Changes in Biochemistry and Yield in Response to Biostimulants Applied in Bean (Phaseolus vulgaris L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Determination of Polyphenols
2.3. Determination of Flavonoids
2.4. Determination of Proteins
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Caruso, G.; De Pascale, S.; Cozzolino, E.; Cuciniello, A.; Cenvinzo, V.; Bonini, P.; Colla, G.; Rouphael, Y. Yield and nutritional quality of Vesuvian Piennolo tomato PDO as affected by farming system and biostimulant application. Agronomy 2019, 9, 505. [Google Scholar] [CrossRef] [Green Version]
- Caruso, G.; De Pascale, S.; Cozzolino, E.; Giordano, M.; El-Nakhel, C.; Cuciniello, A.; Cenvinzo, V.; Colla, G.; Rouphael, Y. Protein hydrolysate or plant extract-based biostimulants enhanced yield and quality performances of greenhouse perennial wall rocket grown in different seasons. Plants 2019, 8, 208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Matyjaszczyk, E. The introduction of biostimulants on the Polish market. The present situation and legal requirements. Przem. Chem. 2015, 10, 1841–1844. [Google Scholar] [CrossRef]
- Matyjaszczyk, E. Problems of implementing compulsory integrated pest management. Pest. Manag. Sci. 2019, 75, 2063–2067. [Google Scholar] [CrossRef]
- Traon, D.; Amat, L.; Zotz, F.; Du Jardin, P. A Legal Framework for Plant Biostimulants and Agronomic Fertiliser Additives in the EU. Report for the European Commission Enterprise & Industry Directorate—General; Publications Office of the European Union: Luxembourg, 2014. [Google Scholar]
- Matyjaszczyk, E. “Biorationals” in integrated pest management strategies. J. Plant Dis. Prot. 2018, 125, 523–527. [Google Scholar] [CrossRef] [Green Version]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; Cardarelli, M.; Bonini, P.; Colla, G. Synergistic action of a microbial-based biostimulant and a plant derived-protein hydrolysate enhances lettuce tolerance to alkalinity and salinity. Front. Plant Sci. 2017, 8, 131. [Google Scholar] [CrossRef] [Green Version]
- Colla, G.; Rouphael, Y. Biostimulants in horticulture. Sci. Hortic. 2015, 196, 1–2. [Google Scholar] [CrossRef]
- Colla, G.; Hoagland, L.; Ruzzi, M.; Cardarelli, M.; Bonini, P.; Canaguier, R.; Rouphael, Y. Biostimulant action of protein hydrolysates: unraveling their effects on plant physiology and microbiome. Front. Plant Sci. 2017, 8, 2202. [Google Scholar] [CrossRef] [Green Version]
- Battacharyya, D.; Babgohari, M.Z.; Rathor, P.; Prithiviraj, B. Seaweed extracts as biostimulants in horticulture. Sci. Hortic. 2015, 196, 39–48. [Google Scholar] [CrossRef]
- Basak, A. Biostimulators. Definitions, classification and legislation. In Biostimulators in Modern Agriculture, General Aspects; Gawrońska, H., Ed.; Editorial House Wieś Jutra: Warszawa, Poland, 2008; pp. 7–17. [Google Scholar]
- Stirk, W.A.; Tarkowská, D.; Turecová, V.; Strnad, M.; van Staden, J. Abscisic acid, gibberellins and brassinosteroids in Kelpak®, a commercial seaweed extract made from Ecklonia maxima. J. Appl. Phycol. 2014, 26, 561–567. [Google Scholar] [CrossRef]
- Kocira, A.; Świeca, M.; Kocira, S.; Złotek, U.; Jakubczyk, A. Enhancement of yield, nutritional and nutraceutical properties of two common bean cultivars following the application of seaweed extract (Ecklonia maxima). Saudi J. Biol. Sci. 2018, 25, 563–571. [Google Scholar] [CrossRef] [Green Version]
- Latique, S.; Chernane, H.; Mansori, M.; El Kaoua, M. Seaweed liquid fertilizer effect on physiological and biochemical parameters of bean plant (Phaesolus vulgaris variety Paulista) under hydroponic system. Eu. Sci. J. 2013, 9, 174–191. [Google Scholar]
