Waste Cooking Oils into High-Value Products: Where Is the Industry Going?
Abstract
:1. Introduction
2. Methods
3. WCO Production and Market
4. WCO Regulatory Situation
5. Where Is the Industry Going?
6. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferrusca, M.C.; Romero, R.; Martínez, S.L.; Ramírez-Serrano, A.; Natividad, R. Biodiesel Production from Waste Cooking Oil: A Perspective on Catalytic Processes. Processes 2023, 11, 1952. [Google Scholar] [CrossRef]
- Statista. Global Production of Vegetable Oils from 2000/01 to 2023/24. 2024. Available online: https://www.statista.com/statistics/263978/global-vegetable-oil-production-since-2000-200 (accessed on 18 February 2025).
- Azahar, W.N.A.W.; Bujang, M.; Jaya, R.P.; Hainin, M.R.; Mohamed, A.; Ngad, N.; Jayanti, D.S. The potential of waste cooking oil as bio-asphalt for alternative binder—An overview. J. Teknol. 2016, 78, 3722. [Google Scholar] [CrossRef]
- Iowa Farm Bureau. What’s Cooking with Vegetable Oils. 2022. Available online: https://www.iowafarmbureau.com/Article/Whats-Cooking-with-Vegetable-Oils (accessed on 10 January 2025).
- Markets and Markets, 2023. Biofuel Market. Available online: https://www.marketsandmarkets.com/Market-Reports/biofuels-market-297.html?gad_source=1&gclid=Cj0KCQjwwMqvBhCtARIsAIXsZpYveQ0-50boErhnWFXCgq_Z0oq8tQpxCUuu7vgZ44hackufMVylwJEaAmf-EALw_wcB (accessed on 10 February 2025).
- NationMaster. Vegetable Oils Production. 2023. Available online: https://www.nationmaster.com/nmx/ranking/vegetable-oils-production (accessed on 10 January 2025).
- Oils and Fats International. Global Vegetable Oil Production in 2021/22 Crop Year Set to Reach Record High. 2021. Available online: https://www.ofimagazine.com/news/global-vegetable-oil-production-in-2021-22-crop-year-set-to-reach-record-high (accessed on 12 January 2025).
- Statista. Forecast Volume of Vegetable Oil Consumed in the European Union (EU 27) from 2018 to 2032. 2024. Available online: https://www.statista.com/statistics/614522/vegetable-oil-consumption-volume-european-union-28/ (accessed on 12 January 2025).
- Statista. Consumption of Vegetable Oils Worldwide from 2013/14 to 2023/2024, by Oil Type. 2024. Available online: https://www.statista.com/statistics/263937/vegetable-oils-global-consumption/ (accessed on 13 January 2025).
- Isaksson, B. Demand for Edible Oils Increases as Biofuel Industry Grows. Biofuels International 2023. Available online: https://biofuels-news.com/news/demand-for-edible-oils-increases-as-biofuel-industry-grows/ (accessed on 7 October 2024).
- Waters, K.; Altiparmak, S.O.; Shutters, S.T.; Thies, C. The Green Mirage: The EU’s Complex Relationship with Palm Oil Biodiesel in the Context of Environmental Narratives and Global Trade Dynamics. Energies 2024, 17, 343. [Google Scholar] [CrossRef]
- Awogbemi, O.; Inambao, F.; Onuh, E.I. A review of the performance and emissions of compression ignition engine fuelled with waste cooking oil methyl ester. In Proceedings of the 2018 International Conference on the Domestic Use of Energy (DUE), Cape Town, South Africa, 3–5 April 2018; pp. 1–9. [Google Scholar] [CrossRef]
- Awogbemi, O.; Onuh, E.I.; Inambao, F.L. Comparative study of properties and fatty acid composition of some neat vegetable oils and waste cooking oils. Int. J. Low-Carbon Technol. 2019, 14, 417–425. [Google Scholar] [CrossRef]
- Saba, T.; Estephane, J.; El Khoury, B.; El Khoury, M.; Khazma, M.; El Zakhem, H.; Aouad, S. Biodiesel production from refined sunflower vegetable oil over KOH/ZSM5 catalysts. Renew. Energy 2016, 90, 301–306. [Google Scholar] [CrossRef]
- Foo, W.H.; Chia, W.Y.; Tang, D.Y.Y.; Koay, S.S.N.; Lim, S.S.; Chew, K.W. The conundrum of waste cooking oil: Transforming hazard into energy. J. Hazard Mater. 2021, 417, 126129. [Google Scholar] [CrossRef]
- Lombardi, L.; Mendecka, B.; Carnevale, E. Comparative life cycle assessment of alternative strategies for energy recovery from used cooking oil. J. Environ. Manag. 2018, 216, 235–245. [Google Scholar] [CrossRef]
- Aniołowska, M.; Zahran, H.; Kita, A. The effect of pan frying on thermooxidative stability of refined rapeseed oil and professional blend. J. Food Sci. Technol. 2016, 53, 712–720. [Google Scholar] [CrossRef]
- Teixeira, M.R.; Nogueira, R.; Nunes, L.M. Quantitative assessment of the valorisation of used cooking oils in 23 countries. Waste Manag. 2018, 78, 611–620. [Google Scholar] [CrossRef]
- Olu-Arotiowa, O.A.; Odesanmi, A.A.; Adedotun, B.K.; Ajibade, O.A.; Olasesan, I.P.; Odofin, O.L.; Abass, A.O. Review on environmental impact and valourization of waste cooking oil. LAUTECH J. Eng. Technol. 2022, 16, 144–163. Available online: https://www.researchgate.net/publication/366618878 (accessed on 24 February 2025).
