Surface Molecularly Imprinted Polymer Film with Poly(p-aminothiophenol) Outer Layer Coated on Gold Nanoparticles Inner Layer for Highly Sensitive and Selective Sensing Paraoxon
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Apparatus
2.3. Preparation of the AuNPs Inner Layer Modified SPCE
2.4. ATP Modification and PO Self-Assembly on the AuNPs Inner Layer
2.5. Preparation of the Imprinted PATP/AuNPs/SPCE
2.6. Electrochemical Measurements
2.7. Real Sample Preparation
3. Results and Discussion
3.1. Preparation of the Imprinted PATP/AuNPs Composite Film
3.2. Spectroscopic, Electrochemical, and Microscopic Characterizations
3.3. Sensitivity Enhancement with the Imprinted PATP/AuNPs/SPCE
3.4. Performance of the Imprinted PATP/AuNPs/SPCE
3.4.1. Sensitivity and Affinity
3.4.2. Selectivity
3.5. Reproducibility and Stability
3.6. Real Sample Analysis
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kwong, T.C. Organophosphate pesticides: biochemistry and clinical toxicology. Ther. Drug. Monit. 2002, 24, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.G. Current issues in organophosphate toxicology. Chim. Acta 2006, 366, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yu, N.; Zhang, B.; Jin, L.; Li, M.; Hu, M.; Zhang, X.; Wei, S.; Yu, H. Occurrence of organophosphate flame retardants in drinking water from China. Water. Res. 2014, 54, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Greaves, A.K.; Letcher, R.J. A Review of Organophosphate Esters in the Environment from Biological Effects to Distribution and Fate. Bull. Environ. Contam. Toxicol. 2017, 98, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Paul, K.C.; Sinsheimer, J.S.; Rhodes, S.L.; Cockburn, M.; Bronstein, J.; Ritz, B. Organophosphate pesticide exposures, nitric oxide synthase gene variants, and gene–pesticide interactions in a case–control study of Parkinson’s disease, California (USA). Environ. Health Perspect. 2016, 124, 570. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Miura, N.; Namera, A.; Miyazaki, S.; Ohta, S.; Oikawa, H.; Inokuchi, S. Rapid determination of polar and non-polar pesticides in human serum, using mixed-mode C-C18 monolithic spin column extraction and LC–MS/MS. Chromatographia 2013, 13, 781–789. [Google Scholar] [CrossRef]
- Dos Anjos, J.P.; de Andrade, J.B. Determination of nineteen pesticides residues (organophosphates, organochlorine, pyrethroids, carbamate, thiocarbamate and strobilurin) in coconut water by SDME/GC–MS. Microchem. J. 2014, 112, 119–126. [Google Scholar] [CrossRef]
- Martini, E.; Merola, G.; Tomassetti, M.; Campanella, L. Agent orange herbicides, organophosphate and triazinic pesticides analysis in olive oil and industrial oil mill waste effluents using new organic phase immunosensors. Food Chem. 2015, 169, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Thakur, S.; Reddy, M.V.; Siddavattam, D.; Paul, A.K. A fluorescence based assay with pyranine labeled hexa-histidine tagged organophosphorus hydrolase (OPH) for determination of organophosphates. Sens. Actuators B 2012, 163, 153–158. [Google Scholar] [CrossRef]
