Winter Triticale: A Long-Term Cropping Systems Experiment in a Dry Mediterranean Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview
- (i)
- 3-year WT-SW-NTF
- (ii)
- 3-year WW-SW-UTF
- (iii)
- 2-year WW-UTF
2.2. Soil Water and Precipitation
2.3. Fallow Management
2.4. Sowing
2.4.1. Winter Triticale and Winter Wheat
2.4.2. Spring Wheat
2.5. In-Crop Weed and Stripe Rust Control
2.6. Grain Yield
2.7. Grain Yield Components and Straw Weight
2.8. Economic Assessment
2.9. Statistical Procedures
3. Results
3.1. Crop-Year Precipitation
3.2. Soil Water Storage and Water Depletion by Crops
3.3. Straw Weight and Stem Number of WT Versus WW
3.4. Grain Yield of Winter Triticale and Winter Wheat
3.5. Grain Yield Components of Winter Triticale and Winter Wheat
3.6. Grain Yield of Spring Wheat
3.7. Economic Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schillinger, W.F.; Papendick, R.I.; Guy, S.O.; Rasmussen, P.E.; van Kessel, C. Dryland cropping in the western United States. In Dryland Agriculture, Agronomy Monograph No. 23, 2nd ed.; Peterson, G.A., Unger, P.W., Payne, W.A., Eds.; ASA, CSSA, and SSSA: Madison, WI, USA, 2006; pp. 365–393. [Google Scholar]
- Stockle, C.O.; Higgins, S.; Nelson, R.; Abatzoglou, J.; Huggins, D.; Pan, W.; Karimi, T.; Antle, J.; Eigenbrode, S.D.; Brooks, E. Evaluating opportunities for an increased role of winter crops as adaptation to climate change in dryland cropping system of the U.S. Inland Pacific Northwest. Clim. Chang. 2018, 146, 247–261. [Google Scholar] [CrossRef] [Green Version]
- Huggins, D.; Pan, B.; Schillinger, W.; Young, F.; Machado, S. Crop diversity and intensity in Pacific Northwest dryland cropping systems. In Regional Approaches to Climate Change for Pacific Northwest Agriculture. Climate Science Northwest Farmers Can Use; Borrelli, K., Daily, D., Laursen, S., Eigenbrode, S., Mahler, B., Pepper, R., Eds.; University Idaho: Moscow, ID, USA, 2015; pp. 38–41. Available online: https://www.reachpna.org (accessed on 9 November 2020).
- Juergens, L.A.; Young, D.L.; Schillinger, W.F.; Hinman, H.R. Economics of alternative no-till spring crop rotations in Washington’s wheat-fallow region. Agron. J. 2004, 96, 154–158. [Google Scholar] [CrossRef] [Green Version]
- Schillinger, W.F. New winter crops and rotations for the Pacific Northwest low-precipitation drylands. Agron. J. 2020, 112, 3335–3349. [Google Scholar] [CrossRef]
- Kirby, E.; Pan, W.; Huggins, D.; Painter, K.; Bista, P. Rotational diversification and intensification. In Advances in Dryland Farming in the Pacific Northwest; Yorgey, G., Kruger, C., Eds.; Washington St. Univ. Extension: Pullman, WA, USA, 2017; EM108; pp. 163–236. Available online: http://pubs.cahnrs.wsu.edu/publications/pubs/em108/ (accessed on 9 November 2020).
