Recent Advances in the Properties and Applications of Polyglycerol Fatty Acid Esters
Abstract
:1. Introduction
2. Properties of PGFEs
2.1. Hydrophile–Lipophile Balance
2.2. Surface Properties of PGFEs
PGFEs | CMC (mg/L) | γCMC (mN/m) | Interfacial Tension (mN/m) | Ref. |
---|---|---|---|---|
PG-2 monolaurate | 36.54 | 27.7 | 5.5 a | [38] |
PG-2 monooleate | 0.12 mmol/L | 27 | 5.5 | [39] |
PG-2 stearate (Enzymatic or chemical method) | - | - | ~2 b (0.4 g/L) | [41] |
PG-2 monoester | 39.09 | 31.96 | 4.81 c | [14] |
PG-2 diester | 28.12 | 33.54 | 7.22 c | [14] |
PG-2 triester | 15.80 | 35.99 | 7.45 c | [14] |
PG-3 monoester | 69.70 | 31.55 | 4.99 c | [14] |
PG-3 diester | 53.22 | 33.89 | 5.80 c | [14] |
PG-3 triester | 31.04 | 35.76 | 6.35 c | [14] |
PG-3 monolaurate | 78.91 | 31.4 | 1.7 a | [38] |
PG-4 monolaurate | 118.05 | 35.2 | 3.4 a | [38] |
PG-5 monolaurate | 168.15 | 39.6 | 5.3 a | [38] |
PG-10 mono-caprylate/caprate | 10–30 | 27.13 | 14 b | [22,40] |
PG-10 monolaurate | 30 | ~29 | 20 b | [22] |
PG-10 monostearate | - | - | 25 b | [22] |
2.3. Phase Behaviors of Various Systems Containing PGFEs
PGFEs | Systems | Phases 1 | Ref. |
---|---|---|---|
PGL6FA10 | PGFE/lecithin/n-decane | Om | [18] |
PGL10FA6 | Om | ||
PGL10FA10 | Om | ||
PGL10FA14 | Om | ||
PGL10FA18 | - | ||
PGL20FA10 | Om | ||
PGL40FA10 | Om | ||
PG-10 monolaurate | PGFE/ethanol/water | lamellar gel | [31] |
PG-10 monomyristate | |||
PG-10 monopalmitate | |||
PG-10 monostearate | |||
PG-2 monostearate | |||
PG-10 monostearate | PGFE/cetyl isooctanoate/water | Lα | [45] |
PG-x didodecanoates (x = 4.5, 7.3, 10.7, 21.3) | PGFE/water | Lα, Lα + W, H1, Wm | [46] |
PG-5 monostearate | PGFE/water | Lα + W, Lα (>46 °C), | [47] |
α-gel + W, α-gel (<46 °C) | |||
PG-5 monooleate | PGFE/water | Lα + W, Lα, Om | |
PGE 55 | PGFE/water | MLV + W, Lα (>58 °C) MLV + α-gel, α-gel (<58 °C) | [48,49] |
SY-Glyster ML-750 (PG-10 monolaurate) | (PGFE/polyglycerol polyricinoleate)/ | L3, Lc + L3, L3 + Wm + O, Wm + O | [50] |
SY-Glyster ML-550 (PG-6 monolaurate) | water/vegetable oil | Lα + L3, Lc + L3, L3 + Wm + O, Wm + O | |
SY-Glyster MM-750 (PG-10 monomyristate) | PGFE/polyglycerol polyricinoleate = 1:1 | L3, Lc + L3, L3 + Wm + O, Wm + O | |
SY-Glyster ML-550 (PG-6 monolaurate) | (PGFE/polyglycerol polyricinoleate)/ glycerol/vegetable oil PGFE/polyglycerol polyricinoleate = 1:1 | Lc + L3 + G, Lc + L3, Lc + L3 + O, Lc + L3 + G + O | [51] |
2.4. Stabilizing Effect on Foams and Emulsions
2.5. Stability of PGFEs
3. Applications of PGFEs
3.1. Food Field
3.1.1. Oils and Fats
3.1.2. Bioactive Ingredients
3.1.3. Other
3.2. Cosmetic Field
3.2.1. Emulsifying Agent
3.2.2. Cleansing Agent
3.2.3. Other
3.3. Pharmaceutical Field
3.3.1. Lipid-Based Excipients
3.3.2. Drug Carriers
3.3.3. Other
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fruijtier-Pölloth, C. Safety assessment on polyethylene glycols (PEGs) and their derivatives as used in cosmetic products. Toxicology 2005, 214, 1–38. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xia, J.; Ding, C.; Xu, B.; Wang, S.; Wu, Z.; Zhao, W. The formation and temperature stability of microemulsion emulsified by polyoxyethylene ether surfactant. Prog. Nat. Sci. Mater. Int. 2023, 33, 295–300. [Google Scholar] [CrossRef]
- Kandeel, E.M. Synthesis and Performance of Glycerol Ester-Based Nonionic Surfactants. J. Dispers. Sci. Technol. 2012, 33, 949–954. [Google Scholar] [CrossRef]
- Nagtode, V.S.; Cardoza, C.; Yasin, H.K.A.; Mali, S.N.; Tambe, S.M.; Roy, P.; Singh, K.; Goel, A.; Amin, P.D.; Thorat, B.R.; et al. Green Surfactants (Biosurfactants): A Petroleum-Free Substitute for Sustainability—Comparison, Applications, Market, and Future Prospects. ACS Omega 2023, 8, 11674–11699. [Google Scholar] [CrossRef]
- Cholakova, D.; Tcholakova, S. Sucrose ester surfactants: Current understanding and emerging perspectives. Curr. Opin. Colloid Interface Sci. 2024, 73, 101832. [Google Scholar] [CrossRef]