- Fingas, M. Vegetable Oil Spills. In Handbook of Oil Spill Science and Technology; Wiley: Hoboken, NJ, USA, 2014; pp. 79–91. [Google Scholar] [CrossRef]
- Zahri, K.N.M.; Zulkharnain, A.; Sabri, S.; Gomez-Fuentes, C.; Ahmad, S.A. Research Trends of Biodegradation of Cooking Oil in Antarctica from 2001 to 2021: A Bibliometric Analysis Based on the Scopus Database. Int. J. Environ. Res. Public Health 2021, 18, 2050. [Google Scholar] [CrossRef] [PubMed]
- Foo, W.H.; Koay, S.S.N.; Chia, S.R.; Chia, W.Y.; Tang, D.Y.Y.; Nomanbhay, S.; Chew, K.W. Recent advances in the conversion of waste cooking oil into value-added products: A review. Fuel 2022, 324, 124539. [Google Scholar] [CrossRef]
- Cárdenas, J.; Orjuela, A.; Sánchez, D.L.; Narváez, P.C.; Katryniok, B.; Clark, J. Pre-treatment of used cooking oils for the production of green chemicals: A review. J. Clean. Prod. 2021, 289, 1215129. [Google Scholar] [CrossRef]
- Capuano, D.; Costa, M.; Di Fraia, S.; Massarotti, N.; Vanoli, L. Direct use of waste vegetable oil in internal combustion engines. Renew. Sustain. Energy Rev. 2017, 69, 759–770. [Google Scholar] [CrossRef]
- Carmona-Cabello, M.; Garcia, I.L.; Leiva-Candia, D.; Dorado, M.P. Valorization of food waste based on its composition through the concept of biorefinery. Curr. Opin. Green Sustain. Chem. 2018, 14, 67–79. [Google Scholar] [CrossRef]
- Carmona-Cabello, M.; García, I.L.; Sáez-Bastante, J.; Pinzi, S.; Koutinas, A.A.; Dorado, M.P. Food waste from restaurant sector—Characterization for biorefinery approach. Bioresour. Technol. 2020, 301, 122779. [Google Scholar] [CrossRef]
- Carmona-Cabello, M.; Leiva-Candia, D.; Castro-Cantarero, J.L.; Pinzi, S.; Dorado, M.P. Valorization of food waste from restaurants by transesterification of the lipid fraction. Fuel 2018, 215, 492–498. [Google Scholar] [CrossRef]
- Chrysikou, L.P.; Dagonikou, V.; Dimitriadis, A.; Bezergianni, S. Waste cooking oils exploitation targeting EU 2020 diesel fuel production: Environmental and economic benefits. J. Clean. Prod. 2019, 219, 566–575. [Google Scholar] [CrossRef]
- D’Alessandro, B.; Bidini, G.; Zampilli, M.; Laranci, P.; Bartocci, P.; Fantozzi, F. Straight and waste vegetable oil in engines: Review and experimental measurement of emissions, fuel consumption and injector fouling on a turbocharged commercial engine. Fuel 2016, 182, 198–209. [Google Scholar] [CrossRef]
- Hasan, M.R.; Anzar, N.; Sharma, P.; Malode, S.J.; Shetti, N.P.; Narang, J.; Kakarla, R.R. Converting biowaste into sustainable bioenergy through various processes. Bioresour. Technol. Rep. 2023, 23, 101542. [Google Scholar] [CrossRef]
- Mannu, A.; Ferro, M.; Di Pietro, M.E.; Mele, A. Innovative applications of waste cooking oil as raw material. Sci. Prog. 2019, 102, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Namoco, C.S.; Comaling, V.C.; Buna, C.C. Utilization of used cooking oil as an alternative cooking fuel resource. ARPN J. Eng. Appl. Sci. 2017, 12, 435–442. [Google Scholar]
- Ostadkalayeh, Z.H.; Babaeipour, V.; Pakdehi, S.G.; Sazandehchi, P. Optimization of Biodiesel Production Process from Household Waste Oil, Rapeseed, and Microalgae Oils as a Suitable Alternative for Jet Fuel. Bioenergy Res. 2023, 16, 1733–1745. [Google Scholar] [CrossRef]
- Sadaf, S.; Iqbal, J.; Ullah, I.; Bhatti, H.N.; Nouren, S.; Nisar, J.; Iqbal, M. Biodiesel production from waste cooking oil: An efficient technique to convert waste into biodiesel. Sustain. Cities Soc. 2018, 41, 220–226. [Google Scholar] [CrossRef]
- Sudalai, S.; Prabakaran, S.; Varalakksmi, V.; Sai Kireeti, I.; Upasana, B.; Yuvasri, A.; Arumugam, A. A review on oilcake biomass waste into biofuels: Current conversion techniques, sustainable applications, and challenges: Waste to energy approach (WtE). Energy Convers. Manag. 2024, 314, 118724. [Google Scholar] [CrossRef]
