Surface Molecularly Imprinted Polymer Film with Poly(p-aminothiophenol) Outer Layer Coated on Gold Nanoparticles Inner Layer for Highly Sensitive and Selective Sensing Paraoxon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Apparatus
2.3. Preparation of the AuNPs Inner Layer Modified SPCE
2.4. ATP Modification and PO Self-Assembly on the AuNPs Inner Layer
2.5. Preparation of the Imprinted PATP/AuNPs/SPCE
2.6. Electrochemical Measurements
2.7. Real Sample Preparation
3. Results and Discussion
3.1. Preparation of the Imprinted PATP/AuNPs Composite Film
3.2. Spectroscopic, Electrochemical, and Microscopic Characterizations
3.3. Sensitivity Enhancement with the Imprinted PATP/AuNPs/SPCE
3.4. Performance of the Imprinted PATP/AuNPs/SPCE
3.4.1. Sensitivity and Affinity
3.4.2. Selectivity
3.5. Reproducibility and Stability
3.6. Real Sample Analysis
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kwong, T.C. Organophosphate pesticides: biochemistry and clinical toxicology. Ther. Drug. Monit. 2002, 24, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.G. Current issues in organophosphate toxicology. Chim. Acta 2006, 366, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yu, N.; Zhang, B.; Jin, L.; Li, M.; Hu, M.; Zhang, X.; Wei, S.; Yu, H. Occurrence of organophosphate flame retardants in drinking water from China. Water. Res. 2014, 54, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Greaves, A.K.; Letcher, R.J. A Review of Organophosphate Esters in the Environment from Biological Effects to Distribution and Fate. Bull. Environ. Contam. Toxicol. 2017, 98, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Paul, K.C.; Sinsheimer, J.S.; Rhodes, S.L.; Cockburn, M.; Bronstein, J.; Ritz, B. Organophosphate pesticide exposures, nitric oxide synthase gene variants, and gene–pesticide interactions in a case–control study of Parkinson’s disease, California (USA). Environ. Health Perspect. 2016, 124, 570. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Miura, N.; Namera, A.; Miyazaki, S.; Ohta, S.; Oikawa, H.; Inokuchi, S. Rapid determination of polar and non-polar pesticides in human serum, using mixed-mode C-C18 monolithic spin column extraction and LC–MS/MS. Chromatographia 2013, 13, 781–789. [Google Scholar] [CrossRef]
- Dos Anjos, J.P.; de Andrade, J.B. Determination of nineteen pesticides residues (organophosphates, organochlorine, pyrethroids, carbamate, thiocarbamate and strobilurin) in coconut water by SDME/GC–MS. Microchem. J. 2014, 112, 119–126. [Google Scholar] [CrossRef]
- Martini, E.; Merola, G.; Tomassetti, M.; Campanella, L. Agent orange herbicides, organophosphate and triazinic pesticides analysis in olive oil and industrial oil mill waste effluents using new organic phase immunosensors. Food Chem. 2015, 169, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Thakur, S.; Reddy, M.V.; Siddavattam, D.; Paul, A.K. A fluorescence based assay with pyranine labeled hexa-histidine tagged organophosphorus hydrolase (OPH) for determination of organophosphates. Sens. Actuators B 2012, 163, 153–158. [Google Scholar] [CrossRef]
