The Effectiveness of Foliar Applications of Zinc and Biostimulants to Increase Zinc Concentration and Bioavailability of Wheat Grain
Abstract
:1. Introduction
2. Material and Methods
2.1. Field Location
2.2. Experimental Design
2.3. Wheat Grain Sampling
2.4. Nutrient Analysis
2.5. Statistical Analysis
3. Results
3.1. Grain Yield and Concentrations of N, PA, P, and K
3.2. Concentrations of Total Zn and Forms of Zn in Grain
3.3. Zn Bioavailability
3.4. Fe and Mn Concentration and Bioavailability
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stein, A.J. Rethinking the measurement of undernutrition in a broader health context: Should we look at possible causes or actual effects? Glob. Food Secur. 2014, 3, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Cakmak, I.; Kutman, U.B. Agronomic biofortification of cereals with zinc: A review. Eur. J. Soil Sci. 2018, 69, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Shewry, P.R. Wheat. J. Exp. Bot. 2009, 60, 1537–1553. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Jin, Y.; Li, Y.; Zhai, F.; Kok, F.J.; Jacobsen, E.; Yang, X. Iron and zinc deficiencies in China: What is a feasible and cost-effective strategy? Public Health Nutr. 2008, 11, 632–638. [Google Scholar] [CrossRef] [Green Version]
- Myers, S.S.; Zanobetti, A.; Kloog, I.; Huybers, P.; Leakey, A.D.; Bloom, A.J.; Carlisle, E.; Dietterich, L.H.; Fitzgerald, G.; Hasegawa, T. Increasing CO2 threatens human nutrition. Nature 2014, 510, 139–142. [Google Scholar] [CrossRef]
- Broberg, M.C.; Högy, P.; Pleijel, H. CO2-induced changes in wheat grain composition: Meta-analysis and response functions. Agronomy 2017, 7, 32. [Google Scholar] [CrossRef] [Green Version]
- Curie, C.; Cassin, G.; Couch, D.; Divol, F.; Higuchi, K.; Jean, M.L.; Misson, J.; Schikora, A.; Czernic, P.; Mari, S. Metal movement within the plant: Contribution of nicotianamine and yellow stripe 1-like transporters. Ann. Bot. 2009, 103, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Cakmak, I. HarvestPlus Zinc Fertilizer Project: HarvestZinc. Better Crops 2012, 96, 17–19. [Google Scholar]
- Saha, S.; Chakraborty, M.; Sarkar, D.; Kaushik, B.; Mandal, B.; Murmu, S.; Padhan, D.; Hazrab, G.C.; Bell, R.W. Rescheduling zinc fertilization and cultivar choice improve zinc sequestration and its bioavailability in wheat grains and fl an. Field Crops Res. 2017, 200, 10–17. [Google Scholar] [CrossRef]
- Wang, S.X.; Li, M.; Tian, X.H.; Li, J.; Li, H.Y.; Ni, Y.J.; Zhao, J.H.; Chen, Y.L.; Guo, C.H.; Zhao, A.Q. Foliar Zinc, nitrogen, and phosphorus application effects on micronutrient concentrations in winter wheat. Agron. J. 2015, 107, 61–70. [Google Scholar] [CrossRef]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef] [Green Version]
- Yakhin, O.L.; Lubyanov, A.A.; Yakhin, I.A.; Brown, P.H. Biostimulants in plant science: A global perspective. Front. Plant Sci. 2017, 7, 1–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulgari, R.; Cocetta, G.; Trivellini, A.; Vernieri, P.; Ferrante, A. Biostimulants and crop responses: A review. Biol. Agric. Hortic. 2015, 31, 1–17. [Google Scholar] [CrossRef]
