Biocomposites Based on PHBV and the Lignocellulosic Residue from Horchata Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Characterization of HSR
2.3. Film Preparation
2.4. Film Characterization
2.5. Statistical Analysis
3. Results and Discussion
3.1. Properties of the HSR
3.2. Characterization of Composite Films
3.2.1. FESEM Microstructure
3.2.2. Water Content, Water Solubility, Thickness, and Water Vapor Permeability
3.2.3. Mechanical and Optical Properties
3.2.4. Thermal Behavior of the Films
3.2.5. Antioxidant Capacity and Total Phenolic Content
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- European Bioplastics Bioplastics Market Development Update 2023. Available online: https://docs.european-bioplastics.org/publications/market_data/2023/EUBP_Market_Data_Report_2023.pdf (accessed on 23 September 2024).
- Bailey, J. Cost Comparison of Biodegradable Materials. Available online: https://planetpristine.com/sustainable/products/cost-comparison-of-biodegradable-materials/ (accessed on 28 November 2024).
- Sánchez-Zapata, E.; Fuentes-Zaragoza, E.; Viuda-Martos, M.; Fernández-López, J.; Sendra, E.; Sayas, E.; Pérez-Alvarez, J.A. Reclaim of the By-Products from “Horchata” Elaboration Process. Food Bioprocess Technol. 2012, 5, 954–963. [Google Scholar] [CrossRef]
- Pelegrín, C.J.; Ramos, M.; Jiménez, A.; Garrigós, M.C. Chemical Composition and Bioactive Antioxidants Obtained by Microwave-Assisted Extraction of Cyperus esculentus L. by-Products: A Valorization Approach. Front. Nutr. 2022, 9, 944830. [Google Scholar]
- Parker, M.L.; Ng, A.; Smith, A.C.; Waldron, K.W. Esterified Phenolics of the Cell Walls of Chufa (Cyperus esculentus L.) Tubers and Their Role in Texture. J. Agric. Food Chem. 2000, 48, 6284–6291. [Google Scholar] [PubMed]
- Oladele, A.K.; Adebowale, J.O.; Bamidele, O.P. Phenolic Profile and Antioxidant Activity of Brown and Yellow Varieties of Tigernut (Cyperus esculentus L.). Niger. Food J. 2017, 35, 51–59. [Google Scholar]
- Phiri, R.; Rangappa, S.M.; Siengchin, S.; Oladijo, O.P.; Dhakal, H.N. Development of Sustainable Biopolymer-Based Composites for Lightweight Applications from Agricultural Waste Biomass: A Review. Adv. Ind. Eng. Polym. Res. 2023, 6, 436–450. [Google Scholar]
- Requena, R.; Jiménez, A.; Vargas, M.; Chiralt, A. Effect of Plasticizers on Thermal and Physical Properties of Compression-Moulded Poly [(3-Hydroxybutyrate)-Co-(3-Hydroxyvalerate)] Films. Polym. Test. 2016, 56, 45–53. [Google Scholar]
- Beltrami, L.V.R.; Bandeira, J.A.V.; Scienza, L.C.; Zattera, A.J. Biodegradable Composites: Morphological, Chemical, Thermal, and Mechanical Properties of Composites of Poly (Hydroxybutyrate-co-hydroxyvalerate) with Curaua Fibers after Exposure to Simulated Soil. J. Appl. Polym. Sci. 2014, 131, 40712. [Google Scholar] [CrossRef]
- Horwitz, W. Official Methods of Analysis of AOAC International, 17th ed.; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Freitas, P.A.V.; González-Martínez, C.; Chiralt, A. Application of Ultrasound Pre-Treatment for Enhancing Extraction of Bioactive Compounds from Rice Straw. Foods 2020, 9, 1657. [Google Scholar] [CrossRef]
- Gomez-Contreras, P.A.; Obando, C.; Freitas, P.A.V.d.; Martin-Perez, L.; Chiralt, A.; Gonzalez-Martinez, C. Applying Subcritical Water Extraction to Obtain Bioactive Compounds and Cellulose Fibers from Brewer Spent Grains. Molecules 2024, 29, 4897. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar]
- ASTM 96-95; Standard Test Method for Water Vapor Transmission of Materials. Annual Book of ASTM Standards. ASTM: West Conshohocken, PA, USA, 1995.
