Screening and Identification of Brown Planthopper Resistance Genes OsCM9 in Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Field Design
2.2. Brown Planthopper Resistance Evaluation of the DH Line
2.3. Construction of Genetic Maps and QTL Analysis of Brown Planthopper Resistance
2.4. Gene Information Analysis
2.5. Analysis of the Expression Level of Candidate Genes for Resistance to Brown Planthopper
2.6. DNA Extraction and PCR Protocol
2.7. Statistical Analysis
3. Results
3.1. Construct of the Samgang/Nagdong Double Haploid Population Genetic Map
3.2. Analysis of QTLs Associated with Brown Planthopper Resistance
3.3. Search for Candidate Genes Associated with Brown Planthopper Based on QTL Mapping
3.4. Selection of BPH-Resistant Gene and Comparison of Relative Expression Levels of Other Resistance Genes
3.5. Analysis of Phylogenetic Tree and Homology Sequence, and Protein Interaction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sogawa, K.; Cheng, C.H. Economic Thresholds, Nature of Damage and Losses Caused by the Brown Planthopper; International Rice Research Institute: Los Banos, Philippines, 1979; pp. 125–142. [Google Scholar]
- Brar, D.S.; Virk, P.S.; Jena, K.K.; Khush, G.S. Breeding for Resistance to Planthoppers in Rice. In Plant Hoppers: New Threats to the Sustainability of Intensive Rice Production Systems in Asia; International Rice Research Institute: Los Banos, Philippines, 2009; pp. 401–409. [Google Scholar]
- Bae, S.H.; Pathak, M.D. Life history of Nilaparvata lugens (Homoptera: Delphacidae) and susceptibility of rice cultivars to its attacks. Ann. Entomol. Soc. Am. 1970, 63, 149155. [Google Scholar] [CrossRef]
- Cabauatan, P.Q.; Cabunagan, R.C.; Choi, I.R. Rice viruses transmitted by the brown planthopper Nilaparvata lugens Stål. In Planthoppers: New Threats to the Sustainability of Intensive Rice Production Systems in Asia; Heong, K.L., Hardy, B., Eds.; International Rice Research Institute: Los Baños, Philippines, 2009; pp. 357–368. [Google Scholar]
- Hibino, H.; Usugi, T.; Omura, T.; Tsuchizaki, T.; Shohara, K.; Iwasaki, M. Rice grassy stunt virus: A planthopper-borne circular filament. Phytopathology 1985, 75, 894–899. [Google Scholar] [CrossRef]
- Ling, K.C. Rice Virus Diseases; International Rice Research Institute: Manila, Philippines, 1972. [Google Scholar]
- Kim, Y.H.; Lee, J.O.; Park, H.C.; Kim, M.S. Plant Damages and Yields of the Different Rice Cultivars to Brown Planthopper (Nilaparvata lugens S.) in Fields. Korean J. Plant Protect. 1985, 24, 79–83. [Google Scholar]
- Saxena, R.C.; Barrion, A.A. Biotypes of the Brown Planthopper Nilaparvata lugens (Stål) and Strategies in Deployment of Host Plant Resistance. Int. J. Trop. Insect Sci. 1985, 6, 271–289. [Google Scholar] [CrossRef]
- Park, J.S.; Lee, J.O. Studies on rice damage due to time migration of the brown planthopper (Nilaparvata lugens) in Korea. Rice Entomol. Newsl. 1976, 4, 17. [Google Scholar]
- Rashid, M.M.; Ahmed, N.; Jahan, M.; Islam, K.S.; Nansen, C.; Willers, J.L.; Ali, M.P. Higher fertilizer inputs increase fitness traits of brown planthopper in rice. Sci. Rep. 2017, 7, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Xue, Y.; Zhou, H.; Li, Y.; Usman, B.; Jiao, X.; Qiu, Y. High-resolution mapping and breeding application of a novel brown planthopper resistance gene derived from wild rice (Oryza. rufipogon Griff). Rice 2019, 12, 41. [Google Scholar] [CrossRef] [Green Version]
- Fan, C.C.; Yu, X.Q.; Xing, Y.Z.; Xu, C.G.; Luo, L.J.; Zhang, Q. The main effects, epistatic effects and environmental interactions of QTLs on the cooking and eating quality of rice in a doubled-haploid line population. Theor. Appl. Genet. 2005, 110, 1445–1452. [Google Scholar] [CrossRef]