- Beghetto, V.; Gatto, V.; Samiolo, R.; Scolaro, C.; Brahimi, S.; Facchin, M.; Visco, A. Plastics today: Key challenges and EU strategies towards carbon neutrality: A review. Environ. Pollut. 2023, 334, 122102. [Google Scholar] [CrossRef]
- Visco, A.; Scolaro, C.; Facchin, M.; Brahimi, S.; Belhamdi, H.; Gatto, V.; Beghetto, V. Agri-Food Wastes for Bioplastics: European Prospective on Possible Applications in Their Second Life for a Circular Economy. Polymers 2022, 14, 2752. [Google Scholar] [CrossRef]
- Facchin, M.; Gatto, V.; Samiolo, R.; Conca, S.; Santandrea, D.; Beghetto, V. May 1,3,5-Triazine derivatives be the future of leather tanning? A critical review. Environ. Pollut. 2024, 345, 123472. [Google Scholar] [CrossRef]
- Sole, R.; Gatto, V.; Conca, S.; Bardella, N.; Morandini, A.; Beghetto, V. Sustainable Triazine-Based Dehydro-Condensation Agents for Amide Synthesis. Molecules 2021, 26, 191. [Google Scholar] [CrossRef]
- Purohit, V.B.; Pięta, M.; Pietrasik, J.; Plummer, C.M. Towards sustainability and a circular Economy: ROMP for the goal of fully degradable and chemically recyclable polymers. Eur. Polym. J. 2024, 208, 112847. [Google Scholar] [CrossRef]
- Thushari, I.; Babel, S. Comparative study of the environmental impacts of used cooking oil valorization options in Thailand. J. Environ. Manag. 2020, 310, 114810. [Google Scholar] [CrossRef]
- Matteoli, U.; Beghetto, V.; Scrivanti, A.; Aversa, M.; Bertoldini, M.; Bovo, S. An alternative stereoselective synthesis of (R)- and (S)-Rosaphen® via asymmetric catalytic hydrogenation. Chirality 2011, 23, 779–783. [Google Scholar] [CrossRef]
- Ibanez, J.; Martel Martín, S.; Baldino, S.; Prandi, C.; Mannu, A. European Union Legislation Overview about Used Vegetable Oils Recycling: The Spanish and Italian Case Studies. Processes 2020, 8, 798. [Google Scholar] [CrossRef]
- Mannu, A.; Garroni, S.; Ibanez Porras, J.; Mele, A. Available Technologies and Materials for Waste Cooking Oil Recycling. Processes 2020, 8, 366. [Google Scholar] [CrossRef]
- Mannu, A.; Ferro, M.; Dugoni, G.C.; Panzeri, W.; Petretto, G.L.; Urgeghe, P.; Mele, A. Improving the recycling technology of waste cooking oils: Chemical fingerprint as tool for non-biodiesel application. Waste Manag. 2019, 96, 1–8. [Google Scholar] [CrossRef]
- Dou, Z.; Dierenfeld, E.S.; Wang, X.; Chen, X.; Shurson, G.C. A critical analysis of challenges and opportunities for upcycling food waste to animal feed to reduce climate and resource burdens. Resour. Conserv. Recycl. 2024, 203, 107418. [Google Scholar] [CrossRef]
- Panadare, D.C.; Rathod, V.K. Applications of Waste Cooking Oil Other Than Biodiesel: A Review. Iranian J. Chem. Eng. 2015, 12, 55–76. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.ijche.com/article_11253_54b41ee620eb7a8972ee3e37776dad5f.pdf&ved=2ahUKEwiMoK66rouIAxWPg_0HHbj0DNgQFnoECBsQAQ&usg=AOvVaw11QJ42AupQ5PiqrF-UlbHz (accessed on 20 March 2025).
- Salemdeeb, R.; zu Ermgassen, E.K.H.J.; Kim, M.H.; Balmford, A.; Al-Tabbaa, A. Environmental and health impacts of using food waste as animal feed: A comparative analysis of food waste management options. J. Clean. Prod. 2017, 140, 871–880. [Google Scholar] [CrossRef]
- Sarker, A.; Ahmmed, R.; Ahsan, S.M.; Rana, J.; Ghosh, M.K.; Nandi, R. A comprehensive review of food waste valorization for the sustainable management of global food waste. Sustain. Food Technol. 2024, 2, 48–69. [Google Scholar] [CrossRef]
- Bardella, N.; Facchin, M.; Fabris, E.; Baldan, M.; Beghetto, V. Waste Cooking Oil as Eco-Friendly Rejuvenator for Reclaimed Asphalt Pavement. Materials 2024, 17, 1477. [Google Scholar] [CrossRef]
- Wang, C.; Xue, L.; Xie, W.; You, Z.; Yang, X. Laboratory investigation on chemical and rheological properties of bio-asphalt binders incorporating waste cooking oil. Constr. Build. Mater. 2018, 167, 348–358. [Google Scholar] [CrossRef]