- ASTM D-882; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. American Society for Testing and Materials: West Conshohocken, PA, USA, 2001; pp. 162–170.
- Hutchings, J.B. Food and Colour Appearance (Chapman & Hall Food Science Book), 2nd ed.; Aspen Publications, Springer: Gaithersburg, MD, USA, 1999. [Google Scholar]
- Corre, Y.-M.; Bruzaud, S.; Audic, J.-L.; Grohens, Y. Morphology and Functional Properties of Commercial Polyhydroxyalkanoates: A Comprehensive and Comparative Study. Polym. Test. 2012, 31, 226–235. [Google Scholar]
- Roselló-Soto, E.; Martí-Quijal, F.J.; Cilla, A.; Munekata, P.E.S.; Lorenzo, J.M.; Remize, F.; Barba, F.J. Influence of Temperature, Solvent and PH on the Selective Extraction of Phenolic Compounds from Tiger Nuts by-Products: Triple-TOF-LC-MS-MS Characterization. Molecules 2019, 24, 797. [Google Scholar] [PubMed]
- Roselló-Soto, E.; Barba, F.J.; Putnik, P.; Bursać Kovačević, D.; Lorenzo, J.M.; Cantavella-Ferrero, Y. Enhancing Bioactive Antioxidants’ Extraction from “Horchata de Chufa” by-Products. Foods 2018, 7, 161. [Google Scholar] [CrossRef]
- Zhao, Z.-M.; Yu, W.; Huang, C.; Xue, H.; Li, J.; Zhang, D.; Li, G. Steam Explosion Pretreatment Enhancing Enzymatic Digestibility of Overground Tubers of Tiger Nut (Cyperus esculentus L.). Front. Nutr. 2023, 9, 1093277. [Google Scholar]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar]
- Pineda-Gómez, P.; Angel-Gil, N.C.; Valencia-Muñoz, C.; Rosales-Rivera, A.; Rodríguez-García, M.E. Thermal Degradation of Starch Sources: Green Banana, Potato, Cassava, and Corn–Kinetic Study by Non-isothermal Procedures. Starch-Stärke 2014, 66, 691–699. [Google Scholar]
- Sciancalepore, C.; Togliatti, E.; Giubilini, A.; Pugliese, D.; Moroni, F.; Messori, M.; Milanese, D. Preparation and Characterization of Innovative Poly(Butylene Adipate Terephthalate)-Based Biocomposites for Agri-Food Packaging Application. J. Appl. Polym. Sci. 2022, 139, 1–18. [Google Scholar] [CrossRef]
- Sirohi, R.; Singh, S.; Tarafdar, A.; Reddy, N.B.P.; Negi, T.; Gaur, V.K.; Pandey, A.K.; Sindhu, R.; Madhavan, A.; Arun, K.B. Thermoplastic Starch. In Biomass, Biofuels, Biochemicals; Elsevier: Amsterdam, The Netherlands, 2021; pp. 31–49. [Google Scholar]
- Costa, M.J.; Pastrana, L.M.; Teixeira, J.A.; Sillankorva, S.M.; Cerqueira, M.A. Characterization of PHBV Films Loaded with FO1 Bacteriophage Using Polyvinyl Alcohol-Based Nanofibers and Coatings: A Comparative Study. Innov. Food Sci. Emerg. Technol. 2021, 69, 102646. [Google Scholar]
- Moll, E.; Chiralt, A. Polyhydroxybutyrate-Co-Hydroxyvalerate (PHBV) with Phenolic Acids for Active Food Packaging. Polymers 2023, 15, 4222. [Google Scholar] [CrossRef]