- Das, R.; Mallik, N.; Adhikari, A.; Bhattarai, A. A Comprehensive Review on the Creation, Description, and Utilization of Surfactants Containing Multiple Hydroxyl Groups. Int. J. Polym. Sci. 2024, 2024, 6120535. [Google Scholar] [CrossRef]
- Lémery, E.; Briançon, S.; Chevalier, Y.; Bordes, C.; Oddos, T.; Gohier, A.; Bolzinger, M.-A. Skin toxicity of surfactants: Structure/toxicity relationships. Colloids Surf. A Physicochem. Eng. Asp. 2015, 469, 166–179. [Google Scholar] [CrossRef]
- Lafranconi, M.; Anderson, J.; Budinsky, R.; Corey, L.; Forsberg, N.; Klapacz, J.; LeBaron, M.J. An integrated assessment of the 1,4-dioxane cancer mode of action and threshold response in rodents. Regul. Toxicol. Pharmacol. 2023, 142, 105428. [Google Scholar] [CrossRef]
- Pal, A.; Mondal, M.H.; Adhikari, A.; Bhattarai, A.; Saha, B. Scientific information about sugar-based emulsifiers: A comprehensive review. RSC Adv. 2021, 11, 33004–33016. [Google Scholar] [CrossRef]
- Ji, S.; Shen, W.; Chen, L.; Zhang, Y.; Wu, X.; Fan, Y.; Fu, F.; Chen, G. Synthesis and properties of sugar-based surfactants alkoxyethyl β-D-glucopyranoside. Colloids Surf. A Physicochem. Eng. Asp. 2019, 564, 59–68. [Google Scholar] [CrossRef]
- Szűts, A.; Szabó-Révész, P. Sucrose esters as natural surfactants in drug delivery systems—A mini-review. Int. J. Pharm. 2012, 433, 1–9. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Food Additives and Flavourings (FAF); Younes, M.; Aquilina, G.; Castle, L.; Engel, K.H.; Fowler, P.; Frutos Fernandez, M.J.; Gundert-Remy, U.; Gurtler, R.; Husøy, T.; et al. Follow-up of the re-evaluation of polyglycerol esters of fatty acids (E 475) as a food additive. EFSA J. 2022, 20, e07308. [Google Scholar] [CrossRef] [PubMed]
- Garti, N.; Aserin, A.; Zaidman, B. Polyglycerol esters: Optimization and techno-economic evaluation. J. Am. Oil Chem. Soc. 1981, 58, 878–883. [Google Scholar] [CrossRef]
- Rajput, Y.N.; Kulkarni, R.D. Unlocking the potential: Cost-efficient and sustainable synthesis of polyglycerol ester derivatives from industrial by-products, surface properties evaluation and development of moisturizing creams. Ind. Crops Prod. 2023, 204, 117291. [Google Scholar] [CrossRef]
- Damle, S.; Madankar, C. An overview on eco-friendly polyglycerol esters of fatty acid, synthesis and applications. Tenside Surfactants Deterg. 2023, 60, 611–621. [Google Scholar] [CrossRef]
- Griffin, W.C. Classification of surface-active agents by “HLB”. J. Soc. Cosmet. Chem. 1949, 1, 311–326. [Google Scholar]
- Fujita, A. Prediction of Organic Compounds by a Conceptional Diagram. Pharm. Bull. 1954, 2, 163–173. [Google Scholar] [CrossRef]
- Hashizaki, K.; Imai, M.; Yako, S.; Tsusaka, H.; Sakanishi, Y.; Saito, Y.; Fujii, M. Highly Viscoelastic Reverse Wormlike Micellar Systems from a Mixture of Lecithin, Polyglycerol Fatty Acid Monoesters, and an Oil. J. Oleo Sci. 2017, 66, 997–1007. [Google Scholar] [CrossRef]
- Han, W.; Chai, X.; Sun, Y.; Zaaboul, F.; Tan, C.-P.; Liu, Y. Different hydrophilic polyglycerol fatty acid esters interact with fat crystals and proteins at the interface to co-stabilize highly unsaturated whipped emulsions. Food Hydrocoll. 2024, 146, 109232. [Google Scholar] [CrossRef]
- Han, W.; Chai, X.; Zaaboul, F.; Sun, Y.; Tan, C.P.; Liu, Y. Synergistic effect of hydrophilic polyglycerol fatty acid esters and protein on the stability of interfacial membrane in low-fat aerated emulsions with different homogenization conditions. Food Chem. 2024, 435, 137584. [Google Scholar] [CrossRef]
- Shikhaliev, K.S.; Stolpovskaya, N.V.; Krysin, M.Y.; Zorina, A.V.; Lyapun, D.V.; Zubkov, F.I.; Yankina, K.Y. Production and Emulsifying Effect of Polyglycerol and Fatty Acid Esters with Varying Degrees of Esterification. J. Am. Oil Chem. Soc. 2016, 93, 1429–1440. [Google Scholar] [CrossRef]
- Stanimirova, R.D.; Danov, K.D.; Georgiev, M.T.; Petkov, J.T. Colloid, interface, and foam properties of water-soluble polyglycerol esters solutions. J. Colloid Interface Sci. 2025, 677, 250–263. [Google Scholar] [CrossRef] [PubMed]