- Tian, S.K.; Lu, L.L.; Xie, R.H.; Zhang, M.Z.; Jernstedt, J.A.; Hou, D.D. Supplemental macronutrients and microbial fermentation products improve the uptake and transport of foliar applied zinc in sunflower (Helianthus annuus L.) plants. Studies utilizing micro X-ray florescence. Front. Plant Sci. 2015, 6, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koksal, A.; Dumanoglu, H.; Gunes, N.; Aktas, M. The effects of different amino acid chelate foliar fertilizers on yield, fruit quality, shoot growth and Fe, Zn, Cu, Mn content of leaves in Williams pear cultivar (Pyruscommunis L.). Turk. J. Agric. For. 1999, 23, 651–658. [Google Scholar]
- Rauthan, B.S.; Schnitzer, M. Effects of a soil fulvic acid on the growth and nutrient content of cucumber (Cucumis sativus) plants. Plant Soil 1981, 63, 491–495. [Google Scholar] [CrossRef]
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: London, UK, 2011. [Google Scholar]
- Li, M.; Wang, S.X.; Tian, X.H.; Huang, Y.P. Improving nutritional quality of wheat grain through foliar zinc combined with macronutrients. Agron. J. 2018, 110, 38–46. [Google Scholar] [CrossRef]
- Xue, Y.F.; Eagling, T.; He, J.B.; Zou, C.Q.; McGrath, S.P.; Shewry, P.R.; Zhao, F.J. Effects of nitrogen on the distribution and chemical speciation of iron and zinc in pearling fractions of wheat grain. J. Agric. Food Chem. 2014, 62, 4738–4746. [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant acidification in major Chinese crop-lands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [Green Version]
- Velu, G.; Ortiz-Monasterio, I.; Cakmak, I.; Hao, Y.; Singh, R.P. Biofortification strategies to increase grain zinc and iron concentrations in wheat. J. Cereal Sci. 2014, 59, 365–372. [Google Scholar] [CrossRef]
- Lonnerdal, B. Dietary factors influencing zinc absorption. J. Nutr. 2000, 130, 1378–1383. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.V.; Krebs, N.F.; Hambidge, K.M. A mathematical model of zinc absorption in humans as a function of dietary zinc and phytate. J. Nutr. 2007, 137, 135–141. [Google Scholar] [CrossRef]
- Li, M.; Wang, S.X.; Tian, X.H.; Zhao, J.H.; Li, H.Y.; Guo, C.H. Zn distribution and bioavailability in whole grain and grain fractions of winter wheat as affected by applications of soil N and foliar Zn combined with N or P. J. Cereal Sci. 2015, 61, 26–32. [Google Scholar] [CrossRef]
- Wang, S.X.; Liu, K.; Chen, J.; Zhang, X.Y.; Fei, P.W.; Tian, X.H. Improving Zn concentration and bioavailability of wheat grain through combined foliar applications of Zn and pesticides. Agron. J. 2019, 111, 1478–1487. [Google Scholar] [CrossRef]