- Liu, Q.; Cai, J.; Huan, J.; Dong, X.; Wang, C.; Qiu, B.; Wang, K. A visible light photoelectrochemical biosensor coupling enzyme-inhibition for organophosphates monitoring based on a dual-functional Cd 0.5 Zn 0.5 S-reduced graphene oxide nanocomposite. Analyst 2014, 139, 1121–1126. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Wei, Q.; Wu, D.; Li, H.; Zhang, Y.; Feng, R.; Du, B. Determination of methyl parathion by a molecularly imprinted sensor based on nitrogen doped graphene sheets. Electrochim. Acta 2014, 116, 366–371. [Google Scholar] [CrossRef]
- Yao, G.H.; Liang, R.P.; Huang, C.F.; Wang, Y.; Qiu, J.D. Surface plasmon resonance sensor based on magnetic molecularly imprinted polymers amplification for pesticide recognition. Anal. Chem. 2013, 85, 11944–11951. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Gao, C.; Zhang, L.; Yan, M.; Yu, J.; Ge, S. Photoelectrochemical sensor based on molecularly imprinted film modified hierarchical branched titanium dioxide nanorods for chlorpyrifos detection. Sens. Actuators B 2017, 251, 1–8. [Google Scholar] [CrossRef]
- Wang, P.; Sun, X.; Su, X.; Wang, T. Advancements of molecularly imprinted polymers in the food safety field. Analyst 2016, 141, 3540–3553. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wang, Y.; Jiang, Y.; Li, S.; Liu, W. Molecularly imprinted polymers for the identification and separation of chiral drugs and biomolecules. Polymers 2016, 8, 216. [Google Scholar] [CrossRef]
- Uzun, L.; Turner, A.P. Molecularly-imprinted polymer sensors: Realising their potential. Biosens. Bioelectron. 2016, 76, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Markowitz, M.A.; Kust, P.R.; Deng, G.; Schoen, P.E.; Dordick, J.S.; Clerk, D.S.; Gaber, B.P. Catalytic silica particles via templated-directed molecular imprinting. Langmuir 2000, 16, 1759. [Google Scholar] [CrossRef]
- Gao, D.; Zhang, Z.; Wu, M.; Xie, C.; Guan, G.; Wang, D. A surface functional monomer-directing strategy for highly dense imprinting of TNT at surface of silica nanoparticles. J. Am. Chem. Soc. 2007, 129, 7859–7866. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.; Zhang, W.; Long, W.; Hou, D.; Yang, X.; Tan, N. Adsorption characteristics, recognition properties, and preliminary application of nordihydroguaiaretic acid molecularly imprinted polymers prepared by sol–gel surface imprinting technology. Appl. Surf. Sci. 2016, 364, 579–588. [Google Scholar] [CrossRef]
- Xing, R.; Wang, S.; Bie, Z.; He, H.; Liu, Z. Preparation of molecularly imprinted polymers specific to glycoproteins, glycans and monosaccharides via boronate affinity controllable-oriented surface imprinting. Nature Protoc. 2017, 12, 964–987. [Google Scholar] [CrossRef] [PubMed]
- Wackerlig, J.; Schirhagl, R. Applications of molecularly imprinted polymer nanoparticles and their advances toward industrial use: a review. Anal. Chem. 2015, 88, 250–261. [Google Scholar]
- Cheng, W.; Fan, F.; Zhang, Y.; Pei, Z.; Wang, W.; Pei, Y. A facile approach for fabrication of core-shell magnetic molecularly imprinted nanospheres towards hypericin. Polymers 2017, 9, 135. [Google Scholar] [CrossRef]
- Wackerlig, J.; Lieberzeit, P.A. Molecularly imprinted polymer nanoparticles in chemical sensing–synthesis, characterisation and application. Sens. Actuators B 2015, 207, 144–157. [Google Scholar] [CrossRef]
