Acidified Animal Manure Products Combined with a Nitrification Inhibitor Can Serve as a Starter Fertilizer for Maize
Abstract
:1. Introduction
- (i)
- Acidification of manures will enhance plant P uptake by increasing the water-extractable P (WEP) content in the manures.
- (ii)
- The addition of a NI to acidified manures will increase P availability further.
- (iii)
- Treated slurry, slurry solids, and digestate solids can replace mineral P starter fertilizers and ensure early growth and optimal biomass productivity of maize.
2. Materials and Methods
2.1. Organic Manure Characteristics and Acidification
2.2. Experimental Setup
2.3. Analytical Methods
2.4. Data Calculation and Statistical Analysis
3. Results
3.1. Acid Requirement to Decrease Manure pH
3.2. Phosphorus Solubilization by Acidification
3.3. Pot Trial: Plant Biomass Yield and Nutrient Uptake
3.4. Residual Mineral N and WEP in Soil after Harvest
4. Discussion
4.1. Buffer Capacity of Manures, Acid Used, and Effects on WEP
4.2. Treatments Effect on Nutrient Uptake and Plant Growth
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Engels, C.; Marschner, H. Effect of Sub-optimal Root Zone Temperatures at Varied Nutrient Supply and Shoot Meristem Temperature on Growth and Nutrient Concentrations in Maize Seedlings (Zea mays L.). Plant Soil 1990, 126, 215–225. [Google Scholar] [CrossRef]
- Imran, M.; Mahmood, A.; Römheld, V.; Neumann, G. Nutrient Seed Priming Improves Seedling Development of Maize Exposed to Low Root Zone Temperatures during Early Growth. Eur. J. Agron. 2013, 49, 141–148. [Google Scholar] [CrossRef]
- Schröder, J.J.; Vermeulen, G.D.; van der Schoot, J.R.; van Dijk, W.; Huijsmans, J.F.M.; Meuffels, G.J.H.M.; van der Schans, D.A. Maize Yields Benefit from Injected Manure Positioned in Bands. Eur. J. Agron. 2015, 64, 29–36. [Google Scholar]
- Barry, D.A.J.; Miller, M.H. Phosphorus Nutritional Requirement of Maize Seedlings for Maximum Yield. Agron. J. 1989, 81, 95–99. [Google Scholar] [CrossRef]
- Grant, C.A.; Flaten, D.N.; Tomasiewicz, D.J.; Sheppard, S.C. The Importance of Early Season Phosphorus Nutrition. Can. J. Plant Sci. 2001, 81, 211–224. [Google Scholar] [CrossRef]
- Pedersen, I.F.; Rubaek, G.H.; Sorensen, P. Cattle Slurry Acidification and Application Method Can Improve Initial Phosphorus Availability for Maize. Plant Soil 2017, 414, 143–158. [Google Scholar] [CrossRef] [Green Version]
- Kronvang, B.; Rubæk, G.H.; Heckrath, G. International Phosphorus Workshop: Diffuse Phosphorus Loss to Surface Water Bodies—Risk Assessment, Mitigation Options, and Ecological Effects in River Basins. J. Environ. Qual. 2009, 38, 1924–1929. [Google Scholar] [CrossRef]
- Scholz, R.W.; Wellmer, F.W. Although There Is No Physical Short-Term Scarcity of Phosphorus, Its Resource Efficiency Should Be Improved. J. Ind. Ecol. 2019, 23, 313–318. [Google Scholar] [CrossRef] [Green Version]
- Petersen, J.; Jensen, H.H.; Rubæk, G.H. Phosphorus Fertilization of Maize Seedlings by SiDe-band Injection of Animal Slurry. In Proceedings of the 14th RAMIRAN International Conference on Recycling of Agricultural Municipal and Industrial Residues in Agriculture, Lisboa, Portugal, 13–15 September 2010; pp. 763–766. [Google Scholar]