- Eagling, T.; Neal, A.L.; McGrath, S.P.; Fairweather-Tait, S.; Shewry, P.R.; Zhao, F.J. Distribution and speciation of iron and zinc in grain of two wheat genotypes. J. Agric. Food Chem. 2014, 62, 708–716. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.W.; Mao, H.; Zhao, H.B.; Huang, D.L.; Wang, Z.H. Different increases in maize and wheat grain zinc concentrations caused by soil and foliar applications of zinc in Loess Plateau, China. Field Crops Res. 2012, 135, 89–96. [Google Scholar] [CrossRef]
- Bocanegra, M.P.; Lobartini, J.C.; Orioli, G.A. Plant uptake of iron chelated by humic acids of different molecular weights. Commun. Soil Sci. Plant Anal. 2006, 37, 1–2. [Google Scholar] [CrossRef]
- Pandeya, S.B.; Singh, A.K.; Dhar, P. Influence of fulvic acid on transport of iron in soils and uptake by paddy seedlings. Plant Soil 1998, 198, 117–125. [Google Scholar] [CrossRef]
- Sánchez-Sánchez, A.; Sánchez-Andreu, J.; Juárez, M.; Jordá, J.; Bermúdez, D. Humic substances and amino acids improve effectiveness of chelate FeEDDHA in lemon trees. J. Plant Nutr. 2002, 25, 2433–2442. [Google Scholar] [CrossRef]
- Su, H.Y.; Yoo, K.S.; Suh, S.G. Effect of foliar application of fulvic acid on plant growth and fruit quality of Tomato (Lycopersicon esculentum L.). Hortic. Environ. Biotechnol. 2014, 55, 455–461. [Google Scholar]
- Persson, D.P.; de Bang, T.C.; Pedas, P.R.; Kutman, U.B.; Cakmak, I.; Andersen, B.; Finnie, C.; Schjoerring, J.K.; Husted, S. Molecular speciation and tissue compartmentation of zinc in durum wheat grains with contrasting nutritional status. New Phytol. 2016, 211, 1255–1265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crouch, I.J.; Smith, M.T.; van Staden, J.; Lewis, M.J.; Hoad, G.V. Identification of auxins in a commercial seaweed concentrate. J. Plant. Physiol. 1992, 139, 590–594. [Google Scholar] [CrossRef]
- Rathore, S.S.; Chaudhary, D.R.; Boricha, G.N.; Ghosh, A.; Bhatt, B.P.; Zodape, S.T. Effect of seaweed extract on the growth, yield and nutrient uptake of soybean (Glycinemax) under rainfed conditions. S. Afr. J. Bot. 2009, 75, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Zodape, S.T.; Gupta, A.; Bhandari, S.C.; Rawat, U.S.; Cahudhary, D.R.; Eswara, K. Foliar application of seaweed sap as biostimulant for enhancement of yield and yield quality of tomato (Lycopersicon esculentum Mill.). J. Sci. Ind. Res. India 2011, 70, 215–219. [Google Scholar]
- Kunicki, E.; Grabowska, A.; Sekara, A.; Wojciechowska, R. The effect of cultivar type, time of cultivation, and biostimulant treatment on the yield of spinach (Spinacia oleracea L.). Folia Hortic. 2010, 22, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Brown, P.; Saa, S. Biostimulants in agriculture. Front. Plant Sci. 2015, 6, 671. [Google Scholar] [CrossRef] [Green Version]
- Yakhin, O.I.; Lubyanov, A.A.; Yakhin, I.A. Changes in cytokinins, auxin, and abscisic acid contents in wheat seedlings treated with the growth regulator stifun. Russ. J. Plant Physiol. 2012, 59, 398–405. [Google Scholar] [CrossRef]