- Sharma, S.H.S.; Lyons, G.; McRoberts, C.; McCall, D.; Carmichael, E.; Andrews, F.; Swan, R.; McCormack, R.; Mellon, R. Biostimulant activity of brown seaweed species from Strangford Lough: compositional analyses of polysaccharides and bioassay of extracts using mung bean (Vigno mungo L.) and pak choi (Brassica rapa chinensis L.). J. Appl. Phycol. 2012, 24, 1081–1091. [Google Scholar] [CrossRef]
- Stirk, W.A.; Van Standen, J. Flow of cytokinins through the environment. Plant. Growth Regul. 2010, 62, 101–116. [Google Scholar] [CrossRef]
- Tarakhovskaya, E.R.; Maslov, Y.I.; Shishova, M.F. Phytohormones in algae. Russ. J. Plant. Physiol. 2007, 54, 163–170. [Google Scholar] [CrossRef]
- Klarzynski, O.; Descamps, V.; Plesse, B.; Yvin, J.C.; Fritig, B. Sulfated fucan oligosaccharides elicit defense responses in tobacco and local and systemic resistance against Tobacco Mosaic Virus. Mol. Plant-Microbe Interact. 2003, 16, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Zhang, J.; Shen, J.; Silva, A.; Dennis, D.A. A simple 96-well microplate method for estimation of total polyphenol content in seaweeds. J. Appl. Phycol. 2006, 18, 445–450. [Google Scholar] [CrossRef] [Green Version]
- Rioux, L.E.; Turgeon, S.L.; Beaulieu, M. Characterization of polysaccharides extracted from brown seaweeds. Carbohydr. Polym. 2007, 69, 530–537. [Google Scholar] [CrossRef]
- Stirk, W.A.; Novak, O.; Hrandecka, V.; Pencik, A.; Rolcik, J.; Strnad, M.; Van Staden, J. Endogenous cytokinins, auxins and abscisic acid in Ulva fasciata (Chlorophyta) and Dictyota humifusa (Phaeophyta): towards understanding their biosynthesis and homoeostasis. Eur. J. Phycol. 2009, 44, 231–240. [Google Scholar] [CrossRef] [Green Version]
- Yokoya, N.S.; Stirk, W.A.; Van Staden, J.; Novak, O.; Tureckova, V.; Pencik, A.; Strnad, M. Endogenous cytokinins, auxins, and abscisic acid in red algae from Brazil. J. Phycol. 2010, 46, 1198–1205. [Google Scholar] [CrossRef]
- Matysiak, K.; Kaczmarek, S.; Leszczyńska, D. Influence of liquid seaweed extract of Ecklonia maxima on winter wheat cv Tonacja. J. Res. Appl. Agric. Engin. 2012, 57, 44–47. [Google Scholar]
- Papenfus, H.B.; Stirk, W.A.; Finnie, J.F.; Van Staden, J. Seasonal variation in the polyamines of Ecklonia maxima. Botanica Marina 2012, 55, 539–546. [Google Scholar] [CrossRef]
- Rengasamy, K.R.R.; Kulkarni, M.G.; Stirk, W.A.; Van Staden, J. Eckol—a new plant growth stimulant from the brown seaweed Ecklonia maxima. J. Appl. Phycol. 2015, 27, 581–587. [Google Scholar] [CrossRef]
- Rengasamy, K.R.R.; Kulkarni, M.G.; Stirk, W.A.; Van Staden, J. Eckol improves growth, enzyme activities, and secondary metabolite content in maize (Zea mays cv. Border King). J. Plant Growth Regul. 2015, 34, 410–416. [Google Scholar] [CrossRef]
- Panda, D.; Pramanik, K.; Nayak, B.R. Use of sea weed extracts as plant growth regulators for sustainable agriculture. Int. J. Bioresour. Stress Manag. 2012, 3, 404–411. [Google Scholar]
- Crough, I.J.; Van Staden, J. Effect of seaweed concentrate on the establishment and yield of greenhouse tomato plants. J. Appl. Phycol. 1992, 4, 291–296. [Google Scholar] [CrossRef]
- Stirk, W.A.; Bálint, P.; Tarkowská, D.; Strnad, M.; van Staden, J.; Ördög, V. Endogenous brassinosteroids in microalgae exposed to salt and low temperature stress, Eur. J. Phycol. 2018. [Google Scholar] [CrossRef]
- Ecoforce, A. Extracto de Algas para Agricultura Ecológica—Fertilizantes Ecoforce. Available online: http://fertilizantesecoforce.es/es/blog/index/list/cat/agricultura-ecologica/?p=19 (accessed on 1 December 2019).