- Hamada, H.; Kato, H.; Ito, N.; Takase, Y.; Nanbu, H.; Mishima, S.; Sakaki, H.; Sato, K. Effects of polyglycerol esters of fatty acids and ethylene-vinyl acetate co-polymer on crystallization behavior of biodiesel. Eur. J. Lipid Sci. Technol. 2010, 112, 1323–1330. [Google Scholar] [CrossRef]
- Kuriyama, J.; Miyaji, Y.; Tamura, K.; Zaliha, O.; Chong, C.L. Improved sustainable fractionation of palm oil using polyglycerol fatty acid esters. J. Oil Palm Res. 2011, 23, 1141–1145. [Google Scholar]
- Saw, M.H.; Hishamuddin, E.; Chong, C.L.; Yeoh, C.B.; Lim, W.H. Effect of polyglycerol esters additive on palm oil crystallization using focused beam reflectance measurement and differential scanning calorimetry. Food Chem. 2017, 214, 277–284. [Google Scholar] [CrossRef]
- Corzo, C.; Lopes, D.G.; Lochmann, D.; Reyer, S.; Stehr, M.; Salar-Behzadi, S. Novel approach for overcoming the stability challenges of lipid-based excipients. Part 1: Screening of solid-state and physical properties of polyglycerol esters of fatty acids as advanced pharmaceutical excipients. Eur. J. Pharm. Biopharm. 2020, 148, 134–147. [Google Scholar] [CrossRef]
- Liu, H.; Tang, Y.; Zhang, S.; Xu, X.; Yang, J. Synthesis of polyglycerol fatty acid esters catalyzed by lipase and evaluation of its emulsification properties. LWT 2023, 182, 114919. [Google Scholar] [CrossRef]
- Mustan, F.; Politova-Brinkova, N.; Vinarov, Z.; Rossetti, D.; Rayment, P.; Tcholakova, S. Interplay between bulk aggregates, surface properties and foam stability of nonionic surfactants. Adv. Colloid Interface Sci. 2022, 302, 102618. [Google Scholar] [CrossRef]
- Yan, G.; Wang, S.; Li, Y.; Zhang, J.; Ding, H.; Li, Y.; Zhang, L. Effect of Different Polymerization Degrees and Fatty Acids of Polyglycerol Esters on the Physical Properties and Whippability of Recombined Dairy Cream. Foods 2023, 12, 22. [Google Scholar] [CrossRef]
- Gupta, M.; Hooghten, R.V.; Fischer, P.; Gunes, D.Z.; Vermant, J. Limiting coalescence by interfacial rheology: Over-compressed polyglycerol ester layers. Rheol. Acta 2016, 55, 537–546. [Google Scholar] [CrossRef]
- Motoyama, T.; Katsuumi, Y.; Sasakura, H.; Nakamura, T.; Suzuki, H.; Tsuchiya, K.; Akamatsu, M.; Sakai, K.; Sakai, H. Preparation of Highly Stable Oil-in-Water Emulsions with High Ethanol Content Using Polyglycerol Monofatty Acid Esters as Emulsifiers. J. Oleo Sci. 2022, 71, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Dahl, V.; Friedrich, A.; Meyer, J.; Venzmer, J.; Belkoura, L.; Strey, R.; Mayer, C.; Michel, R.; Gradzielski, M. Structural Analysis of a Modern o/w-Emulsion Stabilized by a Polyglycerol Ester Emulsifier and Consistency Enhancers. Colloids Interfaces 2018, 2, 3. [Google Scholar] [CrossRef]
- Shahzadi, I.; Furst, A.; Knoll, P.; Bernkop-Schnurch, A. Nanostructured Lipid Carriers (NLCs) for Oral Peptide Drug Delivery: About the Impact of Surface Decoration. Pharmaceutics 2021, 13, 1312. [Google Scholar] [CrossRef] [PubMed]
- Gledovic, A.; Janosevic Lezaic, A.; Nikolic, I.; Tasic-Kostov, M.; Antic-Stankovic, J.; Krstonosic, V.; Randjelovic, D.; Bozic, D.; Ilic, D.; Tamburic, S.; et al. Polyglycerol Ester-Based Low Energy Nanoemulsions with Red Raspberry Seed Oil and Fruit Extracts: Formulation Development toward Effective In Vitro/In Vivo Bioperformance. Nanomaterials 2021, 11, 217. [Google Scholar] [CrossRef]
- Uchino, T.; Fujimori, S.; Hatta, I.; Miyazaki, Y.; Kamiya, D.; Fujino, H.; Suzuki, R.; Kirishita, Y.; Eda, T.; Murashima, K.; et al. Development of novel polyglycerol fatty acid ester-based nanoparticles for the dermal delivery of tocopherol acetate. Int. J. Pharm. 2021, 592, 120004. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Kimura, Z.; Misono, T.; Tsuchiya, K.; Sakai, K.; Abe, M.; Sakai, H. Preparation and Properties of Nonionic Vesicles Prepared with Polyglycerol Fatty Acid Esters Using the Supercritical Carbon Dioxide Reverse Phase Evaporation Method. J. Oleo Sci. 2016, 65, 201–206. [Google Scholar] [CrossRef]