- Rosado, J.L.; Hambidge, K.M.; Miller, L.V.; Garcia, O.P.; Westcott, J.; Gonzalez, K.; Conde, J.; Hotz, C.; Pfeiffer, W.; OrtizMonasterio, I. The quantity of zinc absorbed from wheat in adult women is enhanced by biofortification. J. Nutr. 2009, 139, 1920–1925. [Google Scholar] [CrossRef] [Green Version]
- Le, C.; Zha, Y.; Li, Y.; Sun, D.; Lu, H.; Yin, B. Eutrophication of lake waters in China: Cost, causes, and control. Environ. Manag. 2010, 45, 662–668. [Google Scholar] [CrossRef]
- Cubadda, F.; Aureli, F.; Raggi, A.; Carcea, M. Effect of milling, pasta making and cooking on minerals in durum wheat. J. Cereal Sci. 2009, 49, 92–97. [Google Scholar] [CrossRef]
- Bilgiçli, N.; Elgün, A.; Türker, S. Effects of various phytase sources on phytic acid content, mineral extractability and protein digestibility of tarhana. Food Chem. 2006, 98, 329–337. [Google Scholar] [CrossRef]
Source of Variation | Yield | N | PA | P | K | Total Zn | Soluble Zn |
Year (Y) | * | * | ** | ** | *** | * | * |
Soil N (N) | *** | *** | *** | NS | NS | ** | *** |
Foliar application (F) | NS | *** | NS | * | NS | *** | *** |
Y × N | NS | NS | NS | NS | ** | * | NS |
Y × F | NS | NS | NS | NS | *** | NS | NS |
N × F | NS | NS | NS | NS | NS | NS | ** |
Y × N × F | NS | NS | NS | NS | NS | NS | * |
Source of Variation | Insoluble Zn | Fe | Mn | PA/Zn | PA/Fe | PA/Mn | Estimated Zn Bioavailability |
Year (Y) | ** | *** | ** | ** | ** | * | *** |
Soil N (N) | ** | ** | * | *** | *** | *** | *** |
Foliar application (F) | *** | *** | NS | *** | *** | NS | *** |
Y × N | ** | NS | ** | NS | * | NS | ** |
Y × F | NS | NS | NS | NS | NS | NS | * |
N × F | * | NS | NS | *** | NS | NS | NS |
Y × N × F | NS | NS | NS | NS | NS | NS | NS |
Treatment | Grain Yield (t ha−1) | N (g kg−1) | PA (g kg−1) | P (g kg−1) | K (g kg−1) |
---|---|---|---|---|---|
Year | |||||
2014–2015 | 4.61 b † | 23.5 a | 9.03 a | 3.63 a | 4.25 a |
2015–2016 | 5.03 a | 21.9 b | 8.17 b | 3.06 b | 3.93 b |
Soil N | |||||
N0 | 3.73 b | 19.3 c | 9.85 a | 3.28 a | 4.12 a |
N120 | 5.39 a | 23.3 b | 8.10 b | 3.30 a | 4.08 a |
N240 | 5.35 a | 25.6 a | 7.85 b | 3.44 a | 4.06 a |
Foliar application | |||||
CK | 4.63 a | 22.1 c | 8.92 a | 2.96 c | 3.97 c |
Zn | 4.81 a | 22.5 bc | 8.52 a | 3.29 bc | 4.13 abc |
Zn + FA | 4.92 a | 22.9 b | 8.34 a | 3.33 bc | 4.11 abc |
Zn + SE | 4.86 a | 21.9 c | 8.55 a | 3.91 a | 4.01 bc |
Zn + AA | 4.81 a | 24.4 a | 8.53 a | 3.59 ab | 4.11 ab |
Zn + MI | 4.91 a | 22.5 c | 8.75 a | 2.98 c | 4.19 a |
Foliar Applications | Total Zn (mg kg−1) | Soluble Zn (mg kg−1) | Insoluble Zn (mg kg−1) | ||||||
---|---|---|---|---|---|---|---|---|---|
N0 | N120 | N240 | N0 | N120 | N240 | N0 | N120 | N240 | |
2014–2015 | |||||||||
CK | 20.8 g † | 22.0 g | 26.7 f | 9.5 i | 10.0 hi | 10.5 h | 11.3 i | 12.0 i | 16.3 h |
Zn | 42.1 c–e | 41.5 e | 43.4 b–e | 20.1 fg | 21.8 abc | 21.0 c–f | 22.0 d–g | 19.6 g | 22.4 c–f |
Zn + FA | 45.5 ab | 44.9 abc | 46.9 a | 20.8 def | 21.2 b–e | 21.4 a–d | 24.6 a–c | 23.6 a–d | 25.5 a |
Zn + SE | 40.7 e | 41.0 e | 43.7 b–e | 20.4 efg | 20.9 c–f | 20.6 d–g | 20.2 fg | 20.2 fg | 23.1 a–e |
