Estimation of Maize (Zea mays L.) Yield Per Harvest Area: Appropriate Methods
Abstract
:1. Introduction
2. Components of Maize Yield Estimates
2.1. Plant Density and Kernel Number
2.2. Moisture Content
2.3. Maize Harvest and Shelling Percentage
2.4. Harvest Area
3. Grain Yield Estimates
3.1. Yield Estimation from Experimental Plots
3.2. Yield Estimation from Farmers’ Fields
3.3. Complex Models Used in Yield Estimation
4. Yield Simulation
5. Remote Sensing
Yield Gap Between Potential and Actual Yields
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- USAID. Micronutrient Programs and DSM Nutritional Products. Fortification Basics. Maize flour/Meal; 2002. Available online: https://www.dsm.com/en_US/nip/public/home/downloads/Corn.pdf (accessed on 22 December 2013).
- Ranum, P.; Peña-Rosas, J.P.; Garcia-Casal, M.N. Global maize production, utilization, and consumption. Ann. N. Y. Acad. Sci. 2014, 1312, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Undie, U.L.; Uwah, D.F.; Attoe, E.E. Effect of intercropping and crop arrangement of yield and productivity of late season maize/soybean mixtures in the humid environment of South Southern Nigeria. J. Agric. Sci. 2012, 4, 37–50. [Google Scholar] [CrossRef] [Green Version]
- Evans, L.T.; Fischer, R.A. Yield potential: Its definition, measurement and significance. Crop Sci. 1999, 39, 1544–1551. [Google Scholar] [CrossRef]
- Benson, T.; Fermont, A. Estimating yield of food crops grown by smallholder farmers: A review in the Uganda context. In International Food Policy Research Institute; IFPRI Discussion Paper 01097; Development Strategy and Governance Division: Washington, DC, USA, 2011; p. 69. [Google Scholar]
- Jocković, Đ.; Stojaković, M.; Ivanović, M.; Bekavac, G.; Popov, R.; Đalović, I. NS maize hybrids—Today and tomorrow. Ratar. Povrt. 2010, 47, 325–333. [Google Scholar]
- Đalović, I. More Important Morphological Traits and the Content of Mineral Elements in Maize at the Different Levels of Fertilization (In Serbian). Ph.D. Thesis, University of Novi Sad, Faculty of Agriculture, Novi Sad, Serbi, 2014. [Google Scholar]
- Van Ittersum, M.K.; Rabbinge, R. Concepts in production ecology for analysis and quantification of agricultural input-output combinations. Field Crops Res. 1997, 52, 197–208. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, X.; Lin, X.; Hubbard, K.G.; Lv, S.; Wang, J. Narrowing the agronomic yield gaps of maize by improved soil, cultivar, and agricultural management practices in different climate zones of Northeast China. Earth Interact. 2016, 20, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Ndhleve, S.; Nakin, M.D.V.; Longo-Mbenza, B. Impact of supplemental irrigation as a climate change adaptation strategy for maize production: A case of the Eastern Cape Province of South Africa. Water SA 2017, 43, 222–228. [Google Scholar] [CrossRef] [Green Version]
- Sud, U.C.; Ahmad, T.; Gupta, V.K.; Chandra, H.; Sahoo, P.M.; Aditya, K.; Singh, M.; Biswas, A. Global Strategy. In Synthesis of Literature and Framework—Research on Improving Methods for Estimating Crop Area, Yield and Production under Mixed, Repeated and Continuous Cropping; ICAR-Indian Agricultural Statistics Research Institute: New Delhi, India, 2016; p. 127. [Google Scholar]
- Fermont, A.; Benson, T. Estimating Yield of Food Crops Grown by Smallholder Farmers: A Review in the Uganda Context; International Food Policy Research Institute/CGIAR: Washington, DC, USA, 2011; p. 68. [Google Scholar]
- Ali, F.; Ahsan, M.; Ali, Q.; Kanwal, N. Phenotypic stability of Zea mays grain yield and its attributing traits under drought stress. Front. Plant. Sci. 2017, 8, 1397. [Google Scholar] [CrossRef] [Green Version]
- Muranui, E. Effect of plant density and row spacing on maize (Zea mays L.) grain yield in different crop year. J. Agric. Environ. Sci. 2015, 2, 57–63. [Google Scholar] [CrossRef]