- Schröder, J.J.; Ten Holte, L.; Brouwer, G. Response of Silage Maize to Placement of Cattle Slurry. Nether. J. Agric. Sci. 1997, 45, 249–261. [Google Scholar] [CrossRef]
- Bittman, S.; Liu, A.; Hunt, D.E.; Forge, T.A.; Kowalenko, C.G.; Chantigny, M.H.; Buckley, K. Precision Placement of Separated Dairy Sludge Improves Early Phosphorus Nutrition and Growth in Corn (Zea mays L.). J. Environ. Qual. 2012, 41, 582–591. [Google Scholar] [CrossRef]
- Westerschulte, M.; Federolf, C.-P.; Trautz, D.; Broll, G.; Olfs, H.-W. Slurry Injection with Nitrification Inhibitor in Maize: Plant Phosphorus, Zinc, and Manganese Status. J. Plant. Nutr. 2018, 41, 1381–1396. [Google Scholar] [CrossRef]
- Fangueiro, D.; Hjorth, M.; Gioelli, F. Acidification of Animal Slurry E a Review. J. Environ. Manag. 2015, 149, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Hjorth, M.; Cocolo, G.; Jonassen, K.; Abildgaard, L.; Sommer, S. Continuous Inhouse Acidification Affecting Animal Slurry Composition. Biosyst. Eng. 2015, 132, 56–60. [Google Scholar] [CrossRef]
- Christensen, M.L.; Hjorth, M.; Keiding, K. Characterization of Pig Slurry with Reference to Flocculation and Separation. Water Res. 2009, 43, 773–783. [Google Scholar] [CrossRef]
- Petersen, J.; Lemming, C.; Rubæk, G.H.; Sørensen, P. Side-band Injection of Acidified Cattle Slurry as Starter P-Fertilization for Maize Seedlings. In Proceedings of the 15th RAMIRAN International Conference on Recycling of Agricultural Municipal and Industrial Residues in Agriculture, Paris, France, 3–5 June 2013; p. S4.01. [Google Scholar]
- Marschner, P. Marschner’s Mineral. Nutrition of Higher Plants; Elsevier Ltd.: London, UK, 2012. [Google Scholar]
- Ma, Q.H.; Wang, X.; Li, H.B.; Li, H.G.; Cheng, L.Y.; Zhang, F.S.; Rengel, Z.; Shen, J.B. Localized Application of NH4+-N Plus P Enhances Zinc and Iron Accumulation in Maize via Modifying Root Traits and Rhizosphere Processes. Field Crop. Res. 2014, 164, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Nair, D.; Baral, K.R.; Abolos, R.D.; Strobel, B.W.; Petersen, S.O. Nitrate Leaching and Nitrous Oxide Emissions from Maize after Grass-Clover on a Coarse Sandy Soil: Mitigation Potentials of 3,4-Dimethylpyrazole Phosphate (DMPP). J. Environ. Manag. 2020, 60, 110165. [Google Scholar] [CrossRef]
- Chiodini, M.E.; Perego, A.; Carozzi, M.; Acutis, M. The Nitrification Inhibitor Vizura® Reduces n2o Emissions When Added to Digestate before Injection under Irrigated Maize in the Po Valley (Northern Italy). Agronomy 2019, 9, 431. [Google Scholar] [CrossRef] [Green Version]
- Federolf, C.P.; Westerschulte, M.; Olfs, H.W.; Broll, G.; Trautz, D. Enhanced Nutrient Use Efficiencies from Liquid Manure by Positioned Injection in Maize Cropping in Northwest Germany. Eur. J. Agron. 2016, 75, 130–138. [Google Scholar] [CrossRef]
- Hjorth, M.; Christensen, K.V.; Christensen, M.L.; Sommer, S.G. Solid-liquid Separation of Animal Slurry in Theory and Practice: A Review. Agric. Sustain. Dev. 2010, 30, 153–180. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, P.; Eriksen, J. Effects of Slurry Acidification with Sulphuric Acid Combined with Aeration on the Turnover and Plant Availability of Nitrogen. Agron. Ecosyst. Environ. 2009, 131, 240–246. [Google Scholar] [CrossRef]