- Schillinger, W.F. Winter pea: Promising new crop for Washington’s dryland wheat-fallow region. Front. Ecol. Evol. 2017, 5, 43. [Google Scholar] [CrossRef] [Green Version]
- Pan, W.F.; Young, F.L.; Maaz, T.M.; Huggins, D.R. Canola integration into semi-arid wheat cropping systems in the inland Pacific Northwestern USA. Crop Past. Sci. 2016, 67, 253–265. [Google Scholar] [CrossRef]
- Lopez-Castaneda, C.; Richards, R.A. Variation in temperate cereals in rainfed environments. 1. Grain yield, biomass and agronomic characteristics. Field Crops Res. 1994, 37, 51–62. [Google Scholar] [CrossRef]
- Derycke, B.; Landschoot, S.; Dewitte, K.; Wambacq, E.; Latre, J.; Haesaert, G. Straw yield and quality: An extra motivation for the introduction of triticale in mixed farming systems. Cereal Res. Comm. 2018, 46, 158–168. [Google Scholar] [CrossRef]
- Roques, S.E.; Kindred, D.R.; Clarke, S. Triticale out-performs wheat on range of UK soils with a similar nitrogen requirement. J. Agric. Sci. 2017, 155, 261–281. [Google Scholar] [CrossRef]
- Li, Y.E.; Shi, S.W.; Waqas, M.A.; Zhou, X.X.; Li, J.L.; Wan, Y.F.; Qin, X.B.; Gao, Q.Z.; Liu, S.; Wilkes, A. Long-term (>20 years) application of fertilizers and straw return enhances soil carbon storage: A meta-analysis. Mitigat. Adopt. Strateg. Glob. Chang. 2018, 23, 603–619. [Google Scholar] [CrossRef]
- Sharratt, B.S.; Tatarko, J.; Abatzoglou, J.T.; Fox, F.A.; Huggins, D. Implications of climate change on wind erosion of agricultural lands in the Columbia plateau. Weather Clim. Extrem. 2015, 10, 20–31. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAT. Food and Agriculture Organization Statistical Database; FAO: Rome, Italy. Available online: http://fenix.fao.org/faostat/internal/en/#data/QC (accessed on 12 October 2020).
- Mergoum, M.; Singh, P.K.; Pena, R.J.; Lozano-del Rio, A.J.; Cooper, K.V.; Salmon, D.F.; Macpherson, H.G. Triticale: A “new” crop with old challenges. In Cereals. Life Sci. Agric. Handbook of Plant Breeding; Carena, M.J., Ed.; Springer: New York, NY, USA, 2009; pp. 267–287. [Google Scholar]
- USDA-NASS. Census of agriculture: Summary of state data. AC-17-A-51; United States Department of Agriculture–National Agricultural Statistics Service: Washington, DC, USA, 2017.
- McGoverin, C.M.; Snyders, F.; Muller, N.; Botes, W.; Fox, G.; Manley, M. A review of triticale uses and the effect of growth environment on grain quality. J. Sci. Food Agric. 2011, 91, 1155–1165. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P. Triticale: Nutritional composition and food uses. Food Chem. 2018, 241, 468–479. [Google Scholar] [CrossRef] [PubMed]
- Blum, A. The abiotic stress response and adaption of triticale–a review. Cereal Res. Comm. 2014, 42, 359–375. [Google Scholar] [CrossRef] [Green Version]
- Cantale, C.; Petrazzuolo, F.; Correnti, A.; Farneti, A.; Felici, F.; Latini, A.; Galeffi, P. Triticale for bioenergy production. Agric. Agric. Sci. Proc. 2016, 8, 609–616. [Google Scholar] [CrossRef]
- Brar, G.S.; Graf, R.; Knox, R.; Campbell, H.; Kutcher, H.R. Reaction of differential wheat and triticale genotypes to natural stripe rust (Puccinia striiformis f. sp. Tritici) infection in Saskatchewan, Canada. Can. J. Plant Pathol. 2017, 39, 138–148. [Google Scholar] [CrossRef]
- Kang, H.Y.; Wang, Y.J.; Diao, C.D.; Li, D.Y.; Wang, Y.; Zeng, J.; Fan, X.; Xu, L.L.; Sha, L.N.; Zhang, H.Q.; et al. A hexaploid triticale 4D (4B) substitution line confers superior stripe rust resistance. Mol. Breed. 2017, 37, 36. [Google Scholar] [CrossRef]
- GRDC. Grains Research & Development Corporation. Triticale: Diseases. Section 9. Canberra, Australia. Available online: https://grdc.com.au/resources-and-publications/grownotes/crop-agronomy/triticalegrownotessouthern (accessed on 12 October 2020).
- USDA-FCIC. Triticale Crop Insurance Standards Handbook. FCIC-2031U(06-2017); United States Department of Agriculture–Federal Crop Insurance Corporation: Washington, DC, USA, 2017.
