B-box Proteins in Arachis duranensis: Genome-Wide Characterization and Expression Profiles Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification of BBX Members in A. duranensis
2.2. Sequence Alignment and Phylogenetic Relationship Analyses
2.3. Gene Structure, Conserved Motif, and Sequence Logo Analyses
2.4. Chromosomal Location, Synteny, and Gene Duplication Analyses
2.5. Cis-Acting Element Analysis
2.6. Analysis of Gene Expression in Different Tissues
3. Results
3.1. Identification of BBX Genes in A. duranensis
3.2. Chromosomal Distribution of AdBBXs
3.3. Protein Sequence and Classification Analysis of AdBBX Genes
3.4. Gene Structures and Conserved Motifs of AdBBX Genes
3.5. Duplication Analysis of BBX Genes in A. duranensis
3.6. Analysis of Cis-Acting Elements in AdBBX Promoter Regions
3.7. Expression Patterns of AdBBX Genes in Different Tissues
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BBX | B-box |
CCT | CONSTANS, CONSTANS-LIKE and TIMING OF CAB1 |
LD | Long day |
SD | Short day |
VP | valine-proline |
CO | CONSTANS |
CORE | CO-responsive elements |
FT | FLOWERING LOCUS T |
COL | CO-like |
GSDS | Gene Structure Display Server program |
ABA | Abscisic acid |
GA | Gibberellic acid |
Ad | Arachis duranensis |
Gm | Glycine max |
Os | Oryza sativa |
pI | Isoelectric point |
MW | Molecular weight |
References
- Riechmann, J.L.; Heard, J.; Martin, G.; Reuber, L.; Jiang, C.; Keddie, J.; Adam, L.; Pineda, O.; Ratcliffe, O.J.; Samaha, R.R.; et al. Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science 2000, 290, 2105–2110. [Google Scholar] [CrossRef] [PubMed]
- Kielbowicz-Matuk, A. Involvement of plant C2H2-type zinc finger transcription factors in stress responses. Plant Sci. 2012, 185–186, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Khanna, R.; Kronmiller, B.; Maszle, D.R.; Coupland, G.; Holm, M.; Mizuno, T.; Wu, S.H. The Arabidopsis B-Box zinc finger family. Plant Cell 2009, 21, 3416–3420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gangappa, S.N.; Botto, J.F. The BBX family of plant transcription factors. Trends Plant Sci. 2014, 19, 460–470. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yuan, J.; Cheng, T.; Tang, M.; Sun, K.; Song, S.; Xu, F.; Dai, C. Flowering-mediated root-fungus symbiosis loss is related to jasmonate-dependent root soluble sugar deprivation. Plant Cell Environ. 2019, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Ronald, J.; Davis, S.J. Focusing on the nuclear and subnuclear dynamics of light and circadian signalling. Plant Cell Environ. 2019, 42, 2871–2884. [Google Scholar] [CrossRef]
- Huang, J.; Zhao, X.; Weng, X.; Wang, L.; Xie, W. The rice B-Box zinc finger gene family: Genomic identification, characterization, expression profiling and diurnal analysis. PLoS ONE 2012, 7, e48242. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Han, Y.; Meng, D.; Li, D.; Jiao, C.; Jin, Q.; Lin, Y.; Cai, Y. B-BOX genes: Genome-wide identification, evolution and their contribution to pollen growth in pear (Pyrus bretschneideri Rehd.). BMC Plant Biol. 2017, 17, 156. [Google Scholar] [CrossRef] [Green Version]
- Shalmani, A.; Jing, X.Q.; Shi, Y.; Muhammad, I.; Zhou, M.R.; Wei, X.Y.; Chen, Q.Q.; Li, W.Q.; Liu, W.T.; Chen, K.M. Characterization of B-BOX gene family and their expression profiles under hormonal, abiotic and metal stresses in Poaceae plants. BMC Genom. 2019, 20, 27. [Google Scholar] [CrossRef]
