Soy-Based Adhesive Cross-Linked by Phenol-Formaldehyde-Glutaraldehyde
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Phenolic Resin-Based Cross-Linkers and Test of Their Performances
2.3. Preparation of Soy-Based Adhesive
2.4. Preparation of Plywood Samples Bonded with Soy-Based Adhesive
2.5. Test of Shear Strength of Plywood
2.6. 13C-NMR
2.7. Differential Scanning Calorimetry (DSC)
3. Results and Discussion
3.1. The Performance of PFG
3.2. The Performance of Soy-Based Adhesive Cross-Linked by PF and PFG
3.3. The Chemical Structure of PF and PFG
3.4. Optimization of the Preparation Procedure of Soy-Based Plywood with PFG
3.5. DSC Analysis of Soy-Based Adhesive with Cross-Linker PF or PFG
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chen, M.; Chen, Y.; Zhou, X.; Lu, B.; He, M.; Sun, S.; Ling, X. Improving Water Resistance of Soy-Protein Wood Adhesive by Using Hydrophilic Additives. Bioresources 2014, 10, 41–54. [Google Scholar] [CrossRef]
- Lin, Q.; Chen, N.; Bian, L.; Fan, M. Development and mechanism characterization of high performance soy-based bio-adhesives. Int. J. Adhes. Adhes. 2012, 34, 11–16. [Google Scholar] [CrossRef]
- Wu, Z.; Lei, H.; Du, G. Disruption of soy-based adhesive treated by Ca(OH)2 and NaOH. J. Adhes. Sci. Technol. 2013, 27, 2226–2232. [Google Scholar] [CrossRef]
- Gao, Q.; Qin, Z.; Li, C.; Zhang, S.; Li, J. Preparation of wood adhesives based on soybean meal modified with PEGDA as a crosslinker and viscosity reducer. Bioresources 2013, 8, 5380–5391. [Google Scholar] [CrossRef]
- Gao, Q.; Shi, Q.; Zhang, S. Soybean meal-based adhesive enhanced by MUF resin. J. Appl. Polym. Sci. 2008, 125, 3676–3681. [Google Scholar] [CrossRef]
- Fan, D.; Qin, T.; Chu, F. A soy flour-based adhesive reinforced by low addition of MUF resin. J. Adhes. Sci. Technol. 2011, 25, 323–333. [Google Scholar] [CrossRef]
- Lei, H.; Wu, Z.; Du, G. Cross-linked soy-based wood adhesives for plywood. Int. J. Adhes. Adhes. 2014, 50, 199–203. [Google Scholar] [CrossRef]
- Jang, Y.; Huang, J.; Li, K. A new formaldehyde-free wood adhesive from renewable matericals. Int. J. Adhes. Adhes. 2011, 31, 754–759. [Google Scholar] [CrossRef]
- Rogers, J.; Geng, X.; Li, K. Soy-based adhesives with 1,3-dichloro-2-propanol as a curing agent. Wood Fiber Sci. 2004, 36, 186–194. [Google Scholar]
- Lei, H.; Pizzi, A.; Navarrete, P.; Rigolet, S.; Redl, A.; Wagner, A. Gluten protein adhesives for wood panels. J. Adhes. Sci. Technol. 2010, 24, 1583–1596. [Google Scholar] [CrossRef]
- Lei, H.; Wu, Z.; Cao, M.; Du, G. Study on the soy protein-based wood adhesive modified by hydroxymethyl phenol. Polymers 2016, 8, 256–265. [Google Scholar] [CrossRef]
- Kreibich, R.E.; Steynberg, P.J.; Hemingway, R.W. End jointing green lumber with SoyBond. In Proceedings of the Wood Residues into Revenue, Residual Wood Conference, Richmond, BC, Canada, 4–5 November 1998. [Google Scholar]
- Yang, I.; Kuo, M.; Myers, D. Bond quality of soy-based phenolic adhesives in southern pine plywood. J. Am. Oil Chem. Soc. 2006, 83, 231–237. [Google Scholar] [CrossRef]
- Hse, C.Y.; Fu, F.; Bryant, B.S. Development of formaldehyde-based wood adhesives with co-reacted phenol/soybean flour. In Green Chemistry for Adhesives, Proceedings of the Wood Adhesives 2000, No. 7252, South Lake Tahoe, CA, USA, 22–23 June 2000; Forest Products Society: Madison, WI, USA, 2001; pp. 13–19. [Google Scholar]
- Ballantyne, B.; Myers, R. The acute toxicity and primary irritancy of glutaraldehyde solutions. Vet. Hum. Toxicol. 2001, 43, 193–202. [Google Scholar] [PubMed]
- Migneault, I.; Dartiguenave, C.; Bertrand, M.; Waldron, K. Glutaraldehyde: Behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. BioTechniques 2004, 37, 790–802. [Google Scholar] [PubMed]
- Zhang, X. Multi-aldehydes Modified Encironmentally Friendly Phenolic Resin Adhesive. Master’s Thesis, Beijing University of Chemical Technology, Beijing, China, 2013. [Google Scholar]
