.; Gómez-Guillén, M.C.; Fernández-García, M.; Fernández-Martín, F.; Montero, P. Antimicrobial and rheological properties of chitosan as affected by extracting conditions and humidity exposure. LWT Food Sci. Technol. 2015, 60, 802–810. [Google Scholar] [CrossRef]
- Gupta, D.; Agrawal, A.; Rangi, A. Extraction and characterization of silk sericin. Indian J. Fibre Text. Res. 2014, 39, 364–372. [Google Scholar]
- Bascou, R.; Hardouin, J.; Ben Mlouka, M.A.; Guénin, E.; Nesterenko, A. Detailed investigation on new chemical-free methods for silk sericin extraction. Mater. Today Commun. 2022, 33, 104491. [Google Scholar] [CrossRef]
- Azcona Barbed, L. Higiene facial: Estética y salud. Farm. Prof. 2003, 17, 66–69. [Google Scholar]
- Xu, K.; Ganapathy, K.; Andl, T.; Wang, Z.; Copland, J.A.; Chakrabarti, R. 3D porous chitosan-alginate scaffold stiffness promotes differential responses in prostate cancer cell lines. Biomaterials 2019, 217, 119311. [Google Scholar] [CrossRef]
- Escalona Rayo, O.; Quintanar Guerrero, D. Nanogeles poliméricos: Una nueva alternativa para la administración de fármacos. Rev. Mex. Cienc. Farm. 2014, 45, 17–38. [Google Scholar]
- Ramirez, A.; Benítez, J.L.; Rojas de Astudillo, L.; Rojas de Gáscue, B. Materiales polimeros de tipo hidrogeles: Revisión sobre su caracterización mediante FTIR, DSC, MEB y MET. Rev. Latinoam. Metal. Mater. 2016, 36, 108–130. [Google Scholar]
- Pinzón, N.; Espinosa, A.; Perilla, J.; Hernáez, E.; Katime, I. Modelamiento del hinchamiento y difusión de solutos en hidrogeles. Rev. Iberoam. Polímeros 2002, 3, 38–53. [Google Scholar]
- Korsmeyer, R.W.; Peppas, N.A. Effect of the morphology of hydrophilic polymeric matrices on the diffusion and release of water soluble drugs. J. Membr. Sci. 1981, 9, 211–227. [Google Scholar] [CrossRef]
- Berens, A.R.; Hopfenberg, H.B. Diffusion and relaxation in glassy polymer powders: 2. Separation of diffusion and relaxation parameters. Polymer 1978, 19, 489–496. [Google Scholar] [CrossRef]
- Valles, E.; Durando, D.; Katime, I.; Mendizabal, E.; Puig, J. Equilibrium swelling and mechanical properties of hydrogels of acrylamide and itaconic acid or its esters. Polym. Bull. 2000, 44, 109–114. [Google Scholar] [CrossRef]
- Adepu, S.; Ramakrishna, S. Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules 2021, 26, 5905. [Google Scholar] [CrossRef]
- Ortiz-García, T.; Rapado-Paneque, M.; Peniche-Covas, C. Hidrogeles superabsorbentes basados en poliacrilamida para aplicación agrícola: Estudio de hinchamiento. Rev. Cuba. Química 2021, 33, 46–68. [Google Scholar]
- Moustafa, R.E. Andrews curves. Wiley Interdiscip. Rev. Comput. Stat. 2011, 3, 373–382. [Google Scholar] [CrossRef]
- Kwak, I.Y.; Huh, M.-H. Andrews’ Plots for Extended Uses. Korean Commun. Stat. 2008, 15, 65–72. [Google Scholar] [CrossRef]
- Andrews, D.F. Plots of High-Dimensional Data. Biometrics 1972, 28, 125–136. [Google Scholar] [CrossRef]
- Kim, M.-K.; Kwak, H.-W.; Lee, J.-Y.; Yun, H.-S.; Kim, M.-H.; Lee, K.-H. Effect of lyoprotectant on the solubility and structure of silk sericin. Int. J. Ind. Entomol. 2012, 25, 133–137. [Google Scholar] [CrossRef]
- Guerreo Álvarez, D.E.; Baena, L.M. Caracterización fisicoquímica y propiedades morfológicas de quitina y quitosano de Bombyx mori L. Híbrido Pílamo 1. Acta Agron. 2022, 71, 29–38. [Google Scholar] [CrossRef]
- Sánchez Espinosa, K.C.; Almaguer Chávez, M.; Pérez Ramírez, I.; Rojas Flores, T.I.; Aira Rodríguez, M.J. Diversidad fúngica en la atmósfera de La Habana (Cuba) durante tres períodos poco lluviosos. Rev. Int. Contam. Ambient. 2019, 35, 137–150. [Google Scholar] [CrossRef]
- Seog, E.-J.; Zuo, L.; Lee, J.-H.; Rhim, J.-W. Kinetics of water vapor absorption by sodium alginate-based films. Prev. Nutr. Food Sci. 2008, 13, 28–32. [Google Scholar] [CrossRef]
- Tønnesen, H.H.; Karlsen, J. Alginate in Drug Delivery Systems. Drug Dev. Ind. Pharm. 2002, 28, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Zhou, J.; Zeng, Y.; Wang, Y.-n.; Shi, B. Preparation of oxidized sodium alginate with different molecular weights and its application for crosslinking collagen fiber. Carbohydr. Polym. 2017, 157, 1650–1656. [Google Scholar] [CrossRef]