- Zhang, G.; Bao, C.; Fu, K.; Lin, Y.; Li, T.; Yang, H. Synthesis, Characterization, Self-Assembly, and Irritation Studies of Polyglyceryl-10 Caprylates. Polymers 2020, 12, 294. [Google Scholar] [CrossRef]
- Kato, T.; Nakamura, T.; Yamashita, M.; Kawaguchi, M.; Kato, T.; Itoh, T. Surfactant properties of purified polyglycerol monolaurates. J. Surfactants Deterg. 2003, 6, 331–337. [Google Scholar] [CrossRef]
- Martínez, M.; Oliveros, R.; Aracil, J. Synthesis of Biosurfactants: Enzymatic Esterification of Diglycerol and Oleic Acid. 1. Kinetic Modeling. Ind. Eng. Chem. Res. 2011, 50, 6609–6614. [Google Scholar] [CrossRef]
- Pavoni, L.; Perinelli, D.R.; Ciacciarelli, A.; Quassinti, L.; Bramucci, M.; Miano, A.; Casettari, L.; Cespi, M.; Bonacucina, G.; Palmieri, G.F. Properties and stability of nanoemulsions: How relevant is the type of surfactant? J. Drug Deliv. Sci. Technol. 2020, 58, 101772. [Google Scholar] [CrossRef]
- Amari, J.; Sangiorgio, S.; Pargoletti, E.; Rabuffetti, M.; Zaccheria, F.; Usuelli, F.; Quaranta, V.; Speranza, G.; Cappelletti, G. Chemically vs. Enzymatically Synthesized Polyglycerol-Based Esters: A Comparison between Their Surfactancy. ACS Omega 2023, 8, 26405–26413. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhang, G.; Wang, P. Phase Behavior and Rheological Properties of AES/CAPB/H2O Ternary System. Appl. Sci. 2024, 14, 3605. [Google Scholar] [CrossRef]
- Godoy, C.A.; Valiente, M.; Muñoz, W.; Bonilla, P.; Pons, R.; Montalvo, G. Microstructural and Viscoelastic Properties of Liquid Crystal Phases of Soybean Lecithin with Olive and Castor Oils at Low Water Contents. J. Chem. Eng. Data 2023, 68, 1534–1542. [Google Scholar] [CrossRef]
- Denkov, N.; Tcholakova, S.; Cholakova, D. Surface phase transitions in foams and emulsions. Curr. Opin. Colloid Interface Sci. 2019, 44, 32–47. [Google Scholar] [CrossRef]
- Kuwabara, H.; Ogura, T.; Tsuchiya, K.; Akamatsu, M.; Arakawa, K.; Sakai, K.; Sakai, H. Structural Analysis of Interfacial Films of Oil/Water Emulsions Prepared by Emulsification via Lamellar Gels. J. Oleo Sci. 2024, 73, 1467–1477. [Google Scholar] [CrossRef]
- Kunieda, H.; Akahane, A.; Jin, F.; Ishitobi, M. Phase Behavior of Polyglycerol Didodecanoates in Water. J. Colloid Interface Sci. 2002, 245, 365–370. [Google Scholar] [CrossRef]
- Izquierdo, P.; Acharya, D.P.; Hirayama, K.i.; Asaoka, H.; Ihara, K.; Tsunehiro, T.; Shimada, Y.; Asano, Y.; Kokubo, S.; Kunieda, H. Phase Behavior of Pentaglycerol Monostearic and Monooleic Acid Esters in Water. J. Dispers. Sci. Technol. 2006, 27, 99–103. [Google Scholar] [CrossRef]
- Duerr-Auster, N.; Kohlbrecher, J.; Zuercher, T.; Gunde, R.; Fischer, P.; Windhab, E. Microstructure and Stability of a Lamellar Liquid Crystalline and Gel Phase Formed by a Polyglycerol Ester Mixture in Dilute Aqueous Solution. Langmuir 2007, 23, 12827–12834. [Google Scholar] [CrossRef]
- Curschellas, C.; Kohlbrecher, J.; Geue, T.; Fischer, P.; Schmitt, B.; Rouvet, M.; Windhab, E.J.; Limbach, H.J. Foams Stabilized by Multilamellar Polyglycerol Ester Self-Assemblies. Langmuir 2013, 29, 38–49. [Google Scholar] [CrossRef]
- Wakisaka, S.; Nakanishi, M.; Gohtani, S. Phase behavior and formation of o/w nano-emulsion in vegetable oil/ mixture of polyglycerol polyricinoleate and polyglycerin fatty acid ester/water systems. J. Oleo Sci. 2014, 63, 229–237. [Google Scholar] [CrossRef]
- Wakisaka, S.; Nishimura, T.; Gohtani, S. O/W nano-emulsion formation using an isothermal low-energy emulsification method in a mixture of polyglycerol polyricinoleate and hexaglycerol monolaurate with glycerol system. J. Oleo Sci. 2015, 64, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Duerr-Auster, N.; Eisele, T.; Wepf, R.; Gunde, R.; Windhab, E.J. Influence of pH on colloidal properties and surface activity of polyglycerol fatty acid ester vesicles. J. Colloid Interface Sci. 2008, 327, 446–450. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS); Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Dusemund, B.; Filipic, M.; Frutos, M.J.; Galtier, P.; Gott, D.; et al. Re-evaluation of polyglycerol esters of fatty acids (E 475) as a food additive. EFSA J. 2017, 15, e05089. [Google Scholar] [CrossRef]