- Kissinger, H.E. Reaction kinetics in differential thermal analysis. Anal. Chem. 1957, 29, 1702–1706. [Google Scholar] [CrossRef]
- Akahira, T.; Sunose, T. Method of determining activation deterioration constant of electrical insulating materials. Res. Rep. Chiba Inst. Technol. 1971, 16, 22–31. [Google Scholar]
Levels | Factors | ||
---|---|---|---|
Press temperature/°C | Press time/min | Resin loading/g·m−2 | |
1 | 140 | 3 | 280 |
2 | 160 | 4 | 320 |
3 | 180 | 5 | 360 |
Samples | Viscosity/mPa·s | Solid content/% | Content of free formaldehyde/% | Content of free phenol/% |
---|---|---|---|---|
PF | 28.8 | 44.24 | 0.28 | 2.51 |
PFG | 25.5 | 46.02 | 0.18 | 1.56 |
Cross-linker | Dry shear strength/MPa | Wet shear strength in boiling water/MPa |
---|---|---|
Without a cross-linker | 1.68 (0.23) | - |
9% PF | 2.05 (0.11) | 0.63 (0.03) |
11% PF | 2.02 (0.20) | 0.86 (0.06) |
9% PFG | 2.18 (0.34) | 0.82 (0.12) |
11% PFG | 2.28 (0.34) | 1.01 (0.12) |
13% PFG | 2.19 (0.23) | 1.14 (0.08) |
15% PFG | 2.14 (0.14) | 1.01 (0.08) |
No. | Chemical shift/ppm | Assignment |
---|---|---|
1 | 204–206 | –CHO |
2 | 116, 120, 130, 157, 165 | Carbon from benzene ring |
3 | 90–100 | CHO(CH2)3CH2OH |
4 | 70 | Ph–CH(OH)CH2CH2CH2CHO or Ph–CH(OH)CH2CH2CH2CH(OH)–Ph |
5 | 43 | CHOCH2CH2CH2CHO |
6 | 42 | Ph–CH(OH)CH2CH2CH2CHO or Ph–CH(OH)CH2CH2CH2CH(OH)–Ph |
7 | 17–19 | Ph–CH(OH)CH2CH2CH2CHO or Ph–CH(OH)CH2CH2CH2CH(OH)–Ph |
8 | 14 | CHOCH2CH2CH2CHO |
Trial number | Press temperature/°C | Press time/min | Resin loading/g·m−2 | Dry shear strength/MPa | Wet shear strength (100 °C)/MPa |
---|---|---|---|---|---|
1 | 140 | 3 | 280 | 2.60 (0.15) | 0.41 (0.10) |
2 | 140 | 4 | 320 | 2.67 (0.3) | 0.51 (0.06) |
3 | 140 | 5 | 360 | 2.59 (0.2) | 0.59 (0.05) |
4 | 160 | 3 | 320 | 2.29 (0.1) | 0.74 (0.05) |
5 | 160 | 4 | 360 | 2.33 (0.0) | 0.82 (0.05) |
6 | 160 | 5 | 280 | 2.05 (0.2) | 0.86 (0.06) |
7 | 180 | 3 | 360 | 2.26 (0.3) | 0.80 (0.04) |
8 | 180 | 4 | 280 | 1.68 (0.1) | 0.87 (0.07) |
9 | 180 | 5 | 320 | 2.07 (0.2) | 0.88 (0.08) |
Dry shear strength | |||||
K1 | 2.62 | 2.38 | 2.11 | — | |
K2 | 2.22 | 2.23 | 2.34 | — | |
K3 | 2.00 | 2.24 | 2.39 | — | |
R | 0.62 | 0.15 | 0.28 | — | |
Wet shear strength in boiling water | |||||
K1 | 0.50 | 0.65 | 0.71 | — | |
K2 | 0.81 | 0.73 | 0.71 | — | |
K3 | 0.85 | 0.78 | 0.74 | — | |
R | 0.35 | 0.13 | 0.03 | — |
Factors | Sum of squares of deviations (DEVSQ) | Degree of freedom (DOF) | Mean square error (MSER) | Significance |
---|---|---|---|---|
Press temperature | 0.586 | 2 | 14.293 | * |
Press time | 0.046 | 2 | 1.122 | |
Resin loading | 0.137 | 2 | 3.341 | |
Error | 0.04 | 2 |
Factors | DEVSQ | DOF | MSER | Significance |
---|---|---|---|---|
Press temperature | 0.214 | 2 | 214.000 | ** |
Press time | 0.025 | 2 | 25.000 | * |
Resin loading | 0.001 | 2 | 1.000 | |
Error | 0.000 | 2 |
Sample | Tp (K) | Ea/KJ/mol | |||
---|---|---|---|---|---|
15 K/min | 20 K/min | 25 K/min | 30 K/min | ||
S/PF | 376.7 | 379.2 | 382.8 | 384 | 100.0 |
S/PFG | 379 | 380.8 | 381.8 | 383.6 | 124.4 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Xi, X.; Lei, H.; Du, G. Soy-Based Adhesive Cross-Linked by Phenol-Formaldehyde-Glutaraldehyde. Polymers 2017, 9, 169. https://doi.org/10.3390/polym9050169
Wu Z, Xi X, Lei H, Du G. Soy-Based Adhesive Cross-Linked by Phenol-Formaldehyde-Glutaraldehyde. Polymers. 2017; 9(5):169. https://doi.org/10.3390/polym9050169
Chicago/Turabian StyleWu, Zhigang, Xuedong Xi, Hong Lei, and Guanben Du. 2017. "Soy-Based Adhesive Cross-Linked by Phenol-Formaldehyde-Glutaraldehyde" Polymers 9, no. 5: 169. https://doi.org/10.3390/polym9050169
APA StyleWu, Z., Xi, X., Lei, H., & Du, G. (2017). Soy-Based Adhesive Cross-Linked by Phenol-Formaldehyde-Glutaraldehyde. Polymers, 9(5), 169. https://doi.org/10.3390/polym9050169