Zn + AA | 43.1 b–e | 45.2 ab | 45.1 abc | 21.1 b-e | 22.0 ab | 22.3 a | 22.1 def | 23.2 a–d | 22.7 b–e |
Zn + MI | 43.4 b–e | 41.7 de | 44.7 a–d | 20.6 d–g | 21.0 c–f | 19.8 g | 22.7 b–e | 20.7 efg | 24.9 ab |
Mean | 39.3 B | 39.4 B | 41.8 A | 18.7 B | 19.5 A | 19.3 A | 20.5 B | 19.9 B | 22.5 A |
2015–2016 | |||||||||
CK | 21.9 f | 21.2 f | 24.1 f | 7.80 h | 8.30 gh | 8.80 g | 14.4 g | 12.9 g | 15.3 g |
Zn | 44.3 cde | 45.2 cd | 45.7 cd | 18.9 ef | 20.4 bcd | 21.4 a | 25.4 de | 24.8 de | 23.4 ef |
Zn + FA | 45.4 cd | 51.5 a | 50.1 ab | 19.2 ef | 21.3 ab | 21.2 abc | 26.3 cd | 30.2 a | 28.8 ab |
Zn + SE | 44.1 de | 46.0 cd | 47.2 bc | 19.5 def | 20.3 cd | 21.4 a | 24.6 de | 25.7 cde | 25.9 cd |
Zn + AA | 45.7 cd | 52.1 a | 46.7 cd | 21.5 a | 21.8 a | 20.2 d | 24.2 d–f | 30.3 a | 26.5 bcd |
Zn + MI | 41.5 e | 46.7 cd | 46.6 cd | 19.6 de | 21.2 abc | 18.5 f | 21.9 f | 25.5 de | 28.0 abc |
Mean | 40.5 B | 43.8 A | 43.4 A | 17.7 B | 18.9 A | 18.6 A | 22.8 B | 24.9 A | 24.7 A |
Treatment | Fe (mg kg−1) | Mn (mg kg−1) | PA/Fe | PA/Mn | ||||
---|---|---|---|---|---|---|---|---|
2014–2015 | 2015–2016 | 2014–2015 | 2015–2016 | 2014–2015 | 2015–2016 | 2014–2015 | 2015–2016 | |
Soil N | ||||||||
N0 | 30.1 c † | 38.8 b | 36.8 ab | 35.3 a | 29.1 a | 21.0 a | 23.2 a | 22.6 a |
N120 | 33.6 b | 39.2 b | 38.8 a | 30.4 b | 21.8 b | 16.6 b | 18.7 b | 21.2 ab |
N240 | 35.1 a | 42.1 a | 35.5 b | 31.2 b | 20.3 b | 15.0 c | 19.6 b | 20.0 b |
Foliar application | ||||||||
CK | 30.0 b | 37.2 c | 37.1 a | 31.5 a | 26.9 a | 19.6 a | 21.1 a | 22.6 a |
Zn | 33.2 a | 39.8 bc | 38.3 a | 33.8 a | 22.7 bc | 17.8 abc | 19.2 a | 20.4 a |
Zn + FA | 33.1 a | 42.8 a | 36.7 a | 32.4 a | 22.9 bc | 15.9 c | 20.1 a | 20.4 a |
Zn + SE | 34.8 a | 41.2 ab | 36.2 a | 32.9 a | 21.8 c | 17.0 bc | 20.5 a | 20.9 a |
Zn + AA | 33.7 a | 41.2 ab | 36.2 a | 31.4 a | 23.3 bc | 16.8 bc | 21.1 a | 21.3 a |
Zn + MI | 32.6 ab | 38.1 c | 37.6 a | 31.8 a | 24.8 ab | 18.2 ab | 21.0 a | 21.9 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Tian, X.; Liu, Q. The Effectiveness of Foliar Applications of Zinc and Biostimulants to Increase Zinc Concentration and Bioavailability of Wheat Grain. Agronomy 2020, 10, 178. https://doi.org/10.3390/agronomy10020178
Wang S, Tian X, Liu Q. The Effectiveness of Foliar Applications of Zinc and Biostimulants to Increase Zinc Concentration and Bioavailability of Wheat Grain. Agronomy. 2020; 10(2):178. https://doi.org/10.3390/agronomy10020178
Chicago/Turabian StyleWang, Shaoxia, Xiaohong Tian, and Qing Liu. 2020. "The Effectiveness of Foliar Applications of Zinc and Biostimulants to Increase Zinc Concentration and Bioavailability of Wheat Grain" Agronomy 10, no. 2: 178. https://doi.org/10.3390/agronomy10020178
APA StyleWang, S., Tian, X., & Liu, Q. (2020). The Effectiveness of Foliar Applications of Zinc and Biostimulants to Increase Zinc Concentration and Bioavailability of Wheat Grain. Agronomy, 10(2), 178. https://doi.org/10.3390/agronomy10020178