- Beres, B.L.; Lupway, N.Z.; Larney, F.J.; Ellert, B.; Smith, E.G.; Turkington, T.K.; Pageau, D.; Semagn, K.; Wang, Z. Rotational diversity effects in a triticale-based cropping system. Cereal Res. Comm. 2018, 46, 717–728. [Google Scholar] [CrossRef]
- FAO/UNESCO. Soil Map of the World: Revised Legend. World Soil Resources Report 60; Food and Agriculture Organization of the United Nations: Rome, Italy, 1990. [Google Scholar]
- Schillinger, W.F.; Kennedy, A.C.; Young, D.L. Eight years of annual no-till cropping in Washington’s winter wheat–summer fallow region. Agric. Ecosyst. Environ. 2007, 120, 345–358. [Google Scholar] [CrossRef]
- Papendick, R.I.; Lindstrom, M.J.; Cochran, V.L. Soil mulch effects on seedbed temperature and water during fallow in eastern Washington. Soil Sci. Soc. Am. Proc. 1973, 37, 307–314. [Google Scholar] [CrossRef]
- Wuest, S.B. Tillage depth and timing effects on soil water profiles in two semiarid soils. Soil Sci. Soc. Am. J. 2010, 74, 1701–1711. [Google Scholar] [CrossRef]
- Topp, G.C.; Ferre, P.A. Methods for measurement of soil water content: Thermogravimetric using convective oven-drying. In Methods of Soil Analysis. Part 4-Physical Methods. SSSA Book Series: 5; Dane, J.H., Topp, G.C., Eds.; Soil Science Society of America: Madison, WI, USA, 2002; pp. 422–424. [Google Scholar]
- Evett, S.R.; Schwartz, R.C.; Tolk, J.A.; Howell, T.A. Soil profile water content determination: Spatiotemporal variability of electromagnetic and neutron probe sensors in access tubes. Vadose Zone J. 2009, 8, 926–941. [Google Scholar] [CrossRef]
- Lutcher, L.K. Delayed glyphosate application for no-till fallow in the driest region of the Inland Pacific Northwest. Weed Tech. 2015, 29, 707–715. [Google Scholar] [CrossRef] [Green Version]
- Papendick, R.I. Farming with the Wind II: Wind Erosion and Air Quality Control on the Columbia Plateau and Columbia Basin; Special Report by the Columbia Plateau PM10 Project; Washington State University: Pullman, WA, USA, 2004. [Google Scholar]
- Roake, J.; Trethowan, R.; Jessop, R.; Fittler, M. Improved Triticale Production through Breeding and Agronomy; Report 1A-102; University of Sydney: Narellan, NSW, Australia, 2009. [Google Scholar]
- Burke, I.C.; Bell, J.L. Plant health management: Herbicides. In Encyclopedia of Agriculture and Food Systems; van Alfen, N.K., Ed.; Academic Press: London, UK, 2014; pp. 425–440. [Google Scholar]
- Painter, K.; Galinato, S.P.; Nadreau, T.P. 2014 Crop Budgets in the Low Rainfall Zone of Eastern Washington; Washington State University: Pullman, WA, USA, 2014; Available online: http://ses.wsu.edu/enterprise_budgets/ (accessed on 12 October 2020).
- USDA-NASS. Quickstats 2.0. 2019. Available online: https://quickstats.nass.usda.gov/ (accessed on 12 October 2020).
- Schillinger, W.F. Seven rainfed wheat rotation systems in a drought-prone Mediterranean climate. Field Crops Res. 2016, 191, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Bassu, S.; Asseng, S.; Richards, R. Yield benefits of triticale traits for wheat under current and future climates. Field Crops Res. 2011, 124, 14–24. [Google Scholar] [CrossRef]
- Kirkegaard, J.; Piston, G. Maximizing Rotational Benefits within a Cropping Sequence; Final report. CRDC project CSP130; Grains Research and Development Corporation: Canberra, Australia, 1998. [Google Scholar]
- Giunta, F.; Motzo, F.; Pruneddu, G. Comparison of temperate cereals and grain legumes in a Mediterranean environment. Agric. Med. 2003, 133, 234–248. [Google Scholar]