- Staroń, A.; Chwastowski, J.; Kijania-Kontak, M.; Wiśniewski, M.; Staroń, P. Bio-enriched composite materials derived from waste cooking oil for selective reduction of odour intensity. Sci. Rep. 2024, 14, 16311. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, J.; Kang, H. Effect of waste cooking oil on the performance of EVA modified asphalt and its mechanism analysis. Sci. Rep. 2024, 14, 14072. [Google Scholar] [CrossRef]
- Onn, M.; Jalil, M.J.; Mohd Yusoff, N.I.S.; Edward, E.B.; Wahit, M.U. A comprehensive review on chemical route to convert waste cooking oils to renewable polymeric materials. Ind. Crop. Prod. 2024, 211, 118194. [Google Scholar] [CrossRef]
- Singh, N.; Agarwal, P.; Porwal, J.; Porwal, S.K. Evaluation of multifunctional green copolymer additives–doped waste cooking oil–extracted natural antioxidant in biolubricant formulation. Biomass Convers. Biorefin. 2024, 14, 761–770. [Google Scholar] [CrossRef]
- Marriam, F.; Irshad, A.; Umer, I.; Asghar, M.A.; Atif, M. Vegetable oils as bio-based precursors for epoxies. Sustain. Chem. Pharm. 2023, 31, 100935. [Google Scholar] [CrossRef]
- Singh, N.; Agarwal, P.; Porwal, S.K. Natural Antioxidant Extracted Waste Cooking Oil as Sustainable Biolubricant Formulation in Tribological and Rheological Applications. Waste Biomass Valorization 2022, 13, 3127–3137. [Google Scholar] [CrossRef]
- Wierzchowska, K.; Derewiaka, D.; Zieniuk, B.; Nowak, D.; Fabiszewska, A. Whey and post-frying oil as substrates in the process of microbial lipids obtaining: A value-added product with nutritional benefits. Eur. Food Res. Technol. 2023, 249, 2675–2688. [Google Scholar] [CrossRef]
- Lhuissier, M.; Couvert, A.; Amrane, A.; Kane, A.; Audic, J.L. Characterization and selection of waste oils for the absorption and biodegradation of VOC of different hydrophobicities. Chem. Eng. Res. Des. 2018, 138, 482–489. [Google Scholar] [CrossRef]
- Worthington, M.J.H.; Kucera, R.L.; Albuquerque, I.S.; Gibson, C.T.; Sibley, A.; Slattery, A.D.; Campbell, J.A.; Alboaiji, S.F.K.; Muller, K.A.; Young, J.; et al. Laying Waste to Mercury: Inexpensive Sorbents Made from Sulfur and Recycled Cooking Oils. Chem. Eur. J. 2017, 23, 16219–16230. [Google Scholar] [CrossRef]
- European Commission. Available online: https://commission.europa.eu/index_en (accessed on 15 December 2024).
- Statista. Available online: https://www.statista.com/ (accessed on 10 January 2025).
- Eurostat Portal. Available online: https://ec.europa.eu/eurostat (accessed on 15 December 2024).
- World Bank. Available online: https://www.worldbank.org/ext/en/home (accessed on 8 January 2025).
- Orbit. Available online: https://www.orbit.com/ (accessed on 8 January 2025).
- EU Patent Office. Available online: https://www.epo.org/en (accessed on 20 December 2024).
- Google Patents. Available online: https://patents.google.com/ (accessed on 20 December 2024).
- WIPO. Available online: https://www.wipo.int/portal/en/index.html (accessed on 20 December 2024).
- US Patent Office. Available online: https://www.uspto.gov/ (accessed on 20 December 2024).
- Zhao, Y.; Zhu, K.; Li, J.; Zhao, Y.; Li, S.; Zhang, C.; Xiao, D.; Yu, A. High-efficiency production of bisabolene from waste cooking oil by metabolically engineered Yarrowia lipolytica. Microb. Biotechnol. 2021, 14, 2497–2513. [Google Scholar] [CrossRef]
- Khedaywi, T.; Melhem, M. Effect of Waste Vegetable Oil on Properties of Asphalt Cement and Asphalt Concrete Mixtures: An Overview. Int. J. Pavement Res. Technol. 2024, 17, 280–290. [Google Scholar] [CrossRef]
- Math, M.C.; Kumar, S.P.; Chetty, S.V. Technologies for biodiesel production from used cooking oil—A review. Sustain. Energy Dev. 2010, 14, 339–345. [Google Scholar] [CrossRef]
- Global Data. UPO Supply Outlook. Available online: https://cleanfuels.org/wp-content/uploads/GlobalData_UCO-Supply-Outlook_Sep2023.pdf (accessed on 15 March 2025).