- Norn, V. Polyglycerol Esters. In Emulsifiers in Food Technology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; pp. 181–208. [Google Scholar]
- Fiume, M.M.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Safety Assessment of Polyglyceryl Fatty Acid Esters as Used in Cosmetics. Int. J. Toxicol. 2023, 42, 5S–101S. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, E.; Öhlinger, K.; Meindl, C.; Corzo, C.; Lochmann, D.; Reyer, S.; Salar-Behzadi, S. In vitro toxicity screening of polyglycerol esters of fatty acids as excipients for pulmonary formulations. Toxicol. Appl. Pharmacol. 2020, 386, 114833. [Google Scholar] [CrossRef]
- Tong, S.C.; Tang, T.K.; Lee, Y.Y. A Review on the Fundamentals of Palm Oil Fractionation: Processing Conditions and Seeding Agents. Eur. J. Lipid Sci. Technol. 2021, 123, 2100132. [Google Scholar] [CrossRef]
- Tangsanthatkun, J.; Sonprasert, T.; Sonwai, S. The Effect of Polyglycerol Esters of Fatty Acids on the Crystallization of Palm Olein. J. Oleo Sci. 2021, 70, 309–319. [Google Scholar] [CrossRef]
- Saitou, K.; Taguchi, K.; Homma, R.; Shimizu, M.; Yasunaga, K.; Katsuragi, Y.; Ueno, S.; Sato, K. Retardation Mechanism of Crystallization of Diacylglycerols Resulting from the Addition of Polyglycerol Fatty Acid Esters. Cryst. Growth Des. 2017, 17, 4749–4756. [Google Scholar] [CrossRef]
- Saitou, K.; Homma, R.; Kudo, N.; Katsuragi, Y.; Sato, K. Retardation of Crystallization of Diacylglycerol Oils Using Polyglycerol Fatty Acid Esters. J. Am. Oil Chem. Soc. 2014, 91, 711–719. [Google Scholar] [CrossRef]
- Wan, F.; Teng, Y.; Zou, L.; Yang, X.; Chen, Q.; Li, A.; Wang, Y. Effect of Addition of Purified Diglycerol Linoleic Acid Esters on the Crystallization Behavior of Diacylglycerol Oils. J. Am. Oil Chem. Soc. 2016, 93, 1605–1614. [Google Scholar] [CrossRef]
- Li, Y.; Liao, T.; Liu, T.; Yan, R.; Sun, Z.; Zhao, M.; Deng, X.; Zhao, Q. The quality of whipped cream: Effect of polyglycerol ester on the crystallization of fat blend and the properties of interface. Food Hydrocoll. 2023, 145, 109145. [Google Scholar] [CrossRef]
- Mei Huey, S.A.W. Effect of Storage Temperature and Duration on Rheological and Thermal Characteristics of Superolein Oleogels. J. Oil Palm Res. 2022, 35, 256–267. [Google Scholar] [CrossRef]
- Saw, M.H.; Lim, W.H.; Yeoh, C.B.; Badlishah, S.B.; Tan, C.P. Screening of Organogelators for Structuring Palm Superolein. J. Oil Palm Res. 2020, 32, 152–158. [Google Scholar] [CrossRef]
- Meng, Z.; Guo, Y.; Wang, Y.; Liu, Y.F. Organogels based on the polyglyceryl fatty acid ester and sunflower oil: Macroscopic property, microstructure, interaction force, and application. Lwt-Food Sci. Technol. 2019, 116, 108590. [Google Scholar] [CrossRef]
- Buitimea-Cantúa, N.E.; Serna-Saldívar, S.O.; Pérez-Carrillo, E.; Jordânia-Silva, T.; Barrera-Arrellano, D.; Buitimea-Cantúa, G.V. Textural and rheological properties of soybean oil organogels structured with polyglycerol and propylene glycol esters during storage. Grasas Aceites 2022, 73, e443. [Google Scholar] [CrossRef]
- Aydeniz-Guneser, B.; Yilmaz, E. Sunflower Oil-Polyglycerol Stearate Oleogels: Alternative Deep-fat Frying Media for Onion Rings. J. Oleo Sci. 2022, 71, 651–662. [Google Scholar] [CrossRef]
- Mahjoob, R.; Hakimzadeh, V.; Salehi, E.A.; Farmani, J. The interaction of polyglycerol esters with sorbitan tristearate, and sorbitan monostearate in structuring a low-saturated fat. J. Food Meas. Charact. 2022, 16, 4174–4184. [Google Scholar] [CrossRef]
- Li, B.; Sun, S.; Chen, X.; Zhang, H. Enzymatic conversion of soapstock fatty acids from oil refining waste to biosurfactant using a low-cost liquid lipase and a new application as an antioxidant. Biomass Convers. Biorefin. 2022, 14, 3839–3851. [Google Scholar] [CrossRef]