- Huang, S.; Gao, Y.; Li, Y.; Xu, L.; Tao, H.; Wang, P. Influence of plant architecture on maize physiology and yield in the Heilonggang River Valley. Crop J. 2017, 5, 52–62. [Google Scholar] [CrossRef] [Green Version]
- Vazin, F.; Hassanzadeh, M.; Madani, A.; Nassiri-Mahallati, M.; Nasri, M. Modeling light interception and distribution in mixed canopy of common cocklebur (Xanthium stramarium) in competition with corn. Planta Daninha 2010, 28, 455–462. [Google Scholar] [CrossRef] [Green Version]
- Andrade, F.H.; Vega, C.; Uhart, S.; Cirilo, A.; Cantarero, M.; Valentinuz, O. Kernel number determination in maize. Crop Sci. 1999, 39, 453–459. [Google Scholar] [CrossRef]
- Russell, W.A. Genetic improvement of maize yields. Adv. Agron. 1991, 46, 245–298. [Google Scholar] [CrossRef]
- Qian, C.; Yu, Y.; Gong, X.; Jiang, Y.; Zhao, Y.; Yang, Z.; Hao, Y.; Li, L.; Song, Z.; Zhang, W. Response of grain yield to plant density and nitrogen rate in spring maize hybrids released from 1970 to 2010 in Northeast China. Crop J. 2016, 4, 459–467. [Google Scholar] [CrossRef] [Green Version]
- Mandić, V.; Bijelić, Z.; Krnjaja, V.; Tomić, Z.; Stanojković-Sebić, A.; Stanojković, A.; CaroPetrović, V. The effect of crop density on maize grain yield. Biotechnol. Anim. Husb. 2016, 32, 83–90. [Google Scholar] [CrossRef]
- Tokatlidis, I.S.; Koutroubas, S.D. A review study of the maize hybrids’ dependence on high plant populations and its implications on crop yield stability. Field Crops Res. 2004, 88, 103–114. [Google Scholar] [CrossRef]
- Berzsenyi, Z.; Lap, D.Q. Responses of maize (Zea mays L.) hybrids to sowing date, N fertiliser and plant density in different years. Acta Agron. Hung. 2005, 53, 119–131. [Google Scholar] [CrossRef] [Green Version]
- Shiluli, M.C.; Macharia, C.N.; Kamau, A.W. Economic analysis of maize yield response to nitrogen and phosphorus in the sub-humid zones of Western Kenya. Afr. Crop Sci. J. 2003, 11, 181–187. [Google Scholar] [CrossRef] [Green Version]
- Gakunga, J.; Mugo, S.; Njoroge, K.; Olubayo, F. Combining ability of maize lines resistant to Chilo partellus (Swinhoe) in the mid-altitude environment of Kenya. J. Plant Breed. Crop Sci. 2012, 4, 161–168. [Google Scholar] [CrossRef]
- Mrkovacki, N.; Dalovic, I.; Josic, D.; Bjelic, D.; Jokanovic, M.B. The effect of PGPR Strains on microbial abundance in maize rhizosphere in field conditions. Ratar. Povrt. 2016, 53, 15–19. [Google Scholar] [CrossRef]
- Ngaboyisonga, C. On-farm adaptability of four maize varieties under recommended cultural practices in the highlands of Rwanda. In Proceedings of the Seventh Eastern Southern Africa Regional Maize Conference, Nairobi, Kenya, 11–15 February 2001; pp. 72–76. [Google Scholar]
- Rafique, M.; Hussain, A.; Mahmood, T.; Alvi, A.W.; Alvi, M.B. Heritability and interrelationships among grain yield and yield components in maize (Zea mays L.). Int. J. Agric. Biol. 2005, 6, 1113–1114. [Google Scholar]
- Rafiq, C.M.; Rafique, M.; Hussain, A.; Altaf, M. Studies on heritability, correlation and path analysis in maize (Zea mays L.). J. Agric. Res. 2010, 48, 35–38. [Google Scholar]
- Nagarajan, D.; Nallathambi, G. Correlation studies for grain yield attributes in maize (Zea mays L.). Bull. Environ. Pharmacol. Life Sci. 2017, 6, 65–68. [Google Scholar]
- Tagne, A.; Feujio, T.P.; Sonna, C. Essential oil and plant extracts as potential substitutes to synthetic fungicides in the control of fungi. In Proceedings of the International Conference, Diversifying Crop Protection. ENDURE, La Grande Mott, France, 12–15 October 2008. [Google Scholar]