- Yang, L.; Xu, F.; Ge, X.; Li, Y. Challenges and Strategies for Solid-State Anaerobic Digestion of Lignocellulosic Biomass. Renew. Sustain. Energy Rev. 2015, 44, 824–834. [Google Scholar] [CrossRef]
- Bonmati, A.; Flotats, X. Air Stripping of Ammonia from Pig Slurry: Characterisation and Feasibility as Pre- or Post-treatment to Mesophilic Anaerobic Digestion. Waste Manag. 2003, 23, 261–272. [Google Scholar] [CrossRef]
- Sommer, S.G.; Husted, S. The Chemical Buffer System in Raw and Digested Animal Slurry. J. Agric. Sci. 1995, 123, 45–53. [Google Scholar] [CrossRef]
- Pantelopoulos, A.; Magid, J.; Jensen, L.S. Thermal Drying of the Solid Fraction from Biogas Digestate: Effects of Acidification, Temperature and Ventilation on Nitrogen Content. Waste Manag. 2016, 48, 218–226. [Google Scholar] [CrossRef]
- Regueiro, I.; Pociask, M.; Coutinho, J.; Fangueiro, D. Animal Slurry Acidification Affects Particle Size Distribution and Improves Separation Efficiency. J. Envirom. Qual. 2016, 45, 1096–1103. [Google Scholar] [CrossRef]
- Møller, H.B.; Lund, I.; Sommer, S.G. Solid-Liquid Separation of Livestock Slurry: Efficiency and Cost. Bioresour. Technol. 2000, 74, 223–229. [Google Scholar] [CrossRef]
- Kleinman, P.J.A.; Wolf, A.M.; Sharpley, A.N.; Beegle, D.B.; Saporito, L.S. Survey of Water-Extractable Phosphorus in Livestock Manures Mention of Trade Names Does Not Imply Recommendation or Endorsement by USDA-ARS. Soil Sci. Soc. Am. J. 2005, 69, 701–708. [Google Scholar] [CrossRef] [Green Version]
- Vadas, P.A. Distribution of Phosphorus in Manure Slurry and Its Infiltration after Application to Soils. J. Environ. Qual. 2006, 35, 542–547. [Google Scholar] [CrossRef]
- Regueiro, I.; Coutinho, J.; Balsari, P.; Popovic, O.; Fangueiro, D. Acidification of Pig Slurry before Separation to Improve Slurry Management on Farms. Environ. Technol. 2016, 37, 1906–1913. [Google Scholar] [CrossRef] [PubMed]
- Pagliari, P.H. Variety and Solubility of Phosphorus Forms in Animal Manure and Their Effects on Soil Test Phosphorus. In Applied Manure and Nutrient Chemistry for Sustainable Agriculture and Environment; He, Z., Zhang, H., Eds.; Springer: Cham, Switzerland, 2014; pp. 141–161. [Google Scholar]
- Condron, L.; Newman, S. Revisiting the Fundamentals of Phosphorus Fractionation of Sediments and Soils. J. Soils. Sediments 2011, 11, 830–840. [Google Scholar] [CrossRef]
- Kirchmann, H.; Witter, E. Ammonia Volatilization during Aerobic and Anaerobic Manure Decomposition. Plant. Soil 1989, 115, 35–41. [Google Scholar] [CrossRef]
- Francis, D.D.; Doran, J.W.; Lohry, R.D. Immobilization and Uptake of Nitrogen Applied to Corn as Starter Fertilizer. Soil Sci. Soc. Am. J. 1993, 57, 1023–1026. [Google Scholar] [CrossRef]
- Eriksen, J.; Sørensen, P.; Elsgaard, L. The Fate of Sulfate in Acidified Pig Slurry during Storage and Following Application to Cropped Soil. J. Environ. Qual. 2008, 37, 280–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontaine, D.; Feng, L.; Labouriau, R.; Møller, H.B.; Eriksen, J.; Sørensen, P. Nitrogen and Sulfur Availability in Digestates from Anaerobic Co-digestion of Cover Crops, Straw and Cattle Manure. J. Soil Sci. Plant. Nut. 2019, 20, 1–16. [Google Scholar] [CrossRef]