- Chen, F.; Zhao, F.; Zhang, J.; Yu, L.; Zhang, G.; Liu, C.; Wang, N.; Xu, B. Development of polyglycerol fatty acid ester-based low-energy nanoemulsion for the improvement of curcumin stability. J. Dispers. Sci. Technol. 2020, 43, 605–611. [Google Scholar] [CrossRef]
- Shi, L.; Cheng, Y.; Jia, C.; Lin, H.; Zhang, W.; He, J. Stable complex of sodium caseinate and hexaglycerol monooleate with improved oil-in-water emulsion stability and curcumin encapsulation. Food Biophys. 2024, 19, 321–333. [Google Scholar] [CrossRef]
- Peng, B.; Xiong, C.Y.; Huang, Y.; Hu, J.N.; Zhu, X.M.; Deng, Z.Y. Enzymatic Synthesis of Polyglycerol Fatty Acid Esters and Their Application as Emulsion Stabilizers. J. Agric. Food Chem. 2018, 66, 8104–8113. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Xu, X.; Yang, J.; Ren, J. Impact of Emulsifier Structure and Concentration on Lipolysis Dynamics and Curcumin Bioaccessibility in the Nanoemulsions Stabilized by Polyglycerol Fatty Acid Esters. Food Biophys. 2022, 17, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Nagano, K.; Nakao, T.; Takeda, M.; Hirai, H.; Maekita, H.; Nakamura, M.; Imakawa, N.; Egawa, A.; Fujiwara, T.; Gao, J.Q.; et al. Polyglycerol fatty acid ester contributes to the improvement and maintenance of water solubility of amorphous curcumin by suppressing the intermolecular interaction and the diffusion rate of curcumin. Food Chem. 2024, 437, 137866. [Google Scholar] [CrossRef] [PubMed]
- Murakami, K.; Kageyama, H.; Hibino, T.; Zhang, Y.; Goto, M.; Honda, M. Preparation of Highly Stable Z-Isomer-Rich Lycopene Nanodispersions via a Continuous-Flow System with Selected Emulsifiers. Eur. J. Lipid Sci. Technol. 2022, 124, 2200034. [Google Scholar] [CrossRef]
- Iwase, H.; Kobayashi, J.; Kasama, Y.; Fujii, W.; Nanbu, H. Structural analysis of polyglycerol fatty acid ester-coenzyme Q10 aggregates in solution. Food Res. Int. 2024, 175, 113741. [Google Scholar] [CrossRef]
- Das, N.M.A.; Kobayashi, I.; Nakajima, M. Nanotechnology for bioactives delivery systems. J. Food Drug Anal. 2020, 20, 52. [Google Scholar] [CrossRef]
- Xie, H.; Ni, F.; Liu, C.; Shi, J.; Ren, G.; Wu, Z.; Song, Z. Characterization and stability of peppermint oil emulsions using polyglycerol esters of fatty acids and milk proteins as emulsifiers. J. Food Sci. 2021, 86, 5148–5158. [Google Scholar] [CrossRef]
- Sakai, T.; Seki, H.; Yoshida, S.; Hori, H.; Suzuki, H.; Nakamura, T.; Kawamura, I. Interaction of Clear Flavor Emulsions Containing Lemon Essential Oils with Lipid Bilayers via a Quartz Crystal Microbalance. Food Sci. Technol. Res. 2019, 25, 879–884. [Google Scholar] [CrossRef]
- Rosales, C.K.; Suwonsichon, S.; Klinkesorn, U. Influence of crystal promoters on sensory characteristics of heat-resistant compound chocolate. Int. J. Food Sci. Technol. 2018, 53, 1459–1467. [Google Scholar] [CrossRef]
- Rosales, C.K.; Suwonsichon, S.; Klinkesorn, U. Ability of crystal promoters to delay fat bloom development in heat-resistant compound chocolate with or without the presence of crystal inhibitor. Int. J. Food Sci. Technol. 2017, 52, 2343–2351. [Google Scholar] [CrossRef]
- Wang, H.; Wu, C.; Zhu, J.; Cheng, Y.; Yang, Y.; Qiao, S.; Jiao, B.; Ma, L.; Fu, Y.; Chen, H.; et al. Stabilization of capsanthin in physically-connected hydrogels: Rheology property, self-recovering performance and syringe/screw-3D printing. Carbohydr. Polym. 2023, 319, 121209. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Wang, W.; Zhang, G.; Zhang, J.; Liu, C.; Xu, B. In vitro Antibacterial Effect of Polyglycerol Monolaurates against Gram-Bacteria and Understanding the Underlying Mechanism. J. Oleo Sci. 2021, 70, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Hanno, I.; Centini, M.; Anselmi, C.; Bibiani, C. Green Cosmetic Surfactant from Rice: Characterization and Application. Cosmetics 2015, 2, 322–341. [Google Scholar] [CrossRef]
- Iwanaga, T.; Uchida, K.; Takeuchi, N.; Abe, Y. Development of Oil-Type Make-up Remover Prepared with Polyglycerol Fatty Acid Esters. Int. J. Cosmet. Sci. 2006, 28, 73. [Google Scholar] [CrossRef]