- Bello, O.B.; Ige, S.A.; Azeez, M.A.; Afolabi, M.S.; Abdulmaliq, S.Y.; Mahamood, J. Heritability and genetic advance for grain yield and its component characters in maize (Zea mays L.). Int. J. Plant. Res. 2012, 2, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Tandzi, L.N.; Ngonkeu, E.M.; Youmbi, E.; Nartey, E.; Yeboah, M.; Gracen, V.; Ngeve, J.; Mafouasson, H.A. Agronomic performance of maize hybrids under acid and control soil conditions. Int. J. Agron. Agric. Res. 2015, 6, 275–291. [Google Scholar]
- Petmi, C.L.; Ngonkeu, E.L.M.; Tandzi, N.L.; Ambang, Z.; Boyomo, O.; Bell, J.M.; Tekeu, H.; Mafouasson, H.; Malaa, D.; Noé, W. Screening of maize (Zea mays L.) genotypes for adaptation on contrasting acid soils in the humid forest zone of Cameroon. J. Exp. Agric. Int. 2016, 14, 1–15. [Google Scholar] [CrossRef]
- Mafouasson, H.N.A.; Gracen, V.; Yeboah, M.A.; Ntsomboh-Ntsefong, G.; Tandzi, N.L.; Mutengwa, C. Genotype-by-environment interaction and yield stability of maize single cross hybrids developed from tropical inbred lines. Agronomy 2018, 8, 62. [Google Scholar] [CrossRef] [Green Version]
- Shehu, B.M.; Merckx, R.; Jibrin, J.M.; Kamara, A.Y.; Ruinda, J. Quantifying variability in maize yield response to nutrient applications in the Northern Nigerian Savanna. Agronomy 2018, 8, 18. [Google Scholar] [CrossRef] [Green Version]
- Szareski, V.J.; Carvalho, R.I.; Kehl, K.; de Junior Pelegrin, A.; Nardino, M.; Demari, H.G.; Barbosa, H.M.; Lautenchleger, F.; Smaniotto, D.; Aumonde, T.Z.; et al. Interrelations of characters and multivariate analysis in corn. J. Agric. Sci. 2018, 10, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Blank World Map to Print 2018–2019. Available online: http://plageiledyeu.club/carte-vierge-a-imprimer/planisphere-vierge-a-imprimer-argandor-a-carte-vierge-a-imprimer/ (accessed on 5 January 2019).
- ASTM. Annual Book of ASTM Standards. In American Society for Testing and Materials, 100 Barr Harbor Drive; ASTM: West Conshohocken, PA, USA, 2001. [Google Scholar]
- CIMMYT. Managing Trials and Reporting Data for CIMMYT’s International Maize Testing Program; CIMMYT: México City, México, 1985; p. 23. [Google Scholar]
- Dorsey-Redding, C.; Hurburgh, R.C.; Johnson, L.A.; Fox, S.R. Adjustment of maize quality data for moisture content. Cereal Chem. 1990, 67, 292–295. [Google Scholar]
- Miles, S.R.; Remenga, E.E. Relation of kernel, cob, and ear moisture in dent corn. Purdue Agr. Exp. Sta. Res. Bul. 1953, 599, 42. [Google Scholar]
- Heisey, P.; Ahmad, M.; Stevens, E.J.; Khan, K.; Zeb, J.; Javed, H.I. Diagnosing Research Priorities for Higher-Altitude Maize-Based Farming Systems in Swat; Agricultural Economics Research Unit (PARC)/CIMMYT collaborative Program: Islamabad, Pakistan, 1990; p. 62. [Google Scholar]
- Gomes, L.S.; Brandão, A.M.; Brito, C.H.; Moraes, D.F.; Lopes, M.T.G. Resistance to plant lodging and stem breaking in tropical maize. Pesquisa Agropecuária Brasileira 2010, 45, 140–145. [Google Scholar] [CrossRef] [Green Version]
- Panison, F.; Sangoi, L.; Kolling, D.F.; Coelho, C.M.M.; Durli, M.M. Harvest time and agronomic performance of maize hybrids with contrasting growth cycles. Acta Sci. 2016, 38, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Araujo, E.F.; Araujo, R.F.; Sofiatti, V.; Silva, R.F. Physiological quality of maize seeds harvested in different times. Bragantia 2006, 65, 687–692. [Google Scholar] [CrossRef] [Green Version]
- Marques, O.J.; Dalpasquale, V.A.; Vidigal Filho, P.S.; Scapim, C.A.; Reche, D.L. Grain mechanical damage of maize commercial hybrids as affected by moisture content at harvest. Semin Ciências Agrárias 2011, 32, 565–576. [Google Scholar] [CrossRef]
- Galvão, J.C.C.; Conceição, P.M.; Araújo, E.F.; Karstein, J.; Finger, F.L. Physiological and enzymatic alterations in maize seeds submitted to different harvest times and shelling methods. Revista Brasileira de Milho e Sorgo 2014, 13, 14–23. [Google Scholar] [CrossRef]
- Gaile, Z. Harvest time effect on yield and quality of maize (Zea mays L.) grown for silage. Latv. J. Agron. 2008, 10, 104–111. [Google Scholar]