- Qin, Y. Detection of Main-Effect QTLs, Epistasis and QTL × Environmental Interactions for Grain Quality in Rice (Oriza sativa L.). Ph.D. Thesis, Kyungpook National University, Daegu, Korea, 2007. [Google Scholar]
- Septiningsih, E.M.; Trijatmiko, K.R.; Moeljopawiro, S.; McCouch, S.R. Identification of quantitative trait loci for grain quality in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor. Appl. Genet. 2003, 107, 1433–1441. [Google Scholar] [CrossRef]
- Alam, S.N.; Cohen, M.B. Detection and analysis of QTLs for resistance to the brown planthopper, Nilaparvata lugens, in a doubled-haploid rice population. Theor. Appl. Genet. 1998, 97, 1370–1379. [Google Scholar] [CrossRef]
- Hirabayashi, H.; Kaji, R.; Okamoto, M.; Ogawa, T.; Brar, D.S.; Angeles, E.R.; Khush, G.S. Mapping QTLs for brown planthopper (BPH) resistance introgressed from Oryza officinalis in rice. In Advances in Rice Genetics; Khush, G.S., Khush, D.S., Hardy, B., Eds.; IRRI: Los Banos, Philippines, 2008; Volume 8, pp. 268–270. [Google Scholar]
- Jena, K.K.; Jeung, J.U.; Lee, J.H.; Choi, H.C.; Brar, D.S. High-resolution mapping of a new brown planthopper (BPH) resistance gene, Bph18 (t), and marker-assisted selection for BPH-resistant in rice (Oryza sativa L.). Theor. Appl. Genet. 2006, 112, 288–297. [Google Scholar] [CrossRef]
- Huh, J.; Kang, B.; Nahm, S.; Kim, S.; Ha, K.; Lee, M.H.; Kim, B.D. A candidate gene approach identified phytoene synthase as the locus for mature fruit color in red pepper (Capsicum spp.). Theor. Appl. Genet. 2001, 102, 524–530. [Google Scholar] [CrossRef]
- Seah, S.; Sivasithamparam, K.; Karakousis, A.; Lagudah, E.S. Cloning and characterisation of a family of disease resistance gene analogs from wheat and barley. Theor. Appl. Genet. 1998, 97, 937–945. [Google Scholar] [CrossRef]
- Forster, B.P.; Thomas, W.T. Doubled haploids in genetics and plant breeding. Plant Breed. 2005, 25, 57–88. [Google Scholar]
- Fan, Y.; Shabala, S.; Ma, Y.; Xu, R.; Zhou, M. Using QTL mapping to investigate the relationships between abiotic stress tolerance (drought and salinity) and agronomic and physiological traits. BMC Genom. 2015, 16, 43. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.M.; Qin, Y.; Shon, J.K. Analysis of QTLs related to resistance to brown planthopper in rice. Korean J. Breed. Sci. 2009, 41, 236–243. [Google Scholar]
- Manly, K.F.; Olson, J.M. Overview of QTL mapping software and introduction to Map Manager QT. Mamm. Genome 1999, 10, 327–334. [Google Scholar] [CrossRef]
- Zeng, Z.B. Precision mapping of quantitative trait loci. Genetics 1994, 136, 1457–1468. [Google Scholar]
- McCouch, S.R.; CGSNL (Committee on Gene Symbolization, Nomenclature and Linkage, Rice Genetics Cooperative). Gene nomenclature system for rice. Rice 2008, 1, 72–84. [Google Scholar] [CrossRef] [Green Version]
- Hussain, A.; Mun, B.G.; Imran, Q.M.; Lee, S.U.; Adamu, T.A.; Shahid, M.; Kim, K.M.; Yun, B. Nitric oxide mediated transcriptome profiling reveals activation of multiple regulatory pathways in Arabidopsis thaliana. Front. Plant Sci. 2016, 7, 975. [Google Scholar] [CrossRef] [Green Version]
- Velusamy, R.; Ganesh, M.; Johnson, Y.S. Mechanisms of resistance to the brownplanthopper Nilaparvata lugens in wild rice (Oryza spp.) cultivars. Entomol. Exp. Appl. 1995, 74, 245–251. [Google Scholar] [CrossRef]
- Khush, G.S. Selecting rice for simply inherited resistance. In Plant Breeding in the 1990s; Stalker, H.T., Murphy, J.P., Eds.; CAB International: Wallingford, UK, 1992; pp. 303–322. [Google Scholar]
- Athwal, D.S.; Pathak, M.D.; Bacalangco, E.H.; Pura, C.D. Genetics of resistance to brown planthoppers and green leafhoppers in Oryza sativa L. Crop Sci. 1971, 11, 747–750. [Google Scholar] [CrossRef] [Green Version]