- Barna, A.S.; Maxim, C.; Trifan, A.; Blaga, A.C.; Cimpoesu, R.; Turcov, D.; Suteu, D. Preliminary Approaches to Cosmeceuticals Emulsions Based on N-ProlylPalmitoyl Tripeptide-56 Acetat-Bakuchiol Complex Intended to Combat Skin Oxidative Stress. Int. J. Mol. Sci. 2023, 24, 7004. [Google Scholar] [CrossRef]
- Salar-Behzadi, S.; Corzo, C.; Gomes Lopes, D.; Meindl, C.; Lochmann, D.; Reyer, S. Novel approach for overcoming the stability challenges of lipid-based excipients. Part 2: Application of polyglycerol esters of fatty acids as hot melt coating excipients. Eur. J. Pharm. Biopharm. 2020, 148, 107–117. [Google Scholar] [CrossRef]
- Corzo, C.; Meindl, C.; Lochmann, D.; Reyer, S.; Salar-Behzadi, S. Novel approach for overcoming the stability challenges of lipid-based excipients. Part 3: Application of polyglycerol esters of fatty acids for the next generation of solid lipid nanoparticles. Eur. J. Pharm. Biopharm. 2020, 152, 44–55. [Google Scholar] [CrossRef]
- Corzo, C.; Fuchsbichler, A.; Savencu, I.; Afonso Urich, J.; Zimmer, A.; Lochmann, D.; Reyer, S.; Salar-Behzadi, S. Lipid-microparticles for pulmonary delivery of active pharmaceutical ingredients: Impact of lipid crystallization on spray-drying processability. Int. J. Pharm. 2021, 610, 121259. [Google Scholar] [CrossRef]
- Abdelhamid, M.; Corzo, C.; Afonso Urich, J.A.; Slama, E.; Fröhlich, E.; Lochmann, D.; Reyer, S.; Freichel, T.; Spoerk, M.; Salar-Behzadi, S. Personalization of lipid-based oral dosage forms via filament-based 3D-printing. Appl. Mater. Today 2024, 40, 102399. [Google Scholar] [CrossRef]
- Abdelhamid, M.; Koutsamanis, I.; Corzo, C.; Maisriemler, M.; Ocampo, A.B.; Slama, E.; Alva, C.; Lochmann, D.; Reyer, S.; Freichel, T.; et al. Filament-based 3D-printing of placebo dosage forms using brittle lipid-based excipients. Int. J. Pharm. 2022, 624, 122013. [Google Scholar] [CrossRef]
- Yamagata, Y.; Iga, K.; Ogawa, Y. Novel sustained-release dosage forms of proteins using polyglycerol esters of fatty acids. J. Controll. Release 2000, 63, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Sandmeier, M.; Hoeng, J.; Skov Jensen, S.; Nykjaer Nikolajsen, G.; Ziegler Bruun, H.; To, D.; Ricci, F.; Schifferle, M.; Bernkop-Schnurch, A. Oral formulations for highly lipophilic drugs: Impact of surface decoration on the efficacy of self-emulsifying drug delivery systems. J. Colloid Interface Sci. 2025, 677, 1108–1119. [Google Scholar] [CrossRef] [PubMed]
- Mehrizi, T.Z.; Mirzaei, M.; Ardestani, M.S. Pegylation, a Successful Strategy to Address the Storage and Instability Problems of Blood Products: Review 2011-2021. Curr. Pharm. Biotechnol. 2024, 25, 247–267. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Joshi, M.; Zhao, Z.; Mitragotri, S. PEGylated therapeutics in the clinic. Bioeng. Transl. Med. 2024, 9, e10600. [Google Scholar] [CrossRef]
- Zhang, P.; Sun, F.; Liu, S.; Jiang, S. Anti-PEG antibodies in the clinic: Current issues and beyond PEGylation. J. Controll. Release 2016, 244, 184–193. [Google Scholar] [CrossRef]
- Takata, H.; Shimizu, T.; Yamade, R.; Elsadek, N.E.; Emam, S.E.; Ando, H.; Ishima, Y.; Ishida, T. Anti-PEG IgM production induced by PEGylated liposomes as a function of administration route. J. Controll. Release 2023, 360, 285–292. [Google Scholar] [CrossRef]
- Emam, S.E.; Elsadek, N.E.; Abu Lila, A.S.; Takata, H.; Kawaguchi, Y.; Shimizu, T.; Ando, H.; Ishima, Y.; Ishida, T. Anti-PEG IgM production and accelerated blood clearance phenomenon after the administration of PEGylated exosomes in mice. J. Controll. Release 2021, 334, 327–334. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Q. Polyglycerol Fatty Acid Esters as Alternatives to PEGylated Lipids for Liposome Coating. Nanomedicine 2022, 17, 1027–1035. [Google Scholar] [CrossRef]
PGFEs | Polyglycerol a | Fatty Acids b | DE c or FA:PG | HLB | Use | Ref. |
---|---|---|---|---|---|---|
PGL6FA10 | PG-6 | C10 | mono- | 15.3 d | induce the formation of lecithin reverse wormlike micelles | [18] |
PGL10FA6 | PG-10 | C6 | mono- | 18.6 d | ||