- Massiah, M.A.; Simmons, B.N.; Short, K.M.; Cox, T.C. Solution structure of the RBCC/TRIM B-box1 domain of human MID1: B-box with a RING. J. Mol. Biol. 2006, 358, 532–545. [Google Scholar] [CrossRef]
- Massiah, M.A.; Matts, J.A.; Short, K.M.; Simmons, B.N.; Singireddy, S.; Yi, Z.; Cox, T.C. Solution structure of the MID1 B-box2 CHC(D/C)C2H2 Zinc-binding domain: Insights into an evolutionarily conserved RING fold. J. Mol. Biol. 2007, 369, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Crocco, C.D.; Botto, J.F. BBX proteins in green plants: Insights into their evolution, structure, feature and functional diversification. Gene 2013, 531, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, S.; Dunford, R.P.; Coupland, G.; Laurie, D.A. The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiol. 2003, 131, 1855–1867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Putterill, J.; Robson, F.; Lee, K.; Simon, R.; Coupland, G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 1995, 80, 847–857. [Google Scholar] [CrossRef] [Green Version]
- Samach, A.; Onouchi, H.; Gold, S.E.; Ditta, G.S.; Schwarz-Sommer, Z.; Yanofsky, M.F.; Coupland, G. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 2000, 288, 1613–1616. [Google Scholar] [CrossRef] [Green Version]
- Valverde, F.; Mouradov, A.; Soppe, W.; Ravenscroft, D.; Samach, A.; Coupland, G. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 2004, 303, 1003–1006. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, S.B.; Shen, Y.; Chang, H.C.; Hou, Y.; Harris, A.; Ma, S.F.; McPartland, M.; Hymus, G.J.; Adam, L.; Marion, C.; et al. The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis-element. New Phytol. 2010, 187, 57–66. [Google Scholar] [CrossRef]
- Wenkel, S.; Turck, F.; Singer, K.; Gissot, L.; Le Gourrierec, J.; Samach, A.; Coupland, G. CONSTANS and the CCAAT Box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell 2006, 18, 2971–2984. [Google Scholar] [CrossRef] [Green Version]
- Ben-Naim, O.; Eshed, R.; Parnis, A.; Teper-Bamnolker, P.; Shalit, A.; Coupland, G.; Samach, A.; Lifschitz, E. The CCAAT binding factor can mediate interactions between CONSTANS-like proteins and DNA. Plant J. 2006, 46, 462–476. [Google Scholar] [CrossRef] [Green Version]
- Luccioni, L.; Krzymuski, M.; Sánchez-Lamas, M.; Karayekov, E.; Cerdán, P.D.; Casal, J.J. CONSTANS delays Arabidopsis flowering under short days. Plant J. 2019, 97, 923–932. [Google Scholar] [CrossRef]
- Luo, X.; Gao, Z.; Wang, Y.; Chen, Z.; Zhang, W.; Huang, J.; Yu, H.; He, Y. The NUCLEAR FACTOR-CONSTANS complex antagonizes Polycomb repression to derepress FLOWERING LOCUS T expression in response to inductive long days in Arabidopsis. Plant J. 2018, 95, 17–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yano, M.; Katayose, Y.; Ashikari, M.; Yamanouchi, U.; Monna, L.; Fuse, T.; Baba, T.; Yamamoto, K.; Umehara, Y.; Nagamura, Y.; et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 2000, 12, 2473–2483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Ying, Y.; Secco, D.; Wang, C.; Narsai, R.; Whelan, J.; Shou, H. Molecular interaction between PHO2 and GIGANTEA reveals a new crosstalk between flowering time and phosphate homeostasis in Oryza sativa. Plant Cell Enviton. 2017, 40, 1487–1499. [Google Scholar] [CrossRef] [PubMed]
- Komiya, R.; Ikegami, A.; Tamaki, S.; Yokoi, S.; Shimamoto, K. Hd3a and RFT1 are essential for flowering in rice. Development 2008, 135, 767–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komiya, R.; Yokoi, S.; Shimamoto, K. A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 2009, 136, 3443–3450. [Google Scholar] [CrossRef] [Green Version]