- Chami Khazraji, A.; Robert, S. Interaction Effects between Cellulose and Water in Nanocrystalline and Amorphous Regions: A Novel Approach Using Molecular Modeling. J. Nanomater. 2013, 2013, 409676. [Google Scholar]
- Tserki, V.; Matzinos, P.; Zafeiropoulos, N.E.; Panayiotou, C. Development of Biodegradable Composites with Treated and Compatibilized Lignocellulosic Fibers. J. Appl. Polym. Sci. 2006, 100, 4703–4710. [Google Scholar] [CrossRef]
- Cano, A.; Jiménez, A.; Cháfer, M.; Gónzalez, C.; Chiralt, A. Effect of Amylose:Amylopectin Ratio and Rice Bran Addition on Starch Films Properties. Carbohydr. Polym. 2014, 111, 543–555. [Google Scholar] [CrossRef]
- Berthet, M.-A.; Angellier-Coussy, H.; Chea, V.; Guillard, V.; Gastaldi, E.; Gontard, N. Sustainable Food Packaging: Valorising Wheat Straw Fibres for Tuning PHBV-Based Composites Properties. Compos. Part. A Appl. Sci. Manuf. 2015, 72, 139–147. [Google Scholar] [CrossRef]
- Sánchez-Safont, E.L.; Aldureid, A.; Lagarón, J.M.; Gámez-Pérez, J.; Cabedo, L. Biocomposites of Different Lignocellulosic Wastes for Sustainable Food Packaging Applications. Compos. B Eng. 2018, 145, 215–225. [Google Scholar] [CrossRef]
- Kotnis, M.A.; O’Brien, G.S.; Willett, J.L. Processing and Mechanical Properties of Biodegradable Poly (Hydroxybutyrate-Co-Valerate)-Starch Compositions. J. Environ. Polym. Degrad. 1995, 3, 97–105. [Google Scholar] [CrossRef]
- Nechwatal, A.; Mieck, K.-P.; Reußmann, T. Developments in the Characterization of Natural Fibre Properties and in the Use of Natural Fibres for Composites. Compos. Sci. Technol. 2003, 63, 1273–1279. [Google Scholar] [CrossRef]
- Saheb, D.N.; Jog, J.P. Natural Fiber Polymer Composites: A Review. Adv. Polym.Technol. J. Polym. Process. Inst. 1999, 18, 351–363. [Google Scholar] [CrossRef]
- Buzarovska, A.; Bogoeva, G.G.; Grozdanov, A.; Avella, M.; Gentile, G.; Errico, M. Potential Use of Rice Straw as Filler in Eco-Composite Materials. Aust. J. Crop Sci. 2008, 2, 37–42. [Google Scholar]
- Singh, S.; Mohanty, A.K. Wood Fiber Reinforced Bacterial Bioplastic Composites: Fabrication and Performance Evaluation. Compos. Sci. Technol. 2007, 67, 1753–1763. [Google Scholar] [CrossRef]
- Ten, E.; Jiang, L.; Zhang, J.; Wolcott, M.P. Mechanical Performance of Polyhydroxyalkanoate (PHA)-Based Biocomposites. Biocomposites 2015, 39–52. [Google Scholar] [CrossRef]
- Mendes, S.F.; Costa, C.M.; Caparrós, C.; Sencadas, V.; Lanceros-Méndez, S. Effect of Filler Size and Concentration on the Structure and Properties of Poly (Vinylidene Fluoride)/BaTiO3 Nanocomposites. J. Mater. Sci. 2012, 47, 1378–1388. [Google Scholar]
- Sánchez-Safont, E.L.; González-Ausejo, J.; Gámez-Pérez, J.; Lagarón, J.M.; Cabedo, L. Poly (3-Hydroxybutyrate-Co-3-Hydroxyvalerate)/Purified Cellulose Fiber Composites by Melt Blending: Characterization and Degradation in Composting Conditions. J. Renew. Mater. 2016, 4, 123–132. [Google Scholar]