- Sabatani, E.; Gafni, Y.; Rubinstein, I. Morphology control in electrochemically grown conducting Polymer Films. 3. A Comparative study of polyaniline films on bare gold and on gold pretreated with p-amino thio phenol. J. Phys. Chem. 1995, 99, 12305–12311. [Google Scholar] [CrossRef]
- Li, S.; Du, D.; Huang, J.; Tu, H.; Zhang, A. One-step electrodeposition of a molecularly imprinting chitosan/phenyltrimethoxysilane/AuNPs hybrid film and its application in the selective determination of p-nitrophenol. Analyst 2013, 138, 2761–2768. [Google Scholar] [CrossRef] [PubMed]
- Saha, K.; Agasti, S.S.; Kim, C.; Li, X.; Rotello, V.M. Gold nanoparticles in chemical and biological sensing. Chem. Rev. 2012, 112, 2739–2779. [Google Scholar] [CrossRef] [PubMed]
- Yola, M.L.; Atar, N.; Üstündağ, Z.; Solak, A.O. A novel voltammetric sensor based on p-aminothiophenol functionalized graphene oxide/gold nanoparticles for determining quercetin in the presence of ascorbic acid. J. Electroanal. Chem. 2013, 698, 9–16. [Google Scholar] [CrossRef]
- Riskin, M.; Tel-Vered, R.; Bourenko, T.; Granot, E.; Willner, I. Imprinting of molecular recognition sites through electropolymerization of functionalized Au nanoparticles: development of an electrochemical TNT sensor based on π–donor− acceptor interactions. J. Am. Chem. Soc. 2008, 130, 9726–9733. [Google Scholar] [CrossRef] [PubMed]
- Jha, N.; Ramaprabhu, S. Development of Au nanoparticles dispersed carbon nanotube-based biosensor for the detection of paraoxon. Nanoscale 2010, 2, 806–810. [Google Scholar]
- Di Tuoro, D.; Portaccio, M.; Lepore, M.; Arduini, F.; Moscone, D.; Bencivenga, U.; Mita, D.G. An acetylcholinesterase biosensor for determination of low concentrations of Paraoxon and Dichlorvos. New Biotechnol. 2011, 29, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Suprun, E.; Evtugyn, G.; Budnikov, H.; Ricci, F.; Moscone, D.; Palleschi, G. Acetylcholinesterase sensor based on screen-printed carbon electrode modified with prussian blue. Anal. Bioanal. Chem. 2005, 383, 597–604. [Google Scholar] [CrossRef] [PubMed]
- Arduini, F.; Neagu, D.; Scognamiglio, V.; Patarino, S.; Moscone, D.; Palleschi, G. Automatable flow system for paraoxon detection with an embedded screen-printed electrode tailored with butyrylcholinesterase and prussian blue nanoparticles. Chem. Aust. 2015, 3, 129–145. [Google Scholar] [CrossRef]
- Hossain, M.M.; Faisal, S.N.; Kim, C.S.; Cha, H.J.; Nam, S.C.; Lee, H.J. Amperometric proton selective strip-sensors with a microelliptic liquid/gel interface for organophosphate neurotoxins. Electrochem. Commun. 2011, 13, 611–614. [Google Scholar] [CrossRef]
- Pedrosa, V.A.; Paliwal, S.; Balasubramanian, S.; Nepal, D.; Davis, V.; Wild, J.; Ramanculo, E.; Simonian, A. Enhanced stability of enzyme organophosphate hydrolase interfaced on the carbon nanotubes. Colloids Surf. B 2010, 77, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Park, J.Y.; Min, K.; Cha, H.J.; Choi, S.S.; Yoo, Y.J. A novel organophosphorus hydrolase-based biosensor using mesoporous carbons and carbon black for the detection of organophosphate nerve agents. Biosens. Bioelectron. 2010, 25, 1566–1570. [Google Scholar] [CrossRef] [PubMed]