- Liu, Q.; Cai, J.; Huan, J.; Dong, X.; Wang, C.; Qiu, B.; Wang, K. A visible light photoelectrochemical biosensor coupling enzyme-inhibition for organophosphates monitoring based on a dual-functional Cd 0.5 Zn 0.5 S-reduced graphene oxide nanocomposite. Analyst 2014, 139, 1121–1126. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Wei, Q.; Wu, D.; Li, H.; Zhang, Y.; Feng, R.; Du, B. Determination of methyl parathion by a molecularly imprinted sensor based on nitrogen doped graphene sheets. Electrochim. Acta 2014, 116, 366–371. [Google Scholar] [CrossRef]
- Yao, G.H.; Liang, R.P.; Huang, C.F.; Wang, Y.; Qiu, J.D. Surface plasmon resonance sensor based on magnetic molecularly imprinted polymers amplification for pesticide recognition. Anal. Chem. 2013, 85, 11944–11951. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Gao, C.; Zhang, L.; Yan, M.; Yu, J.; Ge, S. Photoelectrochemical sensor based on molecularly imprinted film modified hierarchical branched titanium dioxide nanorods for chlorpyrifos detection. Sens. Actuators B 2017, 251, 1–8. [Google Scholar] [CrossRef]
- Wang, P.; Sun, X.; Su, X.; Wang, T. Advancements of molecularly imprinted polymers in the food safety field. Analyst 2016, 141, 3540–3553. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wang, Y.; Jiang, Y.; Li, S.; Liu, W. Molecularly imprinted polymers for the identification and separation of chiral drugs and biomolecules. Polymers 2016, 8, 216. [Google Scholar] [CrossRef]
- Uzun, L.; Turner, A.P. Molecularly-imprinted polymer sensors: Realising their potential. Biosens. Bioelectron. 2016, 76, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Markowitz, M.A.; Kust, P.R.; Deng, G.; Schoen, P.E.; Dordick, J.S.; Clerk, D.S.; Gaber, B.P. Catalytic silica particles via templated-directed molecular imprinting. Langmuir 2000, 16, 1759. [Google Scholar] [CrossRef]
- Gao, D.; Zhang, Z.; Wu, M.; Xie, C.; Guan, G.; Wang, D. A surface functional monomer-directing strategy for highly dense imprinting of TNT at surface of silica nanoparticles. J. Am. Chem. Soc. 2007, 129, 7859–7866. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.; Zhang, W.; Long, W.; Hou, D.; Yang, X.; Tan, N. Adsorption characteristics, recognition properties, and preliminary application of nordihydroguaiaretic acid molecularly imprinted polymers prepared by sol–gel surface imprinting technology. Appl. Surf. Sci. 2016, 364, 579–588. [Google Scholar] [CrossRef]
- Xing, R.; Wang, S.; Bie, Z.; He, H.; Liu, Z. Preparation of molecularly imprinted polymers specific to glycoproteins, glycans and monosaccharides via boronate affinity controllable-oriented surface imprinting. Nature Protoc. 2017, 12, 964–987. [Google Scholar] [CrossRef] [PubMed]
- Wackerlig, J.; Schirhagl, R. Applications of molecularly imprinted polymer nanoparticles and their advances toward industrial use: a review. Anal. Chem. 2015, 88, 250–261. [Google Scholar]
- Cheng, W.; Fan, F.; Zhang, Y.; Pei, Z.; Wang, W.; Pei, Y. A facile approach for fabrication of core-shell magnetic molecularly imprinted nanospheres towards hypericin. Polymers 2017, 9, 135. [Google Scholar] [CrossRef]
- Wackerlig, J.; Lieberzeit, P.A. Molecularly imprinted polymer nanoparticles in chemical sensing–synthesis, characterisation and application. Sens. Actuators B 2015, 207, 144–157. [Google Scholar] [CrossRef]