- Kochert, G.; Halward, T.; Branch, W.D.; Simpson, C.E. RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor. Appl. Genet. 1991, 81, 565–570. [Google Scholar] [CrossRef]
- Beinecke, F.A.; Grundmann, L.; Wiedmann, D.R.; Schmidt, F.J.; Caesar, A.S.; Zimmermann, M.; Lahme, M.; Twyman, R.M.; Prufer, D.; Noll, G.A. The FT/FD-dependent initiation of flowering under long-day conditions in the day-neutral species Nicotiana tabacum originates from the facultative short-day ancestor Nicotiana tomentosiformis. Plant J. 2018, 96, 329–342. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Sedivy, E.J.; Price, W.B.; Haider, W.; Hanzawa, Y. Evolutionary trajectories of duplicated FT homologues and their roles in soybean domestication. Plant J. 2017, 90, 941–953. [Google Scholar] [CrossRef] [Green Version]
- Eom, H.; Park, S.J.; Kim, M.K.; Kim, H.; Kang, H.; Lee, I. TAF15b, involved in the autonomous pathway for flowering, represses transcription of FLOWERING LOCUS C. Plant J. 2018, 93, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Jing, Y.; Guo, Q.; Zha, P.; Lin, R. The chromatin-remodelling factor PICKLE interacts with CONSTANS to promote flowering in Arabidopsis. Plant Cell Environ. 2019, 42, 2495–2507. [Google Scholar] [CrossRef]
- Jin, H.; Tang, X.; Xing, M.; Zhu, H.; Sui, J.; Cai, C.; Li, S. Molecular and transcriptional characterization of phosphatidyl ethanolamine-binding proteins in wild peanuts Arachis duranensis and Arachis ipaensis. BMC Plant Biol. 2019, 19, 484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moretzsohn, M.C.; Gouvea, E.G.; Inglis, P.W.; Leal-Bertioli, S.C.; Valls, J.F.; Bertioli, D.J. A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers. Ann. Bot. 2013, 111, 113–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertioli, D.J.; Cannon, S.B.; Froenicke, L.; Huang, G.; Farmer, A.D.; Cannon, E.K.; Liu, X.; Gao, D.; Clevenger, J.; Dash, S.; et al. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat. Genet. 2016, 48, 438–446. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, H.; Pandey, M.K.; Yang, Q.; Wang, X.; Garg, V.; Li, H.; Chi, X.; Doddamani, D.; Hong, Y.; et al. Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens. Proc. Natl. Acad. Sci. USA 2016, 113, 6785–6790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertioli, D.J.; Jenkins, J.; Clevenger, J.; Dudchenko, O.; Gao, D.; Seijo, G.; Leal-Bertioli, S.C.M.; Ren, L.; Farmer, A.D.; Pandey, M.K.; et al. The genome sequence of segmental allotetraploid peanut Arachi shypogaea. Nat. Genet. 2019, 51, 877–884. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Lu, Q.; Liu, H.; Zhang, J.; Hong, Y.; Lan, H.; Li, H.; Wang, J.; Liu, H.; Li, S.; et al. Sequencing of cultivated peanut, Arachis hypogaea, yields insights into genome evolution and oil improvement. Mol. Plant 2019, 12, 920–934. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, W.; Chen, H.; Yang, M.; Wang, J.; Pandey, M.K.; Zhang, C.; Chang, W.C.; Zhang, L.; Zhang, X.; Tang, R.; et al. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat. Genet. 2019, 51, 865–876. [Google Scholar] [CrossRef]
- El-Gebali, S.; Mistry, J.; Bateman, A.; Eddy, S.; Luciani, A.; Potter, S.; Qureshi, M.; Richardson, L.; Salazar, G.; Smart, A.; et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019, 47, 427–432. [Google Scholar] [CrossRef]
