A Development and Comparison Study of PVDF Membranes Enriched by Metal–Organic Frameworks
Abstract
:1. Introduction
2. Material and Methods
2.1. Solution Synthesis and Its Components
2.2. Fabrication of Nanofibrous Membranes
2.3. Instruments and Procedures Used for Analysis
3. Results and Discussion
3.1. Spectral Analysis of Fabricated Material
3.2. Observation of Implemented MOFs in the Nanofibers
3.3. Surface Contact Angle of Nanofibers with Liquid
3.4. Sorption Performance of MOF@PVDF Membranes in Dye Removal Applications
3.5. Advancements over State-of-the-Art MOF@PVDF Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Ac | Acetone |
BSE | Backscattered electrons |
CV | Crystal violet |
DMF | Dimethylformamide |
EDS | Energy dispersive X-ray spectroscopy |
FTIR | Fourier-transform infrared spectroscopy |
LMCT | Ligand-to-metal charge transfer |
IFE | Internal filtration effect |
MB | Methylene blue |
MLCT | Metal-to-ligand charge transfer |
MOF | Metal–organic framework |
PVDF | Polyvinylidene fluoride |
P2VHR | Peak-to-valley height ratio |
SE | Secondary electrons |
SEM | Scanning electron microscopy |
References
- Smejkalová, T.; Ţălu, Ş.; Dallaev, R.; Částková, K.; Sobola, D.; Nazarov, A. SEM imaging and XPS characterization of doped PVDF fibers. E3S Web Conf. 2021, 270, 01011. [Google Scholar] [CrossRef]
- Papež, N.; Pisarenko, T.; Ščasnovič, E.; Sobola, D.; Ţălu, Ş.; Dallaev, R.; Částková, K.; Sedlák, P. A Brief Introduction and Current State of Polyvinylidene Fluoride as an Energy Harvester. Coatings 2022, 12, 1429. [Google Scholar] [CrossRef]
- Jang, S.; Baek, G.; Cheon, M.; Lee, C.; Kim, T.; Sung, J.; Yang, S.C. Studies on phase transformations and crystallinity changes of PVDF thin films via hot-pressing treatment. Polymer 2025, 320, 128094. [Google Scholar] [CrossRef]
- Guo, S.; Duan, X.; Xie, M.; Aw, K.C.; Xue, Q. Composites, Fabrication and Application of Polyvinylidene Fluoride for Flexible Electromechanical Devices: A Review. Micromachines 2020, 11, 1076. [Google Scholar] [CrossRef]
- Mohammadpourfazeli, S.; Arash, S.; Ansari, A.; Yang, S.; Mallick, K.; Bagherzadeh, R. Future prospects and recent developments of polyvinylidene fluoride (PVDF) piezoelectric polymer; fabrication methods, structure, and electro-mechanical properties. RSC Adv. 2022, 13, 370–387. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Zhong, C.; Zhang, Y.; Qiu, Y.; Qin, L. Flexible Electronics: Advancements and Applications of Flexible Piezoelectric Composites in Modern Sensing Technologies. Micromachines 2024, 15, 982. [Google Scholar] [CrossRef]
- Keshta, B.E.; Yu, H.; Wang, L.; Gemeay, A.H. Cutting-edge in the green synthesis of MIL-101(Cr) MOF based on organic and inorganic waste recycling with extraordinary removal for anionic dye. Sep. Purif. Technol. 2024, 332, 125744. [Google Scholar] [CrossRef]
- Chen, L.; Yan, M.; Ma, Y.; Wang, A.; Zhi, X.; Li, X.; Khan, N.A.; Zeng, B.; Zhu, H. Multifunctional MOF-808@PVDF microspheres for recovery of unidirectional flow phosphorus from either wastewater or fermented sludge. Chem. Eng. J. 2025, 507, 160673. [Google Scholar] [CrossRef]
- Eze, E.; Zeid, A.U.; El-Khouly, M.E.; Elkady, M. Comparable investigation for incorporation of zirconium MOF@PVDF membrane as cation selective membranes for lithium-ion separation. Results Chem. 2024, 7, 101236. [Google Scholar] [CrossRef]
- Muhtar, S.A.; Amanda, T.; Kurnia, N.R.; Putra, S.E.M.; Khairurrijal, K.; Arif, M.F.; Taher, T.; Rianjanu, A. Complex mixture dye removal using natural zeolite modified polyacrylonitrile/polyvinylidene fluoride (Ze-PAN/PVDF) composite nanofiber membrane via vacuum filtration technique. Mater. Today Commun. 2025, 42, 111357. [Google Scholar] [CrossRef]
- Mokhtar, N.M.; Lau, W.J.; Ismail, A.F. Dye wastewater treatment by direct contact membrane distillation using polyvinylidene fluoride hollow fiber membranes. J. Polym. Eng. 2015, 35, 471–479. [Google Scholar] [CrossRef]