- Sabatani, E.; Gafni, Y.; Rubinstein, I. Morphology control in electrochemically grown conducting Polymer Films. 3. A Comparative study of polyaniline films on bare gold and on gold pretreated with p-amino thio phenol. J. Phys. Chem. 1995, 99, 12305–12311. [Google Scholar] [CrossRef]
- Li, S.; Du, D.; Huang, J.; Tu, H.; Zhang, A. One-step electrodeposition of a molecularly imprinting chitosan/phenyltrimethoxysilane/AuNPs hybrid film and its application in the selective determination of p-nitrophenol. Analyst 2013, 138, 2761–2768. [Google Scholar] [CrossRef] [PubMed]
- Saha, K.; Agasti, S.S.; Kim, C.; Li, X.; Rotello, V.M. Gold nanoparticles in chemical and biological sensing. Chem. Rev. 2012, 112, 2739–2779. [Google Scholar] [CrossRef] [PubMed]
- Yola, M.L.; Atar, N.; Üstündağ, Z.; Solak, A.O. A novel voltammetric sensor based on p-aminothiophenol functionalized graphene oxide/gold nanoparticles for determining quercetin in the presence of ascorbic acid. J. Electroanal. Chem. 2013, 698, 9–16. [Google Scholar] [CrossRef]
- Riskin, M.; Tel-Vered, R.; Bourenko, T.; Granot, E.; Willner, I. Imprinting of molecular recognition sites through electropolymerization of functionalized Au nanoparticles: development of an electrochemical TNT sensor based on π–donor− acceptor interactions. J. Am. Chem. Soc. 2008, 130, 9726–9733. [Google Scholar] [CrossRef] [PubMed]
- Jha, N.; Ramaprabhu, S. Development of Au nanoparticles dispersed carbon nanotube-based biosensor for the detection of paraoxon. Nanoscale 2010, 2, 806–810. [Google Scholar]
- Di Tuoro, D.; Portaccio, M.; Lepore, M.; Arduini, F.; Moscone, D.; Bencivenga, U.; Mita, D.G. An acetylcholinesterase biosensor for determination of low concentrations of Paraoxon and Dichlorvos. New Biotechnol. 2011, 29, 132–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suprun, E.; Evtugyn, G.; Budnikov, H.; Ricci, F.; Moscone, D.; Palleschi, G. Acetylcholinesterase sensor based on screen-printed carbon electrode modified with prussian blue. Anal. Bioanal. Chem. 2005, 383, 597–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arduini, F.; Neagu, D.; Scognamiglio, V.; Patarino, S.; Moscone, D.; Palleschi, G. Automatable flow system for paraoxon detection with an embedded screen-printed electrode tailored with butyrylcholinesterase and prussian blue nanoparticles. Chem. Aust. 2015, 3, 129–145. [Google Scholar] [CrossRef]
- Hossain, M.M.; Faisal, S.N.; Kim, C.S.; Cha, H.J.; Nam, S.C.; Lee, H.J. Amperometric proton selective strip-sensors with a microelliptic liquid/gel interface for organophosphate neurotoxins. Electrochem. Commun. 2011, 13, 611–614. [Google Scholar] [CrossRef]
- Pedrosa, V.A.; Paliwal, S.; Balasubramanian, S.; Nepal, D.; Davis, V.; Wild, J.; Ramanculo, E.; Simonian, A. Enhanced stability of enzyme organophosphate hydrolase interfaced on the carbon nanotubes. Colloids Surf. B 2010, 77, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Park, J.Y.; Min, K.; Cha, H.J.; Choi, S.S.; Yoo, Y.J. A novel organophosphorus hydrolase-based biosensor using mesoporous carbons and carbon black for the detection of organophosphate nerve agents. Biosens. Bioelectron. 2010, 25, 1566–1570. [Google Scholar] [CrossRef] [PubMed]