- Li, P.; Zhao, J.; Chen, Y.; Cheng, B.; Yu, Z.; Zhao, Y.; Yan, X.; Tong, Z.; Jin, S. Preparation and characterization of chitosan physical hydrogels with enhanced mechanical and antibacterial properties. Carbohydr. Polym. 2017, 157, 1383–1392. [Google Scholar] [CrossRef]
- Álvarez Yabor, V.; Carrillo Recio, V. Acné fulminans: Presentación de 1 caso. Rev. Cuba. Med. 2001, 40, 75–77. [Google Scholar]
- Vaithanomsat, P.; Kitpreechavanich, V. Sericin separation from silk degumming wastewater. Sep. Purif. Technol. 2008, 59, 129–133. [Google Scholar] [CrossRef]
- Aramwit, P.; Kanokpanont, S.; De-Eknamkul, W.; Srichana, T. Monitoring of inflammatory mediators induced by silk sericin. J. Biosci. Bioeng. 2009, 107, 556–561. [Google Scholar] [CrossRef]
- Aramwit, P.; Towiwat, P.; Srichana, T. Anti-inflammatory potential of silk sericin. Nat. Prod. Commun. 2013, 8, 1934578X1300800424. [Google Scholar] [CrossRef]
- Aramwit, P.; Keongamaroon, O.; Siritientong, T.; Bang, N.; Supasyndh, O. Sericin cream reduces pruritus in hemodialysis patients: A randomized, double-blind, placebo-controlled experimental study. BMC Nephrol. 2012, 13, 119. [Google Scholar] [CrossRef]
- Aramwit, P.; Sangcakul, A. The effects of sericin cream on wound healing in rats. Biosci. Biotechnol. Biochem. 2007, 71, 2473–2477. [Google Scholar] [CrossRef] [PubMed]
- Lukić, M.; Pantelić, I.; Savić, S.D. Towards Optimal pH of the Skin and Topical Formulations: From the Current State of the Art to Tailored Products. Cosmetics 2021, 8, 69. [Google Scholar] [CrossRef]
- He, Z.; Jiao, C.; Wu, J.; Gu, J.; Liang, H.; Shen, L. Zn-doped chitosan/alginate multilayer coatings on porous hydroxyapatite scaffold with osteogenic and antibacterial properties. Int. J. Bioprinting 2023, 9, 668. [Google Scholar] [CrossRef]
- Baysal, K.; Aroguz, A.Z.; Adiguzel, Z.; Baysal, B.M. Chitosan/alginate crosslinked hydrogels: Preparation, characterization and application for cell growth purposes. Int. J. Biol. Macromol. 2013, 59, 342–348. [Google Scholar] [CrossRef]
- Grabska-Zielińska, S.; Sionkowska, A.; Carvalho, Â.; Monteiro, F.J. Biomaterials with potential use in bone tissue regeneration—Collagen/chitosan/silk fibroin scaffolds cross-linked by EDC/NHS. Materials 2021, 14, 1105. [Google Scholar] [CrossRef]
Polymer | Rh (nm) | Molecular Weight (kDa) |
---|---|---|
Alginate | 170 ± 20 | 85 ± 7 |
Chitosan | 36.3 ± 0.2 | 5.1 ± 0.2 |
Sericin | 32 ± 4 | 57.4 ± 0.3 |
Cosmetic | Limit Concentration (w/w) |
---|---|
Sericin powder | 5–30% |
Lotions and creams | 0.001–30.00% |
Nail cosmetics | 0.02–20.00% |
Bath and hair preparations | 0.02–2.00% |
νref (cm−1) | νexp (cm−1) | Assignment | |||
---|---|---|---|---|---|
0.0% | 0.5% | 1.0% | 1.5% | ||
3430 | 3430 | 3394 | 3394 | 3394 | ν(OH); ν(NH) |
2920 | 2931 | 2924 | 2932 | 2934 | ν(Csp3-H) |
1650 | 1672 | 1648 | 1648 | 1634 | ν(C=O) [Amide I] |
1590 | 1544 | 1566 | 1566 | 1566 | δ (NH2) [Amide II] |
Ge | kW | kLIB | nW | nLIB |
---|---|---|---|---|
0 | 4.156 | 0.48 | 0.40 | 0.20 |
0.5 | 6.184 | 0.323 | 0.35 | 0.13 |
1 | 8.448 | 0.476 | 0.26 | 0.23 |
1.5 | 2.979 | 0.597 | 0.39 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas González, A.; Pérez Ramos, P.; Pérez-Soriano, E.M.; Sola Dueñas, F.J.; Pérez Almazán, D.; García Couce, J.; Fuentes Estévez, G. Silk-Sericin Release from Polymeric Scaffold as Complementary Dermocosmetic Treatment for Acne. Polymers 2025, 17, 781. https://doi.org/10.3390/polym17060781
Vargas González A, Pérez Ramos P, Pérez-Soriano EM, Sola Dueñas FJ, Pérez Almazán D, García Couce J, Fuentes Estévez G. Silk-Sericin Release from Polymeric Scaffold as Complementary Dermocosmetic Treatment for Acne. Polymers. 2025; 17(6):781. https://doi.org/10.3390/polym17060781
Chicago/Turabian StyleVargas González, Arianna, Patricia Pérez Ramos, Eva María Pérez-Soriano, Francisco Javier Sola Dueñas, Denise Pérez Almazán, Jomarien García Couce, and Gastón Fuentes Estévez. 2025. "Silk-Sericin Release from Polymeric Scaffold as Complementary Dermocosmetic Treatment for Acne" Polymers 17, no. 6: 781. https://doi.org/10.3390/polym17060781
APA StyleVargas González, A., Pérez Ramos, P., Pérez-Soriano, E. M., Sola Dueñas, F. J., Pérez Almazán, D., García Couce, J., & Fuentes Estévez, G. (2025). Silk-Sericin Release from Polymeric Scaffold as Complementary Dermocosmetic Treatment for Acne. Polymers, 17(6), 781. https://doi.org/10.3390/polym17060781