- Finn, R.; Attwood, T.; Babbitt, P.; Bateman, A.; Bork, P.; Bridge, A.; Chang, H.; Dosztányi, Z.; El-Gebali, S.; Fraser, M.; et al. InterPro in 2017–beyond protein family and domain annotations. Nucleic Acids Res. 2017, 45, 190–199. [Google Scholar] [CrossRef]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein identification and analysis tools in the ExPASy Server. In The Proteomics Protocols Handbook; John, M.W., Ed.; Humana Press: New York, NY, USA, 2005; pp. 571–607. [Google Scholar]
- Oliver, T.; Schmidt, B.; Nathan, D.; Clemens, R.; Maskell, D. Using reconfigurable hardware to accelerate multiple sequence alignment with clustalw. Bioinformatics 2005, 21, 3431–3432. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, B.; Jin, J.; Guo, A.Y.; Zhang, H.; Luo, J.; Gao, G. GSDS 2.0. An upgraded gene feature visualization server. Bioinformatics 2015, 31, 1296–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. Meme suite: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, W202–W208. [Google Scholar] [CrossRef] [PubMed]
- Crooks, G.E.; Hon, G.; Chandonia, J.M.; Brenner, S.E. WebLogo: A sequence logogenerator. Genome Res. 2004, 14, 1188–1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Zhao, M.; Li, S.; Sun, L.; Wang, W.; Cai, C.; Dierking, E.C.; Ma, J. Plasticity and innovation of regulatory mechanisms underlying seed oil content mediated by duplicated genes in the palaeopolyploid soybean. Plant J. 2017, 90, 1120–1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Ding, Y.; Zhang, D.; Wang, X.; Tang, X.; Dai, D.; Jin, H.; Lee, S.H.; Cai, C.; Ma, J. Parallel domestication with a broad mutational spectrum of determinate stem growth habit in leguminous crops. Plant J. 2018, 96, 761–771. [Google Scholar] [CrossRef] [Green Version]
- Fischer, S.; Brunk, B.P.; Chen, F.; Gao, X.; Harb, O.S.; Iodice, J.B.; Shanmugam, D.; Roos, D.S.; Stoeckert, C.J. Using OrthoMCL to assign proteins to OrthoMCL-DB groups or to cluster proteomes into new ortholog groups. Curr. Protoc. Bioinformatics 2011, 35, 1–19. [Google Scholar]
- Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An information aesthetic for comparative genomics. Genome Res. 2009, 19, 1639–1645. [Google Scholar] [CrossRef] [Green Version]
- Hou, L.; Zhang, Z.; Dou, S.; Zhang, Y.; Pang, X.; Li, Y. Genome-wide identification, characterization, and expression analysis of the expansin gene family in Chinese jujube (Zizi phusjujuba Mill.). Planta 2019, 249, 815–829. [Google Scholar] [CrossRef]
- Lescot, M.; Dehais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouze, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef]
- Saeed, A.I.; Sharov, V.; White, J.; Li, J.; Liang, W.; Bhagabati, N.; Braisted, J.; Klapa, M.; Currier, T.; Thiagarajan, M.; et al. TM4: A free, open-source system for microarray data management and analysis. Biotechniques 2003, 34, 374–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clevenger, J.; Chu, Y.; Scheffler, B.; Ozias-Akins, P. A developmental transcriptome map for allotetraploid Arachis hypogaea. Front. Plant Sci. 2016, 7, 1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Li, R.; Dai, Y.; Chen, X.; Wang, X. Genome-wide identification and expression analysis of the B-box gene family in the Apple (Malus domestica Borkh.) genome. Mol. Genet. Genomics 2018, 293, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Samoluk, S.S.; Robledo, G.; Podio, M.; Chalup, L.; Ortiz, J.P.; Pessino, S.C.; Seijo, J.G. First insight into divergence, representation and chromosome distribution of reverse transcriptase fragments from L1 retrotransposons in peanut and wild relative species. Genetica 2015, 143, 113–125. [Google Scholar] [CrossRef] [Green Version]