- Belghiti, D.K.; Zadeh-Habchi, M.; Scorsone, E.; Bergonzo, P. Boron doped diamond/metal nanoparticle catalysts hybrid electrode array for the detection of pesticides in tap water. Procedia Eng. 2016, 168, 428–431. [Google Scholar] [CrossRef]
- Stoytcheva, M.; Zlatev, R.; Montero, G.; Velkova, Z.; Gochev, V. Nanostructured platform for the sensitive determination of paraoxon by using an electrode modified with a film of graphite-immobilized bismuth. Microchim. Acta 2017, 1–8. [Google Scholar] [CrossRef]
- Alizadeh, T. Comparison of different methodologies for integration of molecularly imprinted polymer and electrochemical transducer in order to develop a paraoxon voltammetric sensor. Thin Solid Films 2010, 518, 6099–6106. [Google Scholar] [CrossRef]
Sample | Spiked/μM | Found/μM | Recovery (%) | RSD (%) |
---|---|---|---|---|
Apple | 0.5 | 0.487 | 97.4 | 1.7 |
1.0 | 0.963 | 96.3 | 2.2 | |
5.0 | 5.162 | 103.2 | 2.8 | |
Cabbage | 0.5 | 0.476 | 95.2 | 2.3 |
1.0 | 1.024 | 102.4 | 2.6 | |
5.0 | 4.932 | 98.6 | 3.1 |
Sensor | Linearity (M) | LOD (M) | Ref. |
---|---|---|---|
AChE/Au NPs–MWNTs/GCE | 1 × 10−10–7 × 10−9 | 1 × 10−9 | [29] |
AChE/CPE | 3 × 10−9–8.3 × 10−9 | 3 × 10−9 | [30] |
AChE/PB/SPCE | 5 × 10−8–6.3 × 10−5 | 3.6 × 10−8 | [31] |
BuChE/PBNPs/SPCE | 7 × 10−9–3.6 × 10−8 | 3.6 × 10−9 | [32] |
OPH/micro-ITIES/PDMS | 5×10−7–1 × 10−4 | 5 × 10−7 | [33] |
OPH/SWNTs/GCE | 5 × 10−7–8.5 × 10−6 | 1 × 10−8 | [34] |
OPH/CPE | 2 × 10−8–1.8 × 10−7 | 2 × 10−8 | [35] |
Pt and Ir NPs/BDD | − | 2 × 10−7 | [36] |
Bi/Gr/GCE | 5 × 10−9–4.0 × 10−8 | 2 × 10−9 | [37] |
MIP/CPE | 3.8 × 10−9–7.5 × 10−7 | 1.0 × 10−9 | [38] |
sensor in this work | 1 × 10−8–1 × 10-4 | 1 × 10−9 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Luo, Q.; Liu, Y.; Zhang, Z.; Shen, G.; Wu, H.; Chen, A.; Liu, X.; Zhang, A. Surface Molecularly Imprinted Polymer Film with Poly(p-aminothiophenol) Outer Layer Coated on Gold Nanoparticles Inner Layer for Highly Sensitive and Selective Sensing Paraoxon. Polymers 2017, 9, 359. https://doi.org/10.3390/polym9080359
Li S, Luo Q, Liu Y, Zhang Z, Shen G, Wu H, Chen A, Liu X, Zhang A. Surface Molecularly Imprinted Polymer Film with Poly(p-aminothiophenol) Outer Layer Coated on Gold Nanoparticles Inner Layer for Highly Sensitive and Selective Sensing Paraoxon. Polymers. 2017; 9(8):359. https://doi.org/10.3390/polym9080359
Chicago/Turabian StyleLi, Shanshan, Qingying Luo, Yaowen Liu, Zhiqing Zhang, Guanghui Shen, Hejun Wu, Anjun Chen, Xingyan Liu, and Aidong Zhang. 2017. "Surface Molecularly Imprinted Polymer Film with Poly(p-aminothiophenol) Outer Layer Coated on Gold Nanoparticles Inner Layer for Highly Sensitive and Selective Sensing Paraoxon" Polymers 9, no. 8: 359. https://doi.org/10.3390/polym9080359
APA StyleLi, S., Luo, Q., Liu, Y., Zhang, Z., Shen, G., Wu, H., Chen, A., Liu, X., & Zhang, A. (2017). Surface Molecularly Imprinted Polymer Film with Poly(p-aminothiophenol) Outer Layer Coated on Gold Nanoparticles Inner Layer for Highly Sensitive and Selective Sensing Paraoxon. Polymers, 9(8), 359. https://doi.org/10.3390/polym9080359