- Braunwart, K. (ProGene Plant Research, Othello, WA, USA). Personal communication. 2018. [Google Scholar]
- Estrada-Campuzano, G.; Slafer, G.A.; Miralles, D.J. Differences in yield, biomass and their components between triticale and wheat grown under contrasting water and nitrogen environments. Field Crops Res. 2012, 128, 167–179. [Google Scholar] [CrossRef]
- Jedel, P.E.; Salmon, D.F. Date and rate of seeding of winter cereals in central Alberta. Can. J. Plant Sci. 1994, 74, 447–453. [Google Scholar] [CrossRef]
- McKenzie, R.H.; Bremer, E.; Middleton, A.B.; Pfiffner, P.G.; Dunn, R.F.; Beres, B.L. Efficacy of high seeding rates to increase grain yield of winter wheat and winter triticale in southern Alberta. Can. J. Pant Sci. 2007, 87, 503–507. [Google Scholar] [CrossRef]
- Donaldson, E.; Schillinger, W.F.; Dofing, S.M. Straw production and grain yield relationships in winter wheat. Crop Sci. 2001, 41, 100–106. [Google Scholar] [CrossRef] [Green Version]
- Raatz, L.L.; Yang, R.-C.; Beres, B.L.; Hall, L.M. Persistence of triticale seed in the soil seed bank. Crop Sci. 2012, 52, 1868–1880. [Google Scholar] [CrossRef]
- Rabiza-Swider, J.; Brzezinski, W.; Luaszewski, A.J. Breeding behavior of chromosomes 1R cyctogentically engineered for breadmaking quality in hexaploid triticale. Crop Sci. 2010, 50, 808–814. [Google Scholar] [CrossRef]
- Hegarty, J.M.; Shchipak, G.V.; Nichiporuk, Y.E.; Relina, L.I.; Wos, H.; Dubcovsky, J. The final frontier: Development of triticale with enhanced bread making performance. In Proceedings of the Abstracts of the 10th International Triticale Symposium, Agricultural and Agri-Food Canada. Lethbridge, AB, Canada, 15–18 July 2019; p. 27. [Google Scholar]
Crop Year | Sept | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | June | July | Aug | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2011 | 26 | 43 | 34 | 54 | 32 | 11 | 40 | 21 | 57 | 6 | 6 | 0 | 330 |
2012 | 4 | 19 | 17 | 0 | 23 | 27 | 64 | 39 | 11 | 67 | 20 | 2 | 293 |
2013 | 0 | 38 | 66 | 40 | 18 | 15 | 17 | 14 | 24 | 52 | 0 | 35 | 319 |
2014 | 30 | 2 | 23 | 10 | 15 | 40 | 51 | 30 | 7 | 34 | 2 | 13 | 256 |
2015 | 2 | 31 | 31 | 42 | 43 | 27 | 41 | 17 | 24 | 0 | 0 | 3 | 261 |
2016 | 24 | 12 | 20 | 93 | 56 | 30 | 78 | 12 | 23 | 13 | 16 | 3 | 370 |
2017 | 9 | 123 | 36 | 35 | 40 | 64 | 71 | 31 | 22 | 8 | 0 | 0 | 440 |
2018 | 19 | 36 | 57 | 49 | 59 | 27 | 34 | 49 | 26 | 8 | 1 | 2 | 367 |
2019 | 1 | 20 | 39 | 59 | 54 | 47 | 18 | 23 | 31 | 16 | 3 | 9 | 319 |
9-year avg. | 13 | 36 | 36 | 42 | 38 | 32 | 46 | 26 | 25 | 23 | 5 | 7 | 328 |
Baseline after WT/WW | Spring | Over-Winter Gain | At Time of SW Harvest | |
---|---|---|---|---|
___________________________________mm____________________________________ | ||||
3-year WT | 152 | 320 | 168 | 168 |
3-year WW | 147 | 307 | 160 | 166 |
p-value | 0.019 | 0.014 | ns | ns |
Straw wt. (kg/ha) | Stems/m2 | Wt. (g)/Stem | |
---|---|---|---|
Winter triticale (3-year) | 7276 ab | 284 c | 2.36 a |
Winter wheat (3-year) | 7517 a | 486 a | 1.47 b |
Winter wheat (2-year) | 6489 b | 398 b | 1.51 b |
Significance (p-value) | <0.010 | <0.001 | <0.001 |
Tukey HSD (0.05) | 887 | 50 | 0.16 |
2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 9-Year Avg. | |
---|---|---|---|---|---|---|---|---|---|---|
____________________________________Grain Yield (kg/ha)_________________________________ | ||||||||||
WT | 6976 a | 5048 | 5533 a | 4400 | 4245 a | 7426 a | 6215 a | 6652 a | 5848 a | 5816 a |