- Initiative, A.G. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000, 408, 796–815. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Hu, S.; Wang, J.; Wong, G.K.-S.; Li, S.; Liu, B.; Deng, Y.; Dai, L.; Zhou, Y.; Zhang, X.; et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 2002, 296, 79–92. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Z.; Shi, Z.; Zhang, S.; Ming, R.; Zhu, S.; Khan, M.A.; Tao, S.; Korban, S.S.; Wang, H.; et al. The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res. 2013, 23, 396–408. [Google Scholar] [CrossRef] [Green Version]
- Li, X.Q.; Xing, T.; Du, D. Identification of top-ranked proteins withina directional protein interaction network using the pagerank algorithm: Applications in humans and plants. Curr. Issues Mol. Biol. 2016, 20, 13–28. [Google Scholar]
- An, H.; Roussot, C.; Suárez-López, P.; Corbesier, L.; Vincent, C.; Piñeiro, M.; Hepworth, S.; Mouradov, A.; Justin, S.; Turnbull, C.; et al. CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 2004, 131, 3615–3626. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Price, B.W.; Haider, W.; Seufferheld, G.; Nelson, R.; Hanzawa, Y. Functional and evolutionary characterization of the CONSTANS gene family in short-day photoperiodic flowering in soybean. PLoS ONE 2014, 9, e85754. [Google Scholar] [CrossRef]
- Suárez-López, P.; Wheatley, K.; Robson, F.; Onouchi, H.; Valverde, F.; Coupland, G. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 2001, 410, 1116–1120. [Google Scholar] [CrossRef] [PubMed]
- Kondrashov, F.A.; Rogozin, I.B.; Wolf, Y.I.; Koonin, E.V. Selection in the evolution of gene duplications. Genome Biol. 2002, 3, research0008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Zhou, Z.; Liu, Y.; Liu, T.; Li, Q.; Ji, Y.; Li, C.; Fang, C.; Wang, M.; Wu, M.; et al. Functional evolution of phosphatidyl ethanolamine binding proteins in soybean and Arabidopsis. Plant Cell 2015, 27, 323–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene ID | Genomic Length/bp | CDS Length/bp | No.of AA | GC% | pI | Mol. Wt (Da) | Strand | Chr | 5′ End | 3′ End | Gene Name |
---|---|---|---|---|---|---|---|---|---|---|---|
AraduV9D7S | 1837 | 1098 | 365 | 48.89% | 6.59 | 39,720.5 | + | A01 | 91,890,657 | 91,892,493 | AdBBX1 |
Aradu7ZG0H | 2519 | 735 | 244 | 35.03% | 5.09 | 26,830.5 | − | A03 | 3,490,043 | 3,492,561 | AdBBX2 |
Aradu7V6T8 | 1535 | 651 | 216 | 36.81% | 5.63 | 23,896.5 | + | A03 | 4,936,073 | 4,937,607 | AdBBX3 |
Aradu1V7PF | 2390 | 639 | 212 | 32.13% | 5.83 | 23,720.7 | − | A03 | 5,102,892 | 5,105,281 | AdBBX4 |
AraduJ5IAH | 3841 | 1209 | 402 | 33.66% | 4.98 | 44,409.8 | + | A03 | 15,759,939 | 15,763,779 | AdBBX5 |
Aradu8CI8S | 915 | 612 | 203 | 47.98% | 4.48 | 22,189.3 | + | A03 | 16,814,094 | 16,815,008 | AdBBX6 |
AraduWJ2ZP | 1792 | 1293 | 430 | 43.81% | 5.48 | 48,100.6 | + | A03 | 33,948,193 | 33,949,984 | AdBBX7 |
Aradu43J56 | 1894 | 933 | 310 | 40.60% | 7.12 | 33,922.1 | − | A04 | 120,041,625 | 120,043,518 | AdBBX8 |
Aradu3ZR52 | 2253 | 570 | 189 | 37.28% | 6.23 | 20,945.9 | − | A05 | 11,384,528 | 11,386,780 | AdBBX9 |
AraduXPS1Y | 1674 | 1200 | 399 | 37.46% | 5.5 | 45,440.5 | + | A05 | 93,078,336 | 93,080,009 | AdBBX10 |
AraduHU5GE | 2523 | 1113 | 370 | 38.13% | 6.03 | 41,278.9 | + | A06 | 8,755,561 | 8,758,083 | AdBBX11 |