- Mazur, K.E.; Jakubowska, P.; Gaweł, A.; Kuciel, S. Mechanical, Thermal and Hydrodegradation Behavior of Poly (3-Hydroxybutyrate-Co-3-Hydroxyvalerate)(PHBV) Composites with Agricultural Fibers as Reinforcing Fillers. Sustain. Mater. Technol. 2022, 31, e00390. [Google Scholar] [CrossRef]
- Thiré, R.M.d.S.M.; Arruda, L.C.; Barreto, L.S. Morphology and Thermal Properties of Poly (3-Hydroxybutyrate-Co-3-Hydroxyvalerate)/Attapulgite Nanocomposites. Mater. Res. 2011, 14, 340–344. [Google Scholar]
- Zhou, Y.; Zhao, M.; Guo, H.; Li, Y.; Liu, Q.; Deng, B. Morphology and Crystallization Behavior of Poly (3-Hydroxybutyrate-Co-3-Hydroxyvalerate)/Polyhedral Oligomeric Silsesquioxane Hybrids. RSC Adv. 2019, 9, 8146–8158. [Google Scholar] [CrossRef]
- Ngasakul, N.; Kozlu, A.; Klojdová, I.; Chockchaisawasdee, S. Applications of Deep Eutectic Solvents in the Recovery of Bioactive Compounds from Brewer Spent Grains. Food Rev. Int. 2024, 40, 2514–2538. [Google Scholar]
- Tagliazucchi, D.; Verzelloni, E.; Conte, A. Effect of Dietary Melanoidins on Lipid Peroxidation during Simulated Gastric Digestion: Their Possible Role in the Prevention of Oxidative Damage. J. Agric. Food Chem. 2010, 58, 2513–2519. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Qian, H.; Yao, W.-R. Melanoidins Produced by the Maillard Reaction: Structure and Biological Activity. Food Chem. 2011, 128, 573–584. [Google Scholar]
- Plaza, M.; Amigo-Benavent, M.; Del Castillo, M.D.; Ibáñez, E.; Herrero, M. Facts about the Formation of New Antioxidants in Natural Samples after Subcritical Water Extraction. Food Res. Int. 2010, 43, 2341–2348. [Google Scholar] [CrossRef]
Film | xw (g/100 g) | S (g/100 g Polymer) | t (µm) | WVP (g/Pa·s·m)·1011 |
---|---|---|---|---|
PHBV | 0.21 ± 0.08 a | 0.27 ± 0.13 a | 129 ± 14 a | 0.5 ± 0.2 a |
PHBV10 | 0.6 ± 0.1 a | 0.73 ± 0.02 c | 138 ± 14 a | 1.4 ± 0.2 a |
PHBV20 | 0.6 ± 0.2 a | 0.62 ± 0.02 c | 160 ± 22 b | 5 ± 2 b |
PHBV30 | 1.2 ± 0.2 b | 0.47 ± 0.04 b | 162 ± 14 b | 9 ± 2 c |
PHBV40 | 1.8 ± 0.5 c | 0.45 ± 0.07 b | 160 ± 20 b | 25 ± 3 d |
Film | EM (MPa) | TS (MPa) | Ɛ (%) |
PHBV | 2922 ± 266 c | 32 ± 4 d | 1.32 ± 0.09 e |
PHBV10 | 3251 ± 512 d | 18 ± 4 c | 0.67 ± 0.12 d |
PHBV20 | 2726 ± 381 bc | 12 ± 2 b | 0.53 ± 0.07 c |
PHBV30 | 2534 ± 220 ab | 8 ± 2 a | 0.44 ± 0.07 b |
PHBV40 | 2198 ± 216 ab | 6.2 ± 0.6 a | 0.35 ± 0.06 a |
Film | Ti 550 nm | L* | C*ab | h*ab | ΔE |
---|---|---|---|---|---|
PHBV | 0.64 ± 0.02 e | 71.5 ± 0.5 e | 18.9 ± 0.3 a | 77.5 ± 0.2 e | - |
PHBV10 | 0.38 ± 0.03 d | 55.0 ± 0.6 d | 26.7 ± 0.3 e | 66.3 ± 0.6 d | 18.7 ± 0.5 a |
PHBV20 | 0.28 ± 0.03 c | 46.9 ± 0.8 c | 25.4 ± 0.7 d | 60.84 ± 1.04 c | 26.1 ± 0.4 b |