- Masuka, B.; Atlin, G.N.; Olsen, M.; Magorokosho, C.; Labuschagne, M.; Crossa, J.; Bänziger, M.; Pixley, K.V.; Vivek, B.S.; von Biljon, A.; et al. Grains in genetic improvement in Eastern and Southern Africa: I. CIMMYT hybrid breeding pipeline. Crop Sci. 2017, 57, 168–179. [Google Scholar] [CrossRef] [Green Version]
- Horrocks, R.D.; Zuber, M.S. Corn shelling percentage studies. University of Missouri-Columbia, College of Agriculture, Agricultural Experiment Station. Res. Bull. 1970, 976, 1–35. [Google Scholar]
- Thakur, S.K. Gen etic Analysis of Yield and Its Components in Maize (Zea mays L.) Inbred Lines Using Line X Tester Analysis. Master’s Thesis, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India, 2016; p. 128. [Google Scholar]
- Ngie, A.; Hmed, F. Estimation of maize yield using multispectral satellite data sets (SPOT 5) and the random forest algorithm. S. Afr. J. Geomat. 2018, 7, 11–30. [Google Scholar] [CrossRef] [Green Version]
- Onat, B.; Bakal, H.; Gulluoglu, L.; Arioglu, H. The effects of row spacing and plant density on yield and yield components of peanut grown as a double crop in Mediterranean environment in Turkey. Turk. J. Field Crops 2017, 22, 71–80. [Google Scholar] [CrossRef]
- Cassman, K.G. Long-term trajectories: Crop yields, farmland, and irrigated agriculture. Econ. Rev. Spec. Issue 2016, 1–26. Available online: http://www.KansasCityFed.org (Accessed on 15 July 2018).
- The, C.; Tandzi, N.L.; Zonkeng, C.; Ngonkeu, E.L.M.; Meka, S.; Leon, C.; Horst, W.J. Contribution of introduced inbred lines to maize varietal improvement for acid soil tolerance. In Demand-Driven Technologies for Sustainable Maize Production in West and Central Africa; Badu-Apraku, B., Fakorede, M.A.B., Lum, A.F., Menkir, A., Ouedraogo, M., Eds.; International Institute of Tropical Agriculture (IITA): Cotonou, Bénin, 2005. [Google Scholar]
- Ifie, B.E. Genetic Analysis of Striga Resistance and Low Soil Nitrogen Tolerance in Early Maturing Maize (Zea mays L.) Inbred lines. Ph.D. Thesis, University of Ghana, Ghana, Accra, 2013; p. 191. [Google Scholar]
- The, C.; Mafouasson, H.; Calba, H.; Mbouemboue, P.; Zonkeng, C. Identification de groupes hétérotiques pour la tolérance du maïs (Zea mays L.) aux sols acides des tropiques. Cah. Agric. 2006, 15, 337–346. [Google Scholar]
- Mafouasson, A.H.N.; Kenga, R.; Gracen, V.; Yeboah, A.M.; Mahamane, N.L.; Tandzi, N.L.; Ntsomboh-Ntsefong, G. Combining ability and gene action of Tropical Maize (Zea mays L.) inbred lines under low and high nitrogen conditions. J. Agric. Sci. 2016, 9, 222–235. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Cao, H.; Liang, J.; Ma, W.; Guo, L.; Zhang, S.; Jiang, R.; Zhang, H.; Goulding, K.W.T.; Zhang, F. Factors affecting nitrogen use efficiency and grain yield of Summer Maize on smallholder farms in the North China Plain. Sustainability 2017, 10, 363. [Google Scholar] [CrossRef] [Green Version]
- Pixley, K.; Bänziger, M. Open-pollinated maize varieties: A backward step or valuable option for farmers? In Proceedings of the Seventh Eastern and Southern Africa Regional Maize Conference, Nairobi, Kenya, 11–15 February 2001; pp. 22–28. [Google Scholar]
- Vivek, B.; Bänziger, M.; Pixley, K.V. Characterization of Maize Germplasm Grown in Eastern and Southern Africa: Results of the 2000 Regional Trials Coordinated by CIMMYT; CIMMYT: Harare, Zimbabwe, 2001. [Google Scholar]
- Parentoni, S.N.; de Souza, C.L., Jr.; de Carvalho Alves, V.M.; Gama, E.E.G.; Coelho, A.M.; Oliveira, A.C.; Guimaraes, P.E.O.; Guimaraes, C.T.; Vasconcelos, M.J.V.; Pacheco, P.C.A.; et al. Inheritance and breeding strategies for phosphorus efficiency in Tropical Maize (Zea mays L.). Maydica 2010, 55, 1–15. [Google Scholar]