WW (3-year) | 4918 b | 5310 | 5423 a | 3688 | 3760 ab | 6330 b | 5475 b | 5890 b | 4985 b | 5087 b |
WW (2-year) | 5060 b | 5008 | 4220 b | 3696 | 3144 b | 6313 b | 5211 b | 4946 c | 4608 b | 4689 c |
p-value | 0.00 7 | ns | <0.001 | ns | 0.012 | 0.020 | <0.001 | <0.001 | <0.001 | <0.001 |
HSD (0.05) | 1396 | 625 | 577 | 1160 | 755 | 976 | 384 | 575 | 514 | 218 |
2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 8-Year Avg. † | |
---|---|---|---|---|---|---|---|---|---|
________________________________Grain Yield (kg/ha)__________________________________ | |||||||||
After WT | 1882 | 3128 | 1513 | 1607 | 3398 | 2557 | 3052 | 2462 | 2451 |
After WW | 1866 | 2720 | 1410 | 1699 | 3472 | 2444 | 2857 | 2192 | 2332 |
p-value | ns | ns | ns | ns | ns | ns | ns | ns | 0.022 |
Tukey HSD | 138 | 491 | 731 | 454 | 553 | 140 | 335 | 280 | 100 |
WT | WW (3-Year) | WW (2-Year) | SW | NTF | UTF | WT-SW-NTF | WW-SW-UTF | WW-UTF | |
---|---|---|---|---|---|---|---|---|---|
_______________________________________Cost ($/ha)_______________________________________ | |||||||||
Labor | 22 a † | 22 a | 22 a | 25 | 9 a | 9 a | 18 a | 19 a | 16 b |
Repairs | 17 a | 17 a | 17 a | 18 | 1 b | 3 a | 12 b | 13 a | 10 c |
Fuel | 13 a | 13 a | 13 a | 16 | 8 a | 8 a | 12 a | 12 a | 11 b |
Materials | 85 a | 87 a | 87 a | 170 | 119 a | 82 b | 124 a | 113 b | 84 c |
Interest | 7 a | 7 a | 7 a | 9 | 12 a | 10 b | 9 a | 9 b | 8 c |
Depreciation | 17 a | 17 a | 17 a | 17 | 0 b | 2 a | 11 b | 12 a | 9 c |
Overhead | 12 a | 12 a | 12 a | 12 | 0 b | 2 a | 8 b | 9 a | 7 c |
Total Cost | 173 a | 175 a | 175 a | 266 | 148 a | 116 b | 196 a | 186 b | 146 c |
WT | WW (3-Year) | WW (2-Year) | SW after WT | SW after WW | |
---|---|---|---|---|---|
___________________________________Returns ($/ha)___________________________________ | |||||
Gross Returns | 767 b † | 872 a | 793 b | 419 a | 398 b |
Net Returns | 446 b | 581 a | 502 b | 153 a | 132 b |
Rotation | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 8-Year Avg. | SD |
---|---|---|---|---|---|---|---|---|---|---|
________________________________Net Returns ($/ha) _____________________________________ | ||||||||||
WT-SW-NTF | 143 b † | 230 b | 89 b | 88 a | 349 a | 220 c | 285 a | 192 b | 199 b | 92 |
WW-SW-UTF | 217 a | 270 a | 106 ab | 127 a | 388 a | 260 b | 320 a | 215 b | 238 a | 94 |
WW-UTF | 272 a | 215 b | 157 a | 126 a | 399 a | 308 a | 279 a | 251 a | 251 a | 86 |
p-value | 0.001 | 0.010 | 0.048 | 0.108 | 0.246 | 0.000 | 0.113 | 0.003 | 0.006 | |
HSD (0.05) | 56 | 37 | 67 | 53 | 86 | 25 | 54 | 31 | 36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schillinger, W.F.; Archer, D.W. Winter Triticale: A Long-Term Cropping Systems Experiment in a Dry Mediterranean Climate. Agronomy 2020, 10, 1777. https://doi.org/10.3390/agronomy10111777
Schillinger WF, Archer DW. Winter Triticale: A Long-Term Cropping Systems Experiment in a Dry Mediterranean Climate. Agronomy. 2020; 10(11):1777. https://doi.org/10.3390/agronomy10111777
Chicago/Turabian StyleSchillinger, William F., and David W. Archer. 2020. "Winter Triticale: A Long-Term Cropping Systems Experiment in a Dry Mediterranean Climate" Agronomy 10, no. 11: 1777. https://doi.org/10.3390/agronomy10111777
APA StyleSchillinger, W. F., & Archer, D. W. (2020). Winter Triticale: A Long-Term Cropping Systems Experiment in a Dry Mediterranean Climate. Agronomy, 10(11), 1777. https://doi.org/10.3390/agronomy10111777