PHBV30 | 0.23 ± 0.03 b | 42.5 ± 0.9 b | 23.9 ± 0.9 c | 56.5 ± 1.3 b | 30.4 ± 0.9 c |
PHBV40 | 0.15 ± 0.03 a | 39.± 2 ba | 22 ± 2 b | 53 ± 2 a | 33.2 ± 1.3 d |
Sample | Ton set (°C) | Tpeak (1) | Tend set | Residual Mass at 600°C (%) |
---|---|---|---|---|
Residue | 140 ± 2 a (1) | 301 ± 2 c | 348 ± 3 d | 1.2 |
PHBV | 269.9 ± 0.5 d | 291.1 ± 0.4 c | 312.4 ± 0.3 c | - |
PHBV10 | 263 ± 3 cd | 282 ± 3 bc | 303 ± 3 b | 0.35 |
PHBV20 | 259 ± 4 c | 278 ± 4 ab | 298 ± 4 ab | 0.38 |
PHBV30 | 259.6 ± 0.6 c | 278.9 ± 0.6 ab | 298.9 ± 0.6 ab | 0.29 |
PHBV40 | 251 ± 2 b | 278 ± 0.5 a | 298.4 ± 0.4 a | 0.89 |
Film | 1st Heating Scan | Cooling | 2nd Heating Scan | ||||||
---|---|---|---|---|---|---|---|---|---|
Tg (°C) | Tm (°C) | ΔHm (J/g polymer) | Xc (%) | Tc (°C) | Tg (°C) | Tm (°C) | ΔHm (J/g polymer) | Xc (%) | |
PHBV | −4.3 ± 1.1 a | 172 ± 2 a | 61 ± 2 a | 42.2 ± 0.2 a | 120 ± 2 d | −3.8 ± 0.6 a | 170 ± 2 a | 80 ± 11 a | 54.7 ± 0.8 a |
PHBV10 | −3.6 ± 0.2 a | 169 ± 2 a | 73 ± 1 bc | 49.7 ± 0.3 bc | 117 ± 2 bc | −2.9 ± 0.05 a | 169 ± 2 a | 101 ± 2 b | 69.3 ± 0.2 b |
PHBV20 | −3.5 ± 0.1 a | 169 ± 2 a | 77 ± 5 c | 53.1 ± 0.3 c | 116 ± 3 bc | −3.2 ± 0.01 a | 168 ± 2 a | 98 ± 7 b | 67.1 ± 0.5 b |
PHBV30 | −3.5 ± 0.8 a | 170 ± 2 a | 67 ± 2 ab | 45.9 ± 0.2 ab | 116 ± 2 abc | −3.7 ± 0.2 a | 168 ± 2 a | 93 ± 3 b | 63.9 ± 0.2 b |
PHBV40 | −3.1 ± 0.3 a | 167 ± 3 a | 78 ± 4 c | 53.5 ± 0.3 c | 114 ± 2 a | −2.9 ± 0.2 a | 166 ± 2 a | 100 ± 6 b | 68.5 ± 0.4 b |
Film or Residue | EC50 (mg dry residue/mg DPPH) | TPC1 (mg GAE/100 g film) | TPC2 (mg GAE/100 g dry residue) |
---|---|---|---|
Residue | 67 ± 5 a | - | 96 ± 18 a |
PHBV10 | 6.6 ± 1.2 b | 9 ± 2 d | 90 ± 20 a |
PHBV20 | 5 ± 2 b | 15 ± 2 c | 77 ± 7 a |
PHBV30 | 6.3 ± 1.5 b | 27 ± 2 b | 90 ± 8 a |
PHBV40 | 6 ± 2 b | 34 ± 12 a | 94 ± 31 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patrón-Espá, A.; Martín-Esparza, M.E.; Chiralt, A.; González-Martínez, C. Biocomposites Based on PHBV and the Lignocellulosic Residue from Horchata Production. Polymers 2025, 17, 974. https://doi.org/10.3390/polym17070974
Patrón-Espá A, Martín-Esparza ME, Chiralt A, González-Martínez C. Biocomposites Based on PHBV and the Lignocellulosic Residue from Horchata Production. Polymers. 2025; 17(7):974. https://doi.org/10.3390/polym17070974
Chicago/Turabian StylePatrón-Espá, Anita, María Eugenia Martín-Esparza, Amparo Chiralt, and Chelo González-Martínez. 2025. "Biocomposites Based on PHBV and the Lignocellulosic Residue from Horchata Production" Polymers 17, no. 7: 974. https://doi.org/10.3390/polym17070974
APA StylePatrón-Espá, A., Martín-Esparza, M. E., Chiralt, A., & González-Martínez, C. (2025). Biocomposites Based on PHBV and the Lignocellulosic Residue from Horchata Production. Polymers, 17(7), 974. https://doi.org/10.3390/polym17070974