- Van Oosten, M.J.; Pepe, O.; De Pascale, S.; Silletti, S.; Maggio, A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Technol. Agric. 2017, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Sosnowski, J.; Malinowska, E.; Jankowski, K.; Redzik, P. Morpho-chemical diversity in Festuca pratensis and Lolium perenne depending on concentrations of Ecklonia maxima extract. Appl. Ecol. Env. Res. 2016, 14, 369–379. [Google Scholar] [CrossRef]
- Drobek, M.; Frąc, M.; Cybulska, J. Plant biostimulants: importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress—A review. Agronomy 2019, 9, 335. [Google Scholar] [CrossRef] [Green Version]
- Ali, N.; Farrell, A.; Ramsubhag, A.; Jayaraman, J. The effect of Ascophyllum nodosum extract on the growth, yield and fruit quality of tomato grown under tropical conditions. J. Appl. Phycol. 2016, 28, 1353–1362. [Google Scholar] [CrossRef]
- Mikiciuk, M.; Dobromilska, R. Assessment of yield and physiological indices of small sized tomato cv. ‘Bianka F1′ under the influence of biostimulators of marine algae origin. Acta Sci. Pol., Hortorum Cultus 2014, 13, 31–41. [Google Scholar]
- Chanthini, K.-P.; Stanley-Raja, V.; Thanigaivel, A.; Karthi, S.; Palanikani, R.; Shyam Sundar, N.; Sivanesh, H.; Soranam, R.; Senthil-Nathan, S. Sustainable agronomic strategies for enhancing the yield and nutritional quality of wild tomato, Solanum lycopersicum (l) var cerasiforme Mill. Agronomy 2019, 9, 311. [Google Scholar] [CrossRef] [Green Version]
- Kocira, S.; Kocira, A.; Kornas, R.; Koszel, M.; Szmigielski, M.; Krajewska, M.; Szparaga, A.; Krzysiak, Z. Effect of seaweed extract on yield and protein content of two common bean (Phaseolus vulgaris L.) cultivars. Legume Res. 2017, LR-383. [Google Scholar] [CrossRef]
- Kocira, S.; Szparaga, A.; Kocira, A.; Czerwińska, E.; Wójtowicz, A.; Bronowicka-Mielniczuk, U.; Koszel, M.; Findura, P. Modelling biometric traits, yield and nutritional and antioxidant properties of seeds of three soybean cultivars through the application of biostimulant containing seaweed and amino acids. Front. Plant Sci. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Kocira, S.; Szparaga, A.; Kuboń, M.; Czerwińska, E.; Piskier, T. Morphological and biochemical responses of Glycine max (L.) Merr. to the use of seaweed extract. Agronomy 2019, 9, 93. [Google Scholar] [CrossRef] [Green Version]
- Szczepanek, M.; Siwik-Ziomek, A. P and K Accumulation by rapeseed as affected by biostimulant under different NPK and S fertilization doses. Agronomy 2019, 9, 477. [Google Scholar] [CrossRef] [Green Version]
- Abd El-Gawad, H.G.; Osman, H.S. Effect of exogenous application of boric acid and seaweed extract on growth, biochemical content and yield of eggplant. J. Hortic. Sci. Ornam. Plants 2014, 6, 133–143. [Google Scholar] [CrossRef]
- Manna, D.; Sarkar, A.; Maity, T.K. Impact of Biozyme on growth, yield and quality of chilli (Capsicum annuum L.). J. Crop Weed 2012, 8, 40–43. [Google Scholar]
- Kumar, N.A.; Vanlalzarzova, B.; Sridhar, S.; Baluswami, M. Effect of liquid seaweed fertilizer of Sargassum wightii Grev. on the growth and biochemical content of green gram (Vigna radiata (L.) R. Wilczek). Recent Res. Sci. Technol. 2012, 4, 40–45. [Google Scholar]
- Di Mola, I.; Cozzolino, E.; Ottaiano, L.; Giordano, M.; Rouphael, Y.; Colla, G.; Mori, M. Effect of vegetal- and seaweed extract-based biostimulants on agronomical and leaf quality traits of plastic tunnel-grown baby lettuce under four regimes of nitrogen fertilization. Agronomy 2019, 9, 571. [Google Scholar] [CrossRef] [Green Version]
- Colla, G.; Cardarelli, M.; Bonini, P.; Rouphael, Y. Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato. HortScience 2017, 52, 1214–1220. [Google Scholar] [CrossRef]
- Lötze, E.; Hoffman, E.W. Nutrient composition and content of various biological active compounds of three south African-based commercial seaweed biostimulants. J. Appl. Phycol. 2016, 28, 1379–1386. [Google Scholar] [CrossRef]
- Moreira Sisalema, J.M. Comportamiento Agronómico del Cultivo de Soya (Glycine max L.), a la Aplicación de Tres Extractos de Algas Marinas, en la Zona de Puebloviejo. Available online: http://dspace.utb.edu.ec/ bitstream/49000/5048/1/TE-UTB-FACIAG-ING%20AGROP-000018.pdf (accessed on 1 December 2019).