- Norman, D.W.; Worman, F.D.; Siebert, J.D.; Modiakgotla, E. The Farming Systems Approach to Development and Appropriate Technology Generation; FAO Farm System Management Series 10; Food and Agriculture Organization of the United Nations: Rome, Italy, 1995. [Google Scholar]
- Casley, D.J.; Kumar, K. The Collection, Analysis and Use of Monitoring and Evaluation Data; Johns Hopkins University Press for the World Bank: Baltimore, MD, USA, 1988. [Google Scholar]
- Poate, C.D. A Review of Methods for Measuring Crop Production from Smallholder Producers. Exp. Agric. 1988, 24, 1–14. [Google Scholar] [CrossRef]
- Murphy, J.; Casley, D.J.; Curry, J.J. Farmers’ Estimations as a Source of Production Data; World Bank: Washington, DC, USA, 1991; p. 132. [Google Scholar]
- Byerlee, D.; Hussain, S.S. Maize Production in NWFP: A Review of Technological Issues in Relation to Farmers’ Circumstances; PARC/CIMMYT: Islamabad, Pakistan, 1986. [Google Scholar]
- Singh, R. Use of satellite data and farmers eye estimate for crop yield modelling. J. Indian Soc. Agric. Stat. 2013, 56, 166–176. [Google Scholar]
- Sapkota, T.B.; Jat, M.L.; Jat, R.K.; Kapoor, P.; Stirling, C. Yield estimation of food and non-food crops in smallholder production systems, Chapter 8. In Methods for Measuring Greenhouse Gas Balances and Evaluating Mitigation Option in Smallholder Agriculture; Rosenstock, T.S., Ed.; Springer Open: Cham, Switzerland, 2016; pp. 163–174. [Google Scholar] [CrossRef] [Green Version]
- Sampathkumar, T.; Pandian, B.J.; Rangaswamy, M.V.; Manickasundaram, P.; Jeyakumar, P. Influence of deficit irrigation on growth, yield and yield parametersof cooton-maize cropping sequence. Agric. Water Manag. 2013, 130, 90–102. [Google Scholar] [CrossRef]
- Rosenstock, T.S.; Rufino, M.C.; Butterbach-Bahl, K.; Wollenberg, E. Toward a protocol for quantifying the greenhouse gas balance and identifying mitigation options in smallholder farming systems. Environ. Res. Lett. 2013, 8, 021003. [Google Scholar] [CrossRef] [Green Version]
- Rockström, J.; Falkenmark, M. Semiarid crop production from a hydrological perspective: Gap between potential and actual yields. Crit. Rev. Plant. Sci. 2000, 19, 319–346. [Google Scholar] [CrossRef]
- van Ittersum, M.K.; Leffelaar, P.A.; van Keulen, H.; Kropff, M.J.; Bastiaans, L.; Goudriaan, J. On approaches and applications of the Wageningen crop models. Eur. J. Agron. 2003, 18, 201–234. [Google Scholar] [CrossRef]
- Nelson, G.C.; Rosegrant, M.W.; Palazzo, A.; Gray, I.; Ingersoll, C.; Tokgoz, S.; Zhu, T.; Sulser, T.B.; Ringler, C.; Msangi, S.; et al. Food Security, Farming, and Climate Change to 2050: Scenarios, Results, Policy Options; International Food Policy Research Institute: Washington, DC, USA, 2010; p. 131. [Google Scholar] [CrossRef]
- Liu, X.; Andresen, J.; Yang, H.; Niyogi, D. Calibration and validation of the hybrid-maize crop model for regional analysis and application over the U.S. Corn Belt. Earth Interact. 2015, 19, 1–16. [Google Scholar] [CrossRef]
- Fodor, N.; Kovacs, G.J. Sensitivity of 4M maize model to the inaccuracy of weather and soil input data. Appl. Ecol. Environ. Res. 2003, 1, 75–85. [Google Scholar] [CrossRef]
- Egli, D.B.; Bruening, W. Planting date and soybean yield: Evaluation of environmental effect with a crop simulation model: SOYGRO. Agric. For. Meteorol. 1992, 62, 19–29. [Google Scholar] [CrossRef]
- Boote, K.J.; Jones, J.W.; Pickering, N.B. Potential uses and limitations of crop models. Agron. J. 1996, 88, 704–716. [Google Scholar] [CrossRef]
- Hoogenboom, G. Contribution of agrometeorology to the simulation pf crop production and its applications. Agric. For. Meteorol. 2000, 103, 137–157. [Google Scholar] [CrossRef]
- Matthews, R. Where to now with crop modelling? In Crop-Soil Simulation Models, Applications in Developing Countries; Matthews, R., Stephens, W., Eds.; CABI publishing: Wallingford, UK; New York, NY, USA, 2002; pp. 209–229. [Google Scholar]