- Manikandan, G.; Kanna, P.R.; Taler, D.; Sobota, T. Review of Waste Cooking Oil (WCO) as a Feedstock for Biofuel—Indian Perspective. Energies 2023, 16, 1739. [Google Scholar] [CrossRef]
- Matušinec, J.; Hrabec, D.; Šomplák, R.; Nevrlý, V.; Pecha, J.; Smejkalová, V.; Redutskiy, Y. Cooking oil and fat waste management: A review of the current state. Chem. Eng. Trans. 2020, 81, 763–768. [Google Scholar] [CrossRef]
- Banga, S.; Pathak, V.V. Biodiesel production from waste cooking oil: A comprehensive review on the application of heterogenous catalysts. Energy Nexus 2023, 10, 100209. [Google Scholar] [CrossRef]
- Nanda, S.; Rana, R.; Hunter, H.N.; Fang, Z.; Dalai, A.K.; Kozinski, J.A. Hydrothermal catalytic processing of waste cooking oil for hydrogen-rich syngas production. Chem. Eng. Sci. 2019, 195, 935–945. [Google Scholar] [CrossRef]
- Nascimento, L.; Ribeiro, A.; Ferreira, A.; Valério, N.; Pinheiro, V.; Araújo, J.; Vilarinho, C.; Carvalho, J. Turning waste cooking oils into biofuels—Valorization technologies: A review. Energies 2022, 15, 116. [Google Scholar] [CrossRef]
- Ortner, M.E.; Müller, W.; Schneider, I.; Bockreis, A. Environmental assessment of three different utilization paths of waste cooking oil from households. Resour. Conserv. Recycl. 2016, 106, 59–67. [Google Scholar] [CrossRef]
- Rocha-Meneses, L.; Hari, A.; Inayat, A.; Yousef, L.A.; Alarab, S.; Abdallah, M.; Shanableh, A.; Ghenai, C.; Shanmugam, S.; Kikas, T. Recent advances on biodiesel production from waste cooking oil (WCO): A review of reactors, catalysts, and optimization techniques impacting the production. Fuel 2023, 348, 128514. [Google Scholar] [CrossRef]
- Tamošiūnas, A.; Gimžauskaitė, D.; Aikas, M.; Uscila, R.; Praspaliauskas, M.; Eimontas, J. Gasification of Waste Cooking Oil to Syngas by Thermal Arc Plasma. Energies 2019, 12, 2612. [Google Scholar] [CrossRef]
- Xu, L.; Li, Y.; Liao, M.; Song, Q.; Wang, C.; Weng, J.; Zhao, M.; Gao, N. Catalytic pyrolysis of waste cooking oil for hydrogen-rich syngas production over bimetallic Fe-Ru/ZSM-5 catalyst. Fuel Process. Technol. 2023, 247, 107812. [Google Scholar] [CrossRef]
- Sabino, J.; Liborio, D.O.; Arias, S.; Gonzalez, J.F.; Barbosa, C.M.B.M.; Carvalho, F.R.; Frety, R.; Barros, I.C.L.; Pacheco, J.G.A. Hydrogen-Free Deoxygenation of Oleic Acid and Industrial Vegetable Oil Waste on CuNiAl Catalysts for Biofuel Production. Energies 2023, 16, 6131. [Google Scholar] [CrossRef]
- Suzihaque, M.U.H.; Alwi, H.; Kalthum Ibrahim, U.; Abdullah, S.; Haron, N. Biodiesel production from waste cooking oil: A brief review. Mater. Today Proc. 2022, 63, S490–S495. [Google Scholar] [CrossRef]
- Pavel, V.I.; Nifant’ev, I.E. The chemistry of oleates and related compounds in the 2020s. Green Chem. 2025, 27, 41–95. [Google Scholar] [CrossRef]
- Gatto, V.; Conca, S.; Bardella, N.; Beghetto, V. Efficient triazine derivatives for collagenous materials stabilization. Materials 2021, 14, 3069. [Google Scholar] [CrossRef]
- Tsoutsos, T.; Tournaki, S.; Gkouskos, Z.; Paraíba, O.; Giglio, F.; García, P.Q.; Braga, J.; Adrianos, H.; Filice, M. Quality Characteristics of Biodiesel Produced from Used Cooking Oil in Southern Europe. Chem. Eng. 2019, 3, 19. [Google Scholar] [CrossRef]
- Caldeira, C.; Freire, F.; Olivetti, E.A.; Kirchain, R.; Dias, L.C. Analysis of cost-environmental trade-offs in biodiesel production incorporating waste feedstocks: A multi-objective programming approach. J. Clean. Prod. 2019, 216, 64–73. [Google Scholar] [CrossRef]
- Cordero-Ravelo, V.; Schallenberg-Rodriguez, J. Biodiesel production as a solution to waste cooking oil (WCO) disposal. Will any type of WCO do for a transesterification process? A quality assessment. J. Environ. Manag. 2018, 228, 117–129. [Google Scholar] [CrossRef]
- Cadillo-Benalcazar, J.J.; Bukkens, S.G.F.; Ripa, M.; Giampietro, M. Why does the European Union produce biofuels? Examining consistency and plausibility in prevailing narratives with quantitative storytelling. Energy Res. Soc. Sci. 2021, 71, 101810. [Google Scholar] [CrossRef]
- Outili, N.; Kerras, H.; Meniai, A.H. Recent conventional and non-conventional WCO pretreatment methods: Implementation of green chemistry principles and metrics. Curr. Opin. Green Sustain. Chem. 2023, 41, 100794. [Google Scholar] [CrossRef]
- Ripa, M.; Cadillo-Benalcazar, J.J.; Giampietro, M. Cutting through the biofuel confusion: A conceptual framework to check the feasibility, viability and desirability of biofuels. Energy Strategy Rev. 2021, 35, 100642. [Google Scholar] [CrossRef]
- Caldeira, C.; Queirós, J.; Freire, F. Biodiesel from Waste Cooking Oils in Portugal: Alternative Collection Systems. Waste Biomass Valorization 2015, 6, 771–779. [Google Scholar] [CrossRef]
- Beghetto, V.; Bardella, N.; Samiolo, R.; Gatto, V.; Conca, S.; Sole, R.; Molin, G.; Gattolin, A.; Ongaro, N. By-products from mechanical recycling of polyolefins improve hot mix asphalt performance. J. Clean. Prod. 2021, 318, 128627. [Google Scholar] [CrossRef]
- Beghetto, V. Strategies for the Transformation of Waste Cooking Oils into High-Value Products: A Critical Review. Polymers 2025, 17, 368–398. [Google Scholar] [CrossRef]
- Directive (EU) 2023/2413, 2023. Amending Directive (EU) 2018/2001, Regulation (EU) 2018/1999 and Directive 98/70/EC as Regards the Promotion of Energy from Renewable Sources, and Repealing Council Directive (EU) 2015/652, European Parliament and of the Council. Available online: http://data.europa.eu/eli/dir/2023/2413/oj (accessed on 3 November 2024).