- IPCC. 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2015; 151p. [Google Scholar]
- Sheikhi, J.; Hosseini, H.M.; Etesami, H.; Majidi, A. Biochar Counteracts Nitrification Inhibitor DMPP–Mediated Negative Effect on Spinach (Spinacia Oleracea L.) Growth. Ecotox. Environ. Saf. 2020, 191, 110243. [Google Scholar] [CrossRef]
- Florio, A.; Maienza, A.; Dell’Abate, M.T.; Stazi, S.R.; Benedetti, A. Changes in the Activity and Abundance of the Soil Microbial Community in Response to the Nitrification Inhibitor 3, 4-Dimethylpyrazole Phosphate (DMPP). J. Soil Sediment. 2016, 16, 2687–2697. [Google Scholar] [CrossRef]
- Weatherley, A.J.; Bolland, M.D.A.; Gilkes, R.J. A Comparison of Values for Initial and Residual Effectiveness of Rock Phosphates Measured in Pot and Field Experiments. Aust. J. Exp. Agric. 1988, 28, 753–763. [Google Scholar] [CrossRef]
Organic Manures | DM | TN | NH4+-N | TP | TK | pH |
---|---|---|---|---|---|---|
(% of WW) | (g kg−1 DM) | |||||
RS | 8.2 | 50.7 | 22.9 | 10.1 | 20.9 | 8.1 |
RSSF | 19.3 | 25.1 | 8.9 | 4.5 | 8.5 | 8.6 |
DSF | 29.6 | 36.0 | 5.7 | 26.2 | 10.5 | 9.1 |
Manure Applied | TP Applied | WEP Applied | TN Applied in Manure | Mineral N Applied in Manure | Top Dressed NH4NO3-N | TN Applied | |
---|---|---|---|---|---|---|---|
Treatment * | (g kg−1 soil) | (mg kg−1 soil) | |||||
RS | 48.8 | 40 | 8.4 | 202 | 91.2 | 150 | 352 |
aRS | 48.8 | 40 | 26.8 | 202 | 91.2 | 150 | 352 |
niRS | 48.8 | 40 | 26.8 | 202 | 91.2 | 150 | 352 |
aniRS | 48.8 | 40 | 26.8 | 202 | 91.2 | 150 | 352 |
RSSF | 46.4 | 40 | 24.8 | 225 | 80 | 150 | 375 |
aRSSF | 46.4 | 40 | 32.8 | 225 | 80 | 150 | 375 |
aniRSSF | 46.4 | 40 | 32.8 | 225 | 80 | 150 | 375 |
DSF | 5.16 | 40 | 4.4 | 55 | 8.63 | 150 | 205 |
aDSF | 5.16 | 40 | 28.8 | 55 | 8.63 | 150 | 205 |
aniDSF | 5.16 | 40 | 28.8 | 55 | 8.63 | 150 | 205 |
N0P0 | - | 0 | - | - | 0 | 0 | 0 |
N150P0 | - | 0 | - | - | 40 | 110 | 150 |
N150P20 | - | 20 | - | - | 40 | 110 | 150 |
N150P40 | - | 40 | - | - | 40 | 110 | 150 |
N225P40 | - | 40 | - | - | 40 | 185 | 225 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Regueiro, I.; Siebert, P.; Liu, J.; Müller-Stöver, D.; Jensen, L.S. Acidified Animal Manure Products Combined with a Nitrification Inhibitor Can Serve as a Starter Fertilizer for Maize. Agronomy 2020, 10, 1941. https://doi.org/10.3390/agronomy10121941
Regueiro I, Siebert P, Liu J, Müller-Stöver D, Jensen LS. Acidified Animal Manure Products Combined with a Nitrification Inhibitor Can Serve as a Starter Fertilizer for Maize. Agronomy. 2020; 10(12):1941. https://doi.org/10.3390/agronomy10121941
Chicago/Turabian StyleRegueiro, Iria, Peter Siebert, Jingna Liu, Dorette Müller-Stöver, and Lars Stoumann Jensen. 2020. "Acidified Animal Manure Products Combined with a Nitrification Inhibitor Can Serve as a Starter Fertilizer for Maize" Agronomy 10, no. 12: 1941. https://doi.org/10.3390/agronomy10121941
APA StyleRegueiro, I., Siebert, P., Liu, J., Müller-Stöver, D., & Jensen, L. S. (2020). Acidified Animal Manure Products Combined with a Nitrification Inhibitor Can Serve as a Starter Fertilizer for Maize. Agronomy, 10(12), 1941. https://doi.org/10.3390/agronomy10121941