- Palmer, T.N.; Alessandri, A.; Andersen, U.; Cantelaube, P.; Davey, M.; Delecluse, P.; Deque, M.; Diez, E.; Doblas-Reyes, F.J.; Feddersen, H.; et al. Development of a European Multi-Model Ensemle System for Seasonal to Inter-Annual Prediction (DEMETER). Am. Meteorol. Soc. 2004, 85, 853–872. [Google Scholar] [CrossRef]
- Ritchie, J.T. Classification of crop models. In Crop Modelling and Related Environmental Data; Uhlir, P.F., Carter, G.C., Eds.; CODATA: Paris, France, 1994; pp. 3–14. [Google Scholar]
- Bannayan, M.; Crout, N.M.J. A stochastic modelling approach for real-time forecasting of winter wheat yield. Field Crops Res. 1999, 62, 85–95. [Google Scholar] [CrossRef]
- Martin, R.V.; Washington, R.; Downing, T.E. Seasonal maize forecasting for South Africa and Zimbabwe derived from an agro climatological model. J. Appl. Meteor. 2000, 39, 1473–1479. [Google Scholar] [CrossRef]
- Krishnamurti, T.N.; Kishtawal, C.M.; LaRow, T.E.; Bachiochi, D.R.; Zhang, Z.; Willford, C.E.; Gadgil, S.; Surendran, S. Climate forecasts from multimodel superensemble. Science 1999, 285, 1548–1550. [Google Scholar] [CrossRef] [Green Version]
- Reason, C.J.C.; Engelbrecht, F.; Landman, W.A.; Lutjeharms, J.R.E.; Piketh, S.; de Rautenbach, C.J.W.; Hewitson, B.C. A review of South African research in atmospheric science and physical oceanography during 2000-2005. S. Afr. J. Sci. 2006, 102, 35–45. [Google Scholar]
- Hollinger, S.E. Modeling the effects of weather and management practices on maize yield. Agric. For. Meteorol. 1988, 44, 81–97. [Google Scholar] [CrossRef]
- Le Roux, N. Seasonal Maize Simulations for South Africa Using a Multi-Model Ensemble System. Master’s Thesis, University of Pretoria, Pretoria, South Africa, 2009; p. 170. [Google Scholar]
- Schulthess, U.; Timsina, J.; Herrera, J.M.; McDonald, A. Mapping field—Scale yield gaps for maize: An example from Bangladesh. Field Crops Res. 2013, 143, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.; Meng, J.; Wang, Y. Improving spring maize yield estimation at field scale by assimilating time-series HJ-1 CCD data into WOFOST model using a new method with fast algorithms. Remote Sens. 2016, 8, 303. [Google Scholar] [CrossRef] [Green Version]
- Weng, Q. Introduction to Remote Sensing Systems, Data, and Applications; Taylor and Francis/CRC Press: Boca Raton, FL, USA, 2016; p. 19. [Google Scholar]
- Shanahan, J.F.; Schepers, J.; Francis, D.D.; Varvel, G.E.; Wilhelm, W.W.; Tringe, J.M.; Schlemmer, M.R.; Major, D.J. Use of remote sensing imagery to estimate corn grain yield. Agron. J. 2001, 93, 583–589. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D.B.; Asner, G.P.; Ortiz-Monasterio, J.I.; Benning, T.L. Remote sensing of regional crop production in the Yaqui Valley, Mexico: Estimates and uncertainties. Agric. Ecosyst. Environ. 2002, 94, 205–220. [Google Scholar] [CrossRef] [Green Version]
- Martin, K.L.; Girma, K.; Freeman, K.W.; Teal, R.K.; Tubana, B.; Amall, D.B.; Chung, B.; Walsh, O.; Solie, J.B.; Stone, M.L.; et al. Expression of variability in corn as influence by growth stage using optical sensor measurements. Agron. J. 2007, 99, 384–389. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Ordoñez, Y.M.; Soria-Ruiz, J. Maize crop yield estimation with remote sensing and empirical models. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 3035–3038. [Google Scholar] [CrossRef]
- Labus, M.P.; Nielsen, G.A.; Lawrence, R.L.; Engel, R.; Long, D.S. Wheat yield estimates using multi-temporal NDVI satellite imagery. Int. J. Remote Sens. 2002, 23, 4169–4180. [Google Scholar] [CrossRef]
- Mkhabela, M.S.; Mkhabela, M.S.; Mashinini, N.N. Early maize yield forescating in four agro-ecological regions of Swaziland using NDVI data derived from NOAA’s-AVHRR. Agric. For. Meteorol. 2005, 129, 1–9. [Google Scholar] [CrossRef]