- Directive 75/439/EEC of 16 June 1975 on the Disposal of Waste Oils. Available online: https://eur-lex.europa.eu/eli/dir/1975/439/oj/eng (accessed on 28 November 2024).
- Directive 2014/955/EU, 2014. Commission Decision of 18 December 2014 amending Decision 2000/532/EC on the List of Waste Pursuant to Directive 2008/98/EC of the European Parliament and of the Council Text with EEA Relevance, European Parliament and of the Council. Available online: http://data.europa.eu/eli/dec/2014/955/oj (accessed on 3 February 2025).
- Directive 75/442/EEC, 1975. Council Directive 75/442/EEC of 15 July 1975 on waste, The council of the European Communities. Available online: http://data.europa.eu/eli/dir/1975/442/oj (accessed on 15 October 2024).
- Directive 2008/98/EC, 2008. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives (Text with EEA Relevance), European Parliament and of the Council. Available online: http://data.europa.eu/eli/dir/2008/98/oj (accessed on 20 December 2024).
- Directive (EU) 2018/851, 2018. Directive (EU) 2018/851 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2008/98/EC on Waste (Text with EEA Relevance), European Parliament and of the Council. Available online: http://data.europa.eu/eli/dir/2018/851/oj (accessed on 3 December 2024).
- Hamze, H.; Akia, M.; Yazdani, F. Optimization of biodiesel production from the waste cooking oil using response surface methodology. Process Saf. Environ. Prot. 2015, 94, 1–10. [Google Scholar] [CrossRef]
- Borrello, M.; Caracciolo, F.; Lombardi, A.; Pascucci, S.; Cembalo, L. Consumers’ Perspective on Circular Economy Strategy for Reducing Food Waste. Sustainability 2017, 9, 141. [Google Scholar] [CrossRef]
- United States Environmental Agency. Available online: https://www.epa.gov/oil-spills-prevention-and-preparedness-regulations/facility-response-plan-frp-overview (accessed on 24 January 2025).
- US Congress Government. Available online: https://www.congress.gov/congressional-report/104th-congress/house-report/262/1 (accessed on 24 January 2025).
- Federal Regulations. Available online: https://www.ecfr.gov/current/title-40/chapter-I/subchapter-D/part-112?toc=1 (accessed on 24 January 2025).
- EPA Summary of the Clean Water Act. Available online: https://www.epa.gov/laws-regulations/summary-clean-water-act (accessed on 24 February 2025).
- Compliance Network. Used Oil State Comparison. Available online: https://jjkellercompliancenetwork.com/regsense/-used-oil-state-comparison (accessed on 15 March 2025).
- China Issues Guidelines to Establish a Waste Recycling System. Available online: https://english.www.gov.cn/policies/latestreleases/202402/09/content_WS65c5ea15c6d0868f4e8e3e8a.html (accessed on 15 March 2025).
- International Energy Agency: National Policy on Biofuels (2022 Amendment). Available online: https://www.iea.org/policies/17006-national-policy-on-biofuels-2022-amendment (accessed on 16 March 2025).
- Global Market insights. Available online: https://www.gminsights.com/industry-analysis/used-cooking-oil-market (accessed on 16 March 2025).
- Transport and Environment. Available online: https://www.transportenvironment.org (accessed on 4 December 2024).
- Euractiv. Available online: https://www.euractiv.com/section/biofuels/news/eu-to-investigate-indonesian-biodiesel-amid-tax-concerns/ (accessed on 20 December 2024).
- Scott, A. Oil majors back out of biofuel in Europe. C&EN ACS Org. 2024, 8, 15. [Google Scholar]
- Syahir, A.Z.; Zulkifli, N.W.M.; Masjuki, H.H.; Kalam, M.A.; Alabdulkarem, A.; Gulzar, M.; Khuong, L.S.; Harith, M.H. A review on bio-based lubricants and their applications. J. Cleaner Prod. 2017, 168, 997–1016. [Google Scholar] [CrossRef]
- Biolubricants Market Size, Share and Growth Report, 2030. Available online: https://www.grandviewresearch.com/industry-analysis/biolubricants-industry (accessed on 18 March 2025).
- Agrobiobased. Available online: https://www.agrobiobase.com/en/database (accessed on 22 December 2024).
- Bio-Lubricant with High Viscosity and Method. U.S. Patent 11767484, 2022.
- Polyester Polyol with High Biomass Ratio for Polyurethane Controlled-Release Fertilizer Envelope, Preparation Method Thereof and Envelope. US20220153654A1, 2021.
- Biobased Lubricants. WO2024206034A1, 2024.