- Cui, B.; Jiang, S.; Zhang, Y.; Su, Y.; Zhou, H.; Pang, H. MOF-based nanomaterials for advanced aqueous-ion batteries. Adv. Colloid Interface Sci. 2025, 340, 103469. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Yang, N.; Zhang, G.; Shen, A.; Luo, X.; Wu, J.; Fan, M.; Dai, Q. Design strategies of advanced MOF-based materials in hydrogen production and storage. Mater. Sci. Eng. B 2025, 313, 117934. [Google Scholar] [CrossRef]
- Zhao, Z.; Qin, M.; Jia, Y.; Chai, Y.; Hou, D.; Wang, N. Hydrogen storage properties of flexible and porous La0.8Mg0.2Ni3.8/PVDF composite. Int. J. Hydrogen Energy 2013, 38, 10939–10943. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, H.; Ma, Y.; Wang, S.; Hu, J.; Zhang, H.; Wang, T.; Liu, L.; Yan, S. Organic-inorganic crosslinking PVDF composites for high storage densities. Compos. Sci. Technol. 2025, 262, 111082. [Google Scholar] [CrossRef]
- Pisarenko, T.; Papež, N.; Sobola, D.; Ţălu, Ş.; Částková, K.; Škarvada, P.; Macků, R.; Ščasnovič, E.; Kaštyl, J. Comprehensive Characterization of PVDF Nanofibers at Macro- and Nanolevel. Polymers 2022, 14, 593. [Google Scholar] [CrossRef]
- Cai, X.; Lei, T.; Sun, D.; Lin, L. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv. 2017, 7, 15382–15389. [Google Scholar] [CrossRef]
- Sengupta, D.; Kottapalli, A.G.; Chen, S.H.; Miao, J.M.; Kwok, C.Y.; Triantafyllou, M.S.; Warkiani, M.E.; Asadnia, M. Characterization of single polyvinylidene fluoride (PVDF) nanofiber for flow sensing applications. AIP Adv. 2017, 7, 54. [Google Scholar] [CrossRef]
- Hadjiivanov, K.I.; Panayotov, D.A.; Mihaylov, M.Y.; Ivanova, E.Z.; Chakarova, K.K.; Andonova, S.M.; Drenchev, N.L. Power of Infrared and Raman Spectroscopies to Characterize Metal-Organic Frameworks and Investigate Their Interaction with Guest Molecules. Chem. Rev. 2021, 121, 1286–1424. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jia, Y.; Li, M.; Hou, L. Influence of the 2-methylimidazole/zinc nitrate hexahydrate molar ratio on the synthesis of zeolitic imidazolate framework-8 crystals at room temperature. Sci. Rep. 2018, 8, 9597. [Google Scholar] [CrossRef]
- Wu, W.; Su, J.; Jia, M.; Li, Z.; Liu, G.; Li, W. Vapor-phase linker exchange of metal-organic frameworks. Sci. Adv. 2020, 6, eaax7270. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Xin, Q.; Ni, Y.; Shuai, Y.; Wang, S.; Li, Y.; Ye, H.; Lin, L.; Ding, X.; Zhang, Y. Synergistic effects of zeolite imidazole framework@graphene oxide composites in humidified mixed matrix membranes on CO2 separation. RSC Adv. 2018, 8, 6099–6109. [Google Scholar] [CrossRef] [PubMed]
- Zorainy, M.Y.; Titi, H.M.; Kaliaguine, S.; Boffito, D.C. Multivariate metal–organic framework MTV-MIL-101 via post-synthetic cation exchange: Is it truly achievable? Dalton Trans. 2022, 51, 3280–3294. [Google Scholar] [CrossRef]
- Shadmehr, J.; Zeinali, S.; Tohidi, M. Synthesis of a chromium terephthalate metal organic framework and use as nanoporous adsorbent for removal of diazinon organophosphorus insecticide from aqueous media. J. Dispers. Sci. Technol. 2019, 40, 1423–1440. [Google Scholar] [CrossRef]
- Zhu, C.; Gerald, R.E.; Huang, J. Metal-Organic Framework Materials Coupled to Optical Fibers for Chemical Sensing: A Review. IEEE Sens. J. 2021, 21, 19647–19661. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, D.; Liu, H.; Lin, A.; Chen, Q.; Chen, X. Fe-MOF-based fluorescent sensor with on/off capabilities for the highly sensitive detection of tert-butylhydroquinone in edible oils. Anal. Chim. Acta 2023, 1278, 341745. [Google Scholar] [CrossRef]
- Jing, L.; Xin, B.; Yuan, F.; Xue, L.; Wang, B.; Fu, H. Effects of surface oxygen vacancies on photophysical and photochemical processes of Zn-doped TiO2 nanoparticles and their relationships. J. Phys. Chem. B 2006, 110, 17860–17865. [Google Scholar] [CrossRef]