- Wall, L.; Larocque, D.; Léger, P.M. The early explanatory power of NDVI in crop yield modelling. Int. J. Remote Sens. 2008, 29, 2211–2225. [Google Scholar] [CrossRef]
- Jovanović, D.; Sabo, F.; Govedarica, M.; Marinković, B. Crop yield estimation in 2014 for Vojvodina using methods of remote sensing. Ratar. Povrt. 2014, 51, 145–153. [Google Scholar] [CrossRef] [Green Version]
- Doraiswamy, P.C.; Akhmedov, B.; Beard, L.; Stern, A.; Mueller, R. Operational prediction of crop yields using modis data and products. In Proceedings of the Remote Sensing Support to Crop Yield Forecast and Area Estimates; 2007. ISPRS Archives XXXVI-8/W48. [Google Scholar]
- Guindin-Garcia, N. Estimating Maize Yield from Crop Biophysical Parameters Using Remote Sensing. Ph.D. Thesis, University of Nebraska, Lincoln, NE, USA, 2010; p. 121. [Google Scholar]
- Tenkorang, F.; Lowenberg-Doboer, J. On-farmm profitability of remote sensing in agriculture. J. Terr. Obs. 2008, 1, 50–59. [Google Scholar]
- Loladze, A.; Rodrigues, F.A., Jr.; Toledo, F.; Vicente, F.S.; Gérard, B.; Boddupalli, M.P. Application of remote sensing for phenotyping Tar Spot Complex resistance in Maize. Front. Plant Sci. 2019, 10, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, I.; Ghafoor, A.; Bhatti, M.I.; Akhtar Ibrar-ul, H.; Ibrahim, M. Obaid-ur-Rehman. Satellite remote sensing and GIS-based crops forecasting & estimation system in Pakistan. In Proceedings of the Expert Meeting on Crop Monitoring for Improved Food Security, Vientiane, Laos, 17 February 2014; Srivastava, M.K., Ed.; pp. 1–16. [Google Scholar]
- Urassa, J.K. Factors influencing maize crop production at household levels: A case of Rukwa Region in the Southern Highlands of Tanzania. Afr. J. Agric. Res. 2015, 10, 1097–1106. [Google Scholar] [CrossRef]
- Manyevere, A.; Muchaonyerwa, P.; Laker, M.C.; Mnkeni, P.N.S. Farmers’ perspectives with regards to crop production: An analysis of Nkonkobe Municipality, South Africa. J. Agric. Rural Dev. Trop. Subtrop. 2014, 115, 41–53. [Google Scholar]
- Khapayi, M.; Celliers, P.R. Factors limiting and preventing emerging farmers to progress to commercial agricultural farming in the King Williams’s Town area of the Eastern Cape Province, South Africa. S. Afr. J. Agric. Ext. 2016, 44, 25–41. [Google Scholar] [CrossRef] [Green Version]
- Ngoko, Z.; Cardwell, K.F.; Marasas, W.F.O.; Wingfield, M.J.; Ndemah, R. Biological and physical constraints on maize production in the humid forest and western highlands of Cameroon. Eur. J. Plant Pathol. 2002, 108, 893–902. [Google Scholar] [CrossRef]
- Tandzi, N.L.; Mutengwa, C.S.; Ngonkeu, E.L.M.; Gracen, V. Breeding maize for tolerance to acidic soils: A review. Agronomy 2018, 8, 84. [Google Scholar] [CrossRef]
- Grassini, P.; Yang, H.; Irmak, S.; Thorburn, J.; Burr, C.; Cassman, K.G. High-yield irrigated maize in the Western, U.S. Corn Belt: II. Irrigation management and crop water productivity. Field Crops Res. 2010, 120, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Grassini, P.; Thorburn, J.; Burr, C.; Cassman, K.G. High-yield irrigated maize in the Western, U.S. Corn Belt: I. On-farm yield, yield potential, and impact of agronomic practices. Field Crops Res. 2011, 120, 142–150. [Google Scholar] [CrossRef] [Green Version]
- Harrison, L.; Michaelsen, J.; Funk, C.; Husak, G. Effects of temperature changes on maize production in Mozambique. Clim. Res. 2011, 46, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Mngqawa, P.; Mangena-Netshikweta, L.M.; Katerere, D.R. Grain production by rural susbsistance farmers in selected districts of Limpopo and Mpumalanga Provinces South Africa. Botsw. J. Afr. Stud. 2016, 30, 49–63. [Google Scholar]
- DAFF (Department of Agriculture Forestry and Fisheries). Trends in the Agricultural Sector. 2017; p. 79. Available online: http: www.daff.gov.za (accessed on 7 July 2018).