- Cavalcanti, M.H.C.; Magalhãesa, V.M.; Rocha e Silva, N.M.P.; Fariasa, C.B.B.; Almeida, F.C.G.; Sarubbo, L.A. Maximization of Biosurfactant Production by Bacillus Invictae Using Agroindustrial Residues for Application in the Removal of Hydrophobic Pollutants. Chem. Eng. Trans. 2020, 79, 55–60. [Google Scholar]
- Efficient Synthesis of Omega-Glycosides and Alkyl Glycosides. EP4150107A1, 2021.
- Improved Production of Symmetrical Bolaform Sophorosides. EP3884054A1, 2018.
- Method for Preparing Environment-Friendly Plasticizer by High Concentration Hydrogen Peroxide Epoxidized Oil. CN103305347A, 2013.
- Synthetic Method for Epoxy Soybean Oil Acrylate. CN103013682B, 2012.
- Acetylated Epoxy Soybean Oil, Preparation Method and Application Thereof, and Polyvinyl Chloride Composite Material. CN116768828B, 2023.
- Efficient Reactor for Epoxy Soybean Oil Production and Processing. CN204429276U, 2014.
- Reactor for Producing and Processing Epoxy Soybean Oil. CN104549105B, 2014.
- Energy-Saving Device for Preparing Epoxy Soybean Oil. CN203944374U, 2014.
- Vegetable Oil-Based Polyol And Preparation Method Thereof, and Thermosetting Vegetable Oil-Based Polyurethane and Preparation Method and Application Thereof. CN114853972B, 2022.
- Method for Manufacturing Polyurethane Using Eco-Friendly Raw Material. KR101468070B1, 2013.
- Process for the Production of Polyurethane Products. US8501826 B2, 2005.
- Method for Recycling Edible Oil and Waste Polyurethane. CN107722344B, 2017.
- Method for Producing Flame-Retardant Modified Phenolic Foam Plastics from Waste Oil and Slop Oil. CN102504190B, 2011.
- Epoxidation Treatment Method of Waste Cooking Oil. CN103436367A, 2013.
- Polyurethane-Amide Adhesive Using Glycerol and Fatty Acid. WO200453012A1, 2002.
- Vegetable Oil-Based Non-Isocyanate Polyurethane Resin and Preparation Method Thereof. CN115490851B, 2022.
- Non-Isocyanate Polyurethane Elastomers and Compositions Comprising Such Elastomers. EP4149999A4, 2020.
- Castro-Osma, J.A.; Martínez, J.; de la Cruz-Martínez, F.; Caballero, M.P.; Fernández-Baeza, J.; Rodríguez-López, J.; Otero, A.; Lara-Sánchez, A.; Tejeda, J. Development of hydroxy-containing imidazole organocatalysts for CO2 fixation into cyclic carbonates. Catal. Sci. Technol. 2018, 8, 1981–1987. [Google Scholar] [CrossRef]
- Werlinger, F.; Caballero, M.P.; Trofymchuk, O.S.; Flores, M.E.; Moreno-Villoslada, I.; de la Cruz-Martínez, F.; Castro-Osma, J.A.; Tejeda, J.; Martínez, J.; Lara-Sánchez, A. Turning waste into resources. Efficient synthesis of biopolyurethanes from used cooking oils and CO2. J. CO2 Util. 2024, 79, 102659. [Google Scholar] [CrossRef]
- Preparation method of illegal cooking oil alkyd prepolymer and preparation method of modified waterborne acrylic resin dispersion thereof. CN109096475B B, 2006.
- A Composition of Eco-Friendly Pavement Material and Paving Method Using the Same. KR102150710B1, 2019.
- Production of Polymers From Waste Cooking Oil. US8895689 B2, 2006.
- Jain, S.; Chandrappa, A.K. Influence of Blended Waste Cooking Oils on the Sustainable Asphalt Rejuvenation Considering Secondary Aging. Int. J. Pavement Res. Technol. 2024, 17, 1–11. [Google Scholar] [CrossRef]
- Products Comprising at Least One Synthetic-Rubber Pressure-Sensitive Adhesive Comprising Bio-Based Adhesive Resins and Production Process for These. WO2014154479A1, 2013.
- Regenerated Asphalt Additive Composition for Asphalt-Paved or Repair of Road and Method Thereof. KR101714409B1, 2016.
- Medium Temperature Recycled Asphalt Additives. KR20210093694A, 2020.
- Polymer Compositions Containing Waste Edible Oil Useful for the Aggregate Binder. KR100472090B1, 2002.
- Asphalt Sealant Composition Containing Waste Edible Oil. KR20040025057, 2002.
- Asphalt Regenerant and Application Thereof. CN118027688A, 2024.
- Method for Regenerating Aged Asphalt Based on Waste Edible Oil. CN118048046A, 2024.
- Method for Desulfurizing Waste Tire Rubber Powder by Using Waste Edible Oil. CN106674589A, 2016.
- A method for Preparing Rubber Using Epoxidized Bio-Based Waste Cooking Oil as Rubber Plasticizer. AU2020102505 A4, 2020.
- Oxidized Graphene and Waste Vegetable Oil Composite Modified Warm Mix Asphalt and Preparation Method. CN109266026A, 2018.
- Waste Cooking Oil-Based High-Flexibility Pressure-Sensitive Adhesive Type 4D Printing Material and Synthesis Method Thereof. CN113845848, 2021.