Aradu23R92 | 1711 | 900 | 299 | 39.22% | 6.38 | 32,697.9 | + | A06 | 16,881,156 | 16,882,866 | AdBBX12 |
AraduJ7TMC | 4164 | 1140 | 379 | 37.58% | 6.57 | 41,756.3 | + | A06 | 94,914,152 | 94,918,315 | AdBBX13 |
AraduBV95P | 4564 | 1248 | 415 | 37.12% | 5.14 | 45,093.2 | − | A07 | 27,306,397 | 27,310,960 | AdBBX14 |
AraduWL99W | 1873 | 696 | 231 | 39.14% | 6.77 | 25,455.6 | − | A07 | 56,363,517 | 56,365,389 | AdBBX15 |
AraduM999T | 2300 | 903 | 300 | 39.78% | 4.98 | 32,359.4 | − | A07 | 75,340,469 | 75,342,768 | AdBBX16 |
AraduVV0JI | 3222 | 1641 | 546 | 38.08% | 6.44 | 61,012.7 | + | A08 | 23,797,353 | 23,800,574 | AdBBX17 |
AraduHJ8Q1 | 1249 | 1065 | 354 | 40.30% | 4.61 | 39,302.6 | + | A08 | 29,919,055 | 29,920,303 | AdBBX18 |
Aradu28KTI | 882 | 882 | 293 | 52.72% | 8.85 | 32,390.3 | + | A09 | 592,000 | 592,881 | AdBBX19 |
AraduZT2KF | 4052 | 1389 | 462 | 37.66% | 5.03 | 51,996.2 | − | A09 | 113,442,542 | 113,446,593 | AdBBX20 |
AraduJ9KV2 | 1368 | 1272 | 423 | 46.78% | 6.24 | 47,360.9 | − | A09 | 114,055,561 | 114,056,928 | AdBBX21 |
AraduF08JS | 468 | 468 | 155 | 42.52% | 4.16 | 17,020.4 | − | A10 | 3,740,421 | 3,740,888 | AdBBX22 |
Aradu5RF5F | 1287 | 984 | 327 | 51.83% | 6.51 | 35,690.8 | − | A10 | 88,380,486 | 88,381,772 | AdBBX23 |
AraduS156I | 2354 | 1185 | 394 | 35.39% | 4.81 | 43,580 | + | A10 | 104,730,376 | 10,473,2729 | AdBBX24 |
Gene Name | Development-Related Elements | Environmental Stress-Related Elements | Hormone-Responsive Elements | Light-Responsive Elements | Promoter-Related Elements | Site-Binding Related Elements | Others |
---|---|---|---|---|---|---|---|
AdBBX1 | 2 | 1 | 5 | 11 | 2 | 1 | 17 |
AdBBX2 | 3 | 2 | 3 | 6 | 3 | 1 | 15 |
AdBBX3 | 0 | 1 | 2 | 3 | 2 | 0 | 15 |
AdBBX4 | 2 | 2 | 3 | 3 | 2 | 1 | 12 |
AdBBX5 | 1 | 1 | 3 | 8 | 3 | 1 | 16 |
AdBBX6 | 0 | 0 | 3 | 3 | 2 | 1 | 15 |
AdBBX7 | 2 | 2 | 4 | 5 | 2 | 2 | 19 |
AdBBX8 | 1 | 2 | 1 | 8 | 2 | 1 | 13 |
AdBBX9 | 0 | 3 | 4 | 7 | 2 | 1 | 16 |
AdBBX10 | 1 | 2 | 4 | 4 | 2 | 0 | 18 |
AdBBX11 | 1 | 2 | 4 | 6 | 2 | 3 | 17 |
AdBBX12 | 0 | 1 | 4 | 5 | 2 | 0 | 9 |
AdBBX13 | 1 | 2 | 2 | 7 | 2 | 1 | 12 |
AdBBX14 | 0 | 2 | 2 | 11 | 2 | 0 | 13 |
AdBBX15 | 3 | 2 | 4 | 5 | 4 | 1 | 20 |
AdBBX16 | 1 | 2 | 3 | 10 | 2 | 0 | 19 |
AdBBX17 | 0 | 1 | 5 | 9 | 2 | 1 | 15 |
AdBBX18 | 0 | 1 | 3 | 7 | 2 | 0 | 16 |
AdBBX19 | 1 | 3 | 5 | 10 | 2 | 2 | 24 |
AdBBX20 | 0 | 3 | 3 | 6 | 2 | 0 | 15 |
AdBBX21 | 0 | 5 | 4 | 9 | 3 | 1 | 17 |
AdBBX22 | 2 | 3 | 3 | 8 | 2 | 0 | 11 |
AdBBX23 | 1 | 3 | 5 | 6 | 3 | 1 | 19 |
AdBBX24 | 0 | 2 | 6 | 7 | 2 | 0 | 15 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, H.; Xing, M.; Cai, C.; Li, S. B-box Proteins in Arachis duranensis: Genome-Wide Characterization and Expression Profiles Analysis. Agronomy 2020, 10, 23. https://doi.org/10.3390/agronomy10010023
Jin H, Xing M, Cai C, Li S. B-box Proteins in Arachis duranensis: Genome-Wide Characterization and Expression Profiles Analysis. Agronomy. 2020; 10(1):23. https://doi.org/10.3390/agronomy10010023
Chicago/Turabian StyleJin, Hanqi, Mengge Xing, Chunmei Cai, and Shuai Li. 2020. "B-box Proteins in Arachis duranensis: Genome-Wide Characterization and Expression Profiles Analysis" Agronomy 10, no. 1: 23. https://doi.org/10.3390/agronomy10010023
APA StyleJin, H., Xing, M., Cai, C., & Li, S. (2020). B-box Proteins in Arachis duranensis: Genome-Wide Characterization and Expression Profiles Analysis. Agronomy, 10(1), 23. https://doi.org/10.3390/agronomy10010023