- Belghiti, D.K.; Zadeh-Habchi, M.; Scorsone, E.; Bergonzo, P. Boron doped diamond/metal nanoparticle catalysts hybrid electrode array for the detection of pesticides in tap water. Procedia Eng. 2016, 168, 428–431. [Google Scholar] [CrossRef]
- Stoytcheva, M.; Zlatev, R.; Montero, G.; Velkova, Z.; Gochev, V. Nanostructured platform for the sensitive determination of paraoxon by using an electrode modified with a film of graphite-immobilized bismuth. Microchim. Acta 2017, 1–8. [Google Scholar] [CrossRef]
- Alizadeh, T. Comparison of different methodologies for integration of molecularly imprinted polymer and electrochemical transducer in order to develop a paraoxon voltammetric sensor. Thin Solid Films 2010, 518, 6099–6106. [Google Scholar] [CrossRef]
Sample | Spiked/μM | Found/μM | Recovery (%) | RSD (%) |
---|---|---|---|---|
Apple | 0.5 | 0.487 | 97.4 | 1.7 |
1.0 | 0.963 | 96.3 | 2.2 | |
5.0 | 5.162 | 103.2 | 2.8 | |
Cabbage | 0.5 | 0.476 | 95.2 | 2.3 |
1.0 | 1.024 | 102.4 | 2.6 | |
5.0 | 4.932 | 98.6 | 3.1 |
Sensor | Linearity (M) | LOD (M) | Ref. |
---|---|---|---|
AChE/Au NPs–MWNTs/GCE | 1 × 10−10–7 × 10−9 | 1 × 10−9 | [29] |
AChE/CPE | 3 × 10−9–8.3 × 10−9 | 3 × 10−9 | [30] |
AChE/PB/SPCE | 5 × 10−8–6.3 × 10−5 | 3.6 × 10−8 | [31] |
BuChE/PBNPs/SPCE | 7 × 10−9–3.6 × 10−8 | 3.6 × 10−9 | [32] |
OPH/micro-ITIES/PDMS | 5×10−7–1 × 10−4 | 5 × 10−7 | [33] |
OPH/SWNTs/GCE | 5 × 10−7–8.5 × 10−6 | 1 × 10−8 | [34] |
OPH/CPE | 2 × 10−8–1.8 × 10−7 | 2 × 10−8 | [35] |
Pt and Ir NPs/BDD | − | 2 × 10−7 | [36] |
Bi/Gr/GCE | 5 × 10−9–4.0 × 10−8 | 2 × 10−9 | [37] |
MIP/CPE | 3.8 × 10−9–7.5 × 10−7 | 1.0 × 10−9 | [38] |
sensor in this work | 1 × 10−8–1 × 10-4 | 1 × 10−9 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Luo, Q.; Liu, Y.; Zhang, Z.; Shen, G.; Wu, H.; Chen, A.; Liu, X.; Zhang, A. Surface Molecularly Imprinted Polymer Film with Poly(p-aminothiophenol) Outer Layer Coated on Gold Nanoparticles Inner Layer for Highly Sensitive and Selective Sensing Paraoxon. Polymers 2017, 9, 359. https://doi.org/10.3390/polym9080359
Li S, Luo Q, Liu Y, Zhang Z, Shen G, Wu H, Chen A, Liu X, Zhang A. Surface Molecularly Imprinted Polymer Film with Poly(p-aminothiophenol) Outer Layer Coated on Gold Nanoparticles Inner Layer for Highly Sensitive and Selective Sensing Paraoxon. Polymers. 2017; 9(8):359. https://doi.org/10.3390/polym9080359
Chicago/Turabian StyleLi, Shanshan, Qingying Luo, Yaowen Liu, Zhiqing Zhang, Guanghui Shen, Hejun Wu, Anjun Chen, Xingyan Liu, and Aidong Zhang. 2017. "Surface Molecularly Imprinted Polymer Film with Poly(p-aminothiophenol) Outer Layer Coated on Gold Nanoparticles Inner Layer for Highly Sensitive and Selective Sensing Paraoxon" Polymers 9, no. 8: 359. https://doi.org/10.3390/polym9080359
APA StyleLi, S., Luo, Q., Liu, Y., Zhang, Z., Shen, G., Wu, H., Chen, A., Liu, X., & Zhang, A. (2017). Surface Molecularly Imprinted Polymer Film with Poly(p-aminothiophenol) Outer Layer Coated on Gold Nanoparticles Inner Layer for Highly Sensitive and Selective Sensing Paraoxon. Polymers, 9(8), 359. https://doi.org/10.3390/polym9080359