- Zavahir, S.; Yahia, H.B.; Schneider, J.; Han, D.; Krupa, I.; Altamash, T.; Atilhan, M.; Amhamed, A.; Kasak, P. Fluorescent Zn(II)-Based Metal-Organic Framework: Interaction with Organic Solvents and CO2 and Methane Capture. Molecules 2022, 27, 3845. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, J.C. Electrospun rhodamine@MOF/polymer luminescent fibers with a quantum yield of over 90%. iScience 2021, 24, 103035. [Google Scholar] [CrossRef]
- Kabański, A.; Ptak, M.; Stefańska, D. Metal-Organic Framework Optical Thermometer Based on Cr3+ Ion Luminescence. ACS Appl. Mater. Interfaces 2023, 15, 7074–7082. [Google Scholar] [CrossRef]
- Razavi, S.A.A.; Habibzadeh, E.; Morsali, A. Multifunctional Roles of Dihydrotetrazine-Decorated Zr-MOFs in Photoluminescence and Colorimetrism for Discrimination of Arsenate and Phosphate Ions in Water. ACS Appl. Mater. Interfaces 2023, 15, 39319–39331. [Google Scholar] [CrossRef] [PubMed]
- Bagla, A.; Mitharwal, C.; Rault, F.; Salaün, F.; Mitra, S. Influence of Solution Parameters on Phase Formation and Morphology of Electrospun Poly(vinylidene fluoride) Nanofiber. arXiv 2022, arXiv:2207.06352. [Google Scholar]
- Ţălu, Ş. Micro and Nanoscale Characterization of Three Dimensional Surfaces: Basics and Applications; Napoca Star Publishing House: Cluj-Napoca, Romania, 2015. [Google Scholar]
- González-Benito, J.; Olmos, D.; Martínez-Tarifa, J.M.; González-Gaitano, G.; Sánchez, F.A. PVDF/BaTiO3/carbon nanotubes ternary nanocomposites prepared by ball milling: Piezo and dielectric responses. J. Appl. Polym. Sci. 2019, 136, 47788. [Google Scholar] [CrossRef]
- Havlíková, T.; Papež, N.; Fohlerová, Z.; Kaspar, P.; Dallaev, R.; Částková, K.; Ţălu, Ş. Adaptability of Electrospun PVDF Nanofibers in Bone Tissue Engineering. Polymers 2025, 17, 330. [Google Scholar] [CrossRef]
- Njaramba, L.K.; Yoon, Y.; Park, C.M. Fabrication of porous beta-cyclodextrin functionalized PVDF/Fe–MOF mixed matrix membrane for enhanced ciprofloxacin removal. npj Clean Water 2024, 7, 1–13. [Google Scholar] [CrossRef]
- Ma, M.; Jin, C.; Yao, S.; Li, N.; Zhou, H.; Dai, Z. CNN-Optimized Electrospun TPE/PVDF Nanofiber Membranes for Enhanced Temperature and Pressure Sensing. Polymers 2024, 16, 2423. [Google Scholar] [CrossRef]
- Zahari, A.M.; Yusoff, A.R.M.; Buang, N.A.; Satishkumar, P.; Jasni, M.F.J.; Yusop, Z. Fabrication and characterization of polyvinylidene fluoride composite nanofiber membrane for water flux property. J. Teknol. Sci. Eng. 2015, 74, 9–14. [Google Scholar] [CrossRef]
- He, Z.; Rault, F.; Lewandowski, M.; Mohsenzadeh, E.; Salaün, F. Electrospun PVDF Nanofibers for Piezoelectric Applications: A Review of the Influence of Electrospinning Parameters on the ? Phase and Crystallinity Enhancement. Polymers 2021, 13, 174. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pisarenko, T.; Papež, N.; Al-Anber, M.A.; Dallaev, R.; Částková, K.; Ţălu, Ş. A Development and Comparison Study of PVDF Membranes Enriched by Metal–Organic Frameworks. Polymers 2025, 17, 1140. https://doi.org/10.3390/polym17091140
Pisarenko T, Papež N, Al-Anber MA, Dallaev R, Částková K, Ţălu Ş. A Development and Comparison Study of PVDF Membranes Enriched by Metal–Organic Frameworks. Polymers. 2025; 17(9):1140. https://doi.org/10.3390/polym17091140
Chicago/Turabian StylePisarenko, Tatiana, Nikola Papež, Mohammed A. Al-Anber, Rashid Dallaev, Klára Částková, and Ştefan Ţălu. 2025. "A Development and Comparison Study of PVDF Membranes Enriched by Metal–Organic Frameworks" Polymers 17, no. 9: 1140. https://doi.org/10.3390/polym17091140
APA StylePisarenko, T., Papež, N., Al-Anber, M. A., Dallaev, R., Částková, K., & Ţălu, Ş. (2025). A Development and Comparison Study of PVDF Membranes Enriched by Metal–Organic Frameworks. Polymers, 17(9), 1140. https://doi.org/10.3390/polym17091140