- Myint, K.K.M.; Fujita, D.; Matsumura, M.; Sonoda, T.; Yoshimura, A.; Yasui, H. Mapping and pyramiding of two major genes for resistance to the brown planthopper (Nilaparvata lugens [Stål]) in the rice cultivar ADR52. Theor. Appl. Genet. 2012, 124, 495–504. [Google Scholar] [CrossRef] [Green Version]
- Ren, X.; Wang, X.; Yuan, H.; Weng, Q.; Zhu, L.; He, G. Mapping quantitative trait loci and expressed sequence tags related to brown planthopper resistance in rice. Plant Breed. 2004, 123, 342–348. [Google Scholar] [CrossRef]
- Xiao, J.; Li, J.; Yuan, L.; Iwata, N. Identification of QTLs affecting traits of agronomic in a recombinant inbred population derived from a subspecific rice cross. Theor. Appl. Genet. 1996, 92, 230–244. [Google Scholar] [CrossRef]
- Keen, N.T. The molecular biology of disease resistance. In 10 Years Plant Molecular Biology; Springer: Dordrecht, The Netherlands, 1992; pp. 109–122. [Google Scholar]
- Lamb, C.J.; Lawton, M.A.; Dron, M.; Dixon, R.A. Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell 1989, 56, 215–224. [Google Scholar] [CrossRef]
- Janda, T.; Szalai, G.; Tari, I.; Paldi, E. Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta 1999, 208, 175–180. [Google Scholar] [CrossRef]
- Raskin, I. Role of salicylic acid in plants. Annu. Rev. Plant Biol. 1992, 43, 439–463. [Google Scholar] [CrossRef]
- Schmid, J.; Amrhein, N. Molecular organization of the shikimate pathway in higher plants. Phytochemistry 1995, 39, 737–749. [Google Scholar] [CrossRef]
- Hu, P.; Meng, Y.; Wise, R.P. Functional contribution of chorismate synthase, anthranilate synthase, and chorismate mutase to penetration resistance in barley–powdery mildew interactions. Mol. Plant Microbe Interact. 2009, 22, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Parsons, J.F.; Jensen, P.Y.; Pachikara, A.S.; Howard, A.; Eisenstein, E.; Ladner, J.E. Structure of Escherichia coli aminodeoxychorismate synthase: Architectural conservation and diversity in chorismate-utilizing enzymes. Biochemistry 2002, 41, 2198–2208. [Google Scholar] [CrossRef] [PubMed]
- Wildermuth, M.C.; Dewdney, J.; Wu, G.; Ausubel, F.M. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 2001, 414, 562–565. [Google Scholar] [CrossRef] [PubMed]
- Basset, G.J.; Quinlivan, E.P.; Ravanel, S.; Rébeillé, F.; Nichols, B.P.; Shinozaki, K.; Hanson, A.D. Folate synthesis in plants: The p-aminobenzoate branch is initiated by a bifunctional PabA-PabB protein that is targeted to plastids. Proc. Natl. Acad. Sci. USA 2004, 101, 1496–1501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waller, J.C.; Akhtar, T.A.; Lara-Núñez, A.; Gregory III, J.F.; McQuinn, R.P.; Giovannoni, J.J.; Hanson, A.D. Developmental and feedforward control of the expression of folate biosynthesis genes in tomato fruit. Mol. Plant. 2010, 3, 66–77. [Google Scholar] [CrossRef] [Green Version]
- Yoo, H.; Widhalm, J.R.; Qian, Y.; Maeda, H.; Cooper, B.R.; Jannasch, A.S.; Dudareva, N. An alternative pathway contributes to phenylalanine biosynthesis in plants via a cytosolic tyrosine: Phenylpyruvate aminotransferase. Nat. Commun. 2013, 4, 2833. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.-R.; Yun, S.; Jan, R.; Kim, K.-M. Screening and Identification of Brown Planthopper Resistance Genes OsCM9 in Rice. Agronomy 2020, 10, 1865. https://doi.org/10.3390/agronomy10121865
Park J-R, Yun S, Jan R, Kim K-M. Screening and Identification of Brown Planthopper Resistance Genes OsCM9 in Rice. Agronomy. 2020; 10(12):1865. https://doi.org/10.3390/agronomy10121865
Chicago/Turabian StylePark, Jae-Ryoung, Sopheap Yun, Rahmatullah Jan, and Kyung-Min Kim. 2020. "Screening and Identification of Brown Planthopper Resistance Genes OsCM9 in Rice" Agronomy 10, no. 12: 1865. https://doi.org/10.3390/agronomy10121865