- Waste Asphalt Regeneration Method. CN117511240A, 2023.
- Aged Asphalt Compound Regenerant Based on Recovered Grease and Preparation Method and Application Thereof. CN109082132A, 2018.
- Environmentally Friendly Low-Temperature High-Viscosity Asphalt and Preparation Method Thereof. CN109439006A2, 2018.
- Modified Trench Oil Coating Material and Application Thereof in Coated Slow/Controlled Release Fertilizer. CN103755866B, 2013.
- Wax Material Based on Waste Cooking Oil and Preparation Method Thereof. CN114854449A, 2022.
- Business Wire 2024. Available online: https://www.businesswire.com/news/home/20230207005855/en/Global-Asphalt-Markets-Report-2022-2027---Developing-Countries-Spearhead-Current-and-Future-Market-Growth---ResearchAndMarkets.com (accessed on 13 January 2025).
N° | Region | Annual WCO Produced | Annual Mt WCO Recycled | ||
---|---|---|---|---|---|
Mt | (%) (a) | Mt | (%) | ||
1 | USA | 15.0 | 32 | 2.7 | 18 |
2 | Asia (China, India, Malaysia) | 24.5 | 49 | 7.6 | 31 |
3 | EU | 4.0 | 6 | 1.0 | 25 |
4 | Rest of the world | 6.5 | 13 | 2.8 | 43 |
Total | 50.0 | 100 | 14.1 | 28 (b) |
Company Name | Type of Product | Source | Link |
---|---|---|---|
Adm | Additives for asphalt | VO | https://www.adm.com/ (Accessed 14 January 2025) |
Biosynthetic technologies | Biolubricants, solvents, additives for cosmetics | VO | https://biosynthetic.com/ (Accessed 15 January 2025) |
Cargill | Biolubricant (Agri-pure™ AP-406), polyols, polymer additive (Vikoflex® 9010) | VO/Soy Oil | https://www.cargill.com/ (Accessed 18 January 2025) |
Gamblin Colors | Soy-based alkyd resin for paints | VO | https://gamblincolors.com/ (Accessed 15 January 2025) |
Palsgaard | Polymer additive (Einar®) | VO | https://www.palsgaard.com/en/ (Accessed 19 January 2025) |
Renewable Blue | Biolubricants (Bio-SynXtra™) | VO | https://renewablelube.com/ (Accessed 20 January 2025) |
Repsol | Biolubricants (MAKER BIO CHAIN 68), bioplastics (PHA), cosmetic creams, detergent, paint, varnish | VO | https://www.repsol.com/en/ (Accessed 20 January 2025) |
Vanair Inc. | Biolubricants (Vanguard Green oil) | VO | https://vanair.com/vanguard-oil/ (Accessed 22 January 2025) |
Amphistar (Belgium) | Biosurfactants | WCO | https://amphistar.com/ (Accessed 22 January 2025) |
Baker Commodities | Fuel, co-products for plastics, animal feed, fertilizers, soaps, cosmetics | WCO | https://bakercommodities.com/ (Accessed 22 January 2025) |
Denalicop | Soaps, additive for asphalt, fertilizers | WCO | https://www.denalicorp.com/ (Accessed 23 January 2025) |
Dymresource | Biodiesel, fertilizer, soaps | WCO | https://dymresources.com/ (Accessed 23 January 2025) |
GF Commodities | Animal feed, biofuels, soaps, oleochemical | WCO | https://gfcommodities.com/ (Accessed 23 January 2025) |
Hairma Technology | Polyols (HM-10100R) | WCO | https://www.hairma.com.cn/home/list/19 (Accessed 15 January 2025) |
LyondellBasell | Polyolefins (CirculenRenew) | WCO | https://www.lyondellbasell.com/ (Accessed 23 January 2025) |
MBP Solutions | Additives for asphalt | VRO (a)/WCO | https://www.mbpsolutions.com/ (Accessed 23 January 2025) |
Orlen | Hydrogenated vegetable oils | RSO (b)/WCO | https://www.orlen.pl/en/ (Accessed 24 January 2025) |
Repsol | Renewable fuels, fertilizers, candles | WCO | https://www.repsol.com/en/ (Accessed 24 January 2025) |
Southern Green | Soaps, Biodiesel, animal feed additive, fertilizers, flame starters | WCO | https://www.southerngreen.com/ (Accessed 25 January 2025) |
Wanhua Chemical | Polyols (Wanol®) | WCO | https://en.whchem.com/cmscontent/770.html (Accessed 25 January 2025) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beghetto, V. Waste Cooking Oils into High-Value Products: Where Is the Industry Going? Polymers 2025, 17, 887. https://doi.org/10.3390/polym17070887
Beghetto V. Waste Cooking Oils into High-Value Products: Where Is the Industry Going? Polymers. 2025; 17(7):887. https://doi.org/10.3390/polym17070887
Chicago/Turabian StyleBeghetto, Valentina. 2025. "Waste Cooking Oils into High-Value Products: Where Is the Industry Going?" Polymers 17, no. 7: 887. https://doi.org/10.3390/polym17070887
APA StyleBeghetto, V. (2025). Waste Cooking Oils into High-Value Products: Where Is the Industry Going? Polymers, 17(7), 887. https://doi.org/10.3390/polym17070887