PGL10FA10 | PG-10 | C10 | mono- | 16.8 d | ||
PGL10FA14 | PG-10 | C14 | mono- | 15.2 d | ||
PGL10FA18 | PG-10 | C18 | mono- | 14.0 d | ||
PGL20FA10 | PG-20 | C10 | mono- | 18.1 d | ||
PGL40FA10 | PG-40 | C10 | mono- | 19.0 d | ||
M-7D | PG-7 | C12 | mono- | 16 | emulsifier (o/w) | [19,20] |
M-10D | PG-10 | C12 | mono- | 15 | ||
SWA-10D | PG-10 | C18 | di- | 14 | ||
PG-5 fatty acid esters | PG-5 | C6 | mono- di- tri- and tetra- hepta- | 1.4–16.6 | o/w emulsifier (HLB > 9, oil/water = 1:1) w/o emulsifier (HLB < 9, oil/water = 1:1) | [21] |
C8 | ||||||
C10 | ||||||
C12 | ||||||
C14 | ||||||
C16 | ||||||
C18 | ||||||
GeomulseTM C15 RSPO MB | PG-10 | C8/C10 | mono- | 15 | - | [22] |
GeomulseTM L15 RSPO MB | C12 | mono- | 15 | |||
GeomulseTM S10 RSPO MB | C18 | mono- | 10 | |||
GeomulseTM O13 RSPO MB | C18:1 | mono- | 13 | |||
PGE | - | C8-C14/C16-C22 (40/60) | 92.8% | 4 | crystallization-adjuster | [23] |
PGEmix-8 | - | C16/C18/C18:1 | - | 1.6 | crystallization-adjuster | [24,25] |
Witepsol®PMF 122 | PG-2 | C22 | Partial | - | lipid-based excipients | [26] |
Witepsol®PMF 282 | PG-2 | C18 | Full | 2.6 | ||
Witepsol®PMF 222 | PG-2 | C22 | Full | 1.8 | ||
Witepsol®PMF 123 | PG-3 | C22 | Partial | - | ||
Witepsol®PMF 1683 | PG-3 | C16/C18 | Partial | 5.1 | ||
Witepsol®PMF 164 | PG-4 | C16 | Partial | 6.0 | ||
Witepsol®PMF 1684 | PG-4 | C16/C18 | Partial | 5.9 | ||
Witepsol®PMF 124 | PG-4 | C22 | Partial | - | ||
Witepsol®PMF 2684 | PG-4 | C16/C18 | Full | 3.3 | ||
Witepsol®PMF 2686 | PG-6 | C16/C18 | Full | 3.1 | ||
PG(2)ME | PG-2 | distilled soya acid oil | mono- | 6.4 | emulsifier (o/w) | [14] |
PG(2)DE | PG-2 | di- | 4.0 | |||
PG(2)TE | PG-2 | tri- | 2.6 | |||
PG(3)ME | PG-3 | mono- | 7.9 | |||
PG(3)DE | PG-3 | di- | 5.6 | |||
PG(3)TE | PG-3 | tri- | 4.2 | |||
PGO | PG-2.83 | C8 | mono- | 9.4 | emulsifier (o/w) | [27] |
PGC | C10 | mono- | 8.9 | |||
PGL | C12 | mono- | 8.6 | |||
PGM | C14 | mono- | 8.2 | |||
PGP | C16 | mono- | 7.5 | |||
PGS | C18 | mono- | 7.1 | |||
PG-3 monolaurate | PG-3 | C12 | mono- | 8.5 | foam stabilizer | [28,29,30] |
PG-3 monostearate | PG-3 | C18 | mono- | 6.2 | ||
PG-10 monostearate | PG-10 | C18 | mono- | 11.3 | ||
PGE 55 | PG 2-4 | C16/C18 | 7 | |||
PG-10 monolaurate | PG-10 | C12 | mono- | 15.5 | emulsifier (o/w) | [31] |
PG-10 monomyristate | PG-10 | C14 | mono- | 14.0 | ||
PG-10 monopalmitate | PG-10 | C16 | mono- | - | ||
PG-10 monostearate | PG-10 | C18 | mono- | 12.0 | ||
PG-2 monostearate | PG-2 | C18 | mono- | 5.0 | ||
TEGO® Care PSC 3 | PG-3 | C18 with substoichiometric amount of citric acid | - | ~11 | emulsifier (o/w) | [32] |
TEGOSOFT® PC 41 | PG-4 | C10 | - | ~14 | [33] | |
TEGO® Solve 90 MB | PG-6 | C8 | - | ~15 | ||
TEGO Care® PL 4 TEGO® Solve 61 (PG-6 caprylate/PG-3 cocoate/PG-4 caprate/PG-6 ricinoleate = 1/1/1/1) | PG-4 - | C12 - | - - | ~11 ~11 | emulsifier (o/w) | [34] |
PG-4 laurate | PG-4 | C10 | mono- | 10.3 | emulsifier (o/w) | [35] |
PG-10 monostearate | PG-10 | C18 | mono- | 12.0 | niosomes | [36] |
PG-10 distearate | PG-10 | C18 | di- | 9.5 | ||
PG-10 tristearate | PG-10 | C18 | tri- | 7.5 | ||
PG-10 diisostearate | PG-10 | iso-C18 | di- | 10.0 | ||
PG-10 caprylates | PG-10 | C8 | mono- | ~14 | detergent | [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Zhang, G. Recent Advances in the Properties and Applications of Polyglycerol Fatty Acid Esters. Polymers 2025, 17, 879. https://doi.org/10.3390/polym17070879
Zhang M, Zhang G. Recent Advances in the Properties and Applications of Polyglycerol Fatty Acid Esters. Polymers. 2025; 17(7):879. https://doi.org/10.3390/polym17070879
Chicago/Turabian StyleZhang, Mingyu, and Guangyan Zhang. 2025. "Recent Advances in the Properties and Applications of Polyglycerol Fatty Acid Esters" Polymers 17, no. 7: 879. https://doi.org/10.3390/polym17070879
APA StyleZhang, M., & Zhang, G. (2025). Recent Advances in the Properties and Applications of Polyglycerol Fatty Acid Esters. Polymers, 17(7), 879. https://doi.org/10.3390/polym17070879