Country | Environment | Plant Density/ha | Spacing between Rows (cm) | Spacing within the Row (cm) | Average Mean Yield per Region (t/ha) | References |
---|---|---|---|---|---|---|
Hungary | Humid forest zone | 67,486 to 70,161 | 70 | 20 | 8.5 | [21] |
Kenya | Tropical climate and bimodal rainfall Nairobi | 44,444 53,333 | 75 75 | 60 25 | 2.0 | [22] [23] |
Serbia | Calcareous chernozem on loess terrace | 60,606 | 75 | 22 | 4.9 | [24] |
Rwanda | Congo–Nile Crest region | 55,000 | 60 | 30 | 4.0 | [25] |
Pakistan | Faisalabad | 66,500 | 75 | 20 | 2.9 | [26,27] |
India | Coimbatore | 66,667 | 60 | 25 | 2.7 | [28] |
Cameroon | Low and high land areas | 53,333 | 75 | 50 | 1.8 | [29,30,31,32,33] |
Nigeria | Northern Guinea Savana agro-ecological zone | 53,333 | 75 | 25 | 5.5 | [34] |
Brazil | Frederico Westphalen | 70,000 | 70 | 20 | 5.6 | [35] |
Map modified from [36]: World view of the countries listed above. |
Simulation Model | Objective | Reference |
---|---|---|
Multi-model forecast and single model forecast: CORN-CROPS model Conformal Cubic Atmospheric model (CCAM) and ECHAM 4.5 model CERES-Maize model Hybrid Maize crop simulation model World Food Studies (WOFOST) model | Early warning during preparation for the new season Simulate the interaction of management practices and weather in determining maize yields Yield estimation Potential yield estimates of maize Simulate the growing process of spring maize | [84] [87] [88] [89] [90] |
Country | Current Yield (t/ha) | Potential Yield (t/ha) | Yield Gap (t/ha) | Equation Used | Source |
---|---|---|---|---|---|
Argentina | 6.8 | 11.6 | 4.8 | (3) | [54] |
Cameroon | 1.8 | 6.5 | 4.1 | (4) (3) | [108,109] |
Bangladesh | 12 | 13 | 1 | Hybrid-Maize model | [89] |
Serbia | 4.9 | 13.3 | 8.4 | (4) | [19] |
Western U.S. Corn Belt | 13.2 | 15.4 | 2.2 | Hybrid-Maize model | [110,111] |
Mozambique | 0.9 | 5.7 | 4.8 | Growing degree-day accumulation model | [112] |
South Africa | 3.0 | 6.4 | 3.4 | CERES-Maize model | [113,114] |
Map modified from [36]: Word view of the countries listed above. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngoune Tandzi, L.; Mutengwa, C.S. Estimation of Maize (Zea mays L.) Yield Per Harvest Area: Appropriate Methods. Agronomy 2020, 10, 29. https://doi.org/10.3390/agronomy10010029
Ngoune Tandzi L, Mutengwa CS. Estimation of Maize (Zea mays L.) Yield Per Harvest Area: Appropriate Methods. Agronomy. 2020; 10(1):29. https://doi.org/10.3390/agronomy10010029
Chicago/Turabian StyleNgoune Tandzi, Liliane, and Charles Shelton Mutengwa. 2020. "Estimation of Maize (Zea mays L.) Yield Per Harvest Area: Appropriate Methods" Agronomy 10, no. 1: 29. https://doi.org/10.3390/agronomy10010029