- Marschner, H. Mineral Nutrition of Higher Plants; Academic Press: London, UK, 1995. [Google Scholar]
- Pratelli, R.; Pilot, G. Altered amino acid metabolism in glutamine dumper1 plants. Plant. Signal. Behav. 2007, 2, 182–184. [Google Scholar] [CrossRef] [Green Version]
- Stitt, M.; Müller, C.; Matt, P.; Gibon, Y.; Carillo, P.; Morcuende, R.; Scheible, W.R.; Krapp, A. Steps towards an integrated view of nitrogen metabolism. J. Exp. Bot. 2002, 53, 959–970. [Google Scholar] [CrossRef]
- Colla, G.; Nardi, S.; Cardarelli, M.; Ertani, A.; Lucini, L.; Canaguiere, R.; Rouphael, J. Protein hydrolysates as biostimulants in horticulture. Sci. Hortic. 2015, 196, 28–38. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Canaguier, R.; Svecova, E.; Cadarelli, M. Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Front. Plant Sci. 2014, 5, 448. [Google Scholar] [CrossRef] [Green Version]
- Parrado, J.; Escudero-Gilete, M.L.; Frriaza, V.; Garcia-Martinez, A.; González-Miret, M.L.; Bautista, J.D.; Heredia, F.J. Enzymatic vegetable extract with bioactive components: influence of fertilizer on the colour and anthocyanins of red grapes. J. Sci. Food Agric. 2007, 87, 2310–2318. [Google Scholar] [CrossRef]
- Ertani, A.; Pizzeghello, D.; Francioso, O.; Sambo, P.; Sanchez-Cortes, S.; Nardi, S. Capsicum chinensis L. growth and nutraceutical properties are enhanced by biostimulants in a long-term period: Chemical and metabolomic approaches. Front. Plant Sci. 2014, 5, 375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Mola, I.; Ottaiano, L.; Cozzolino, E.; Senatore, M.; Giordano, M.; El-Nakhel, C.; Sacco, A.; Rouphael, Y.; Colla, G.; Mori, M. Plant-based biostimulants influence the agronomical, physiological, and qualitative responses of baby rocket leaves under diverse nitrogen conditions. Plants 2019, 8, 522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.Q.; Ko, K.Y.; Kim, S.H.; Lee, K.S. Effect of amino acid fertilization on nitrate assimilation of leafy radish and soil chemical properties in high nitrate soil. Commun. Soil Sci. Plant Anal. 2008, 39, 269–281. [Google Scholar] [CrossRef]
- Kocira, S.; Kocira, A.; Szmigielski, M.; Piecak, A.; Sagan, A.; Malaga-Toboła, U. Effect of an amino acids-containing biostimulator on common bean crop. Przem. Chem. 2015, 94, 1732–1736. [Google Scholar] [CrossRef]
- Kocira, S.; Szparaga, A.; Kocira, A.; Czerwińska, E.; Depo, K.; Erlichowska, B.; Deszcz, E. Effect of applying a biostimulant containing seaweed and amino acids on the content of fiber fractions in three soybean cultivars. Legume Res. 2018, LR-412. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; De Micco, V.; Arena, C.; Raimondi, G.; Colla, G.; De Pascale, S. Effect of Ecklonia maxima seaweed extract on yield, mineral composition, gas exchange and leaf anatomy of zucchini squash grown under saline conditions. J. Appl. Phycol. 2017, 29, 459–470. [Google Scholar] [CrossRef]
- Rouphael, Y.; Giordano, M.; Cardarelli, M.; Cozzolino, E.; Mori, M.; Kyriacou, M.C.; Bonini, P.; Colla, G. Plant and seaweed-based extracts increase yield but differentially modulate nutritional quality of greenhouse spinach through biostimulant action. Agronomy 2018, 8, 126. [Google Scholar] [CrossRef] [Green Version]
- Duer, I.; Fotyma, M.; Madej, A. Kodeks Dobrej Praktyki Rolniczej, 3rd ed.; Fundacja Programów Pomocy dla Rolnictwa: Warszawa, Poland, 2004. (In Polish) [Google Scholar]
- Craigie, J.S. Seaweed extract stimuli in plant science and agriculture. J. Appl. Phycol. 2011, 23, 371–393. [Google Scholar] [CrossRef]
- Sharma, H.S.S.; Fleming, C.; Selby, C.; Rao, J.R.; Martin, T. Plant biostimulants: A review on the processing of microalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J. Appl. Phycol. 2014, 26, 465–490. [Google Scholar] [CrossRef]
- Bulgari, R.; Cocetta, G.; Trivellini, A.; Vernieri, P.; Ferrante, A. Biostimulants and crop responses: A review. Biol. Agric. Hortic. 2015, 31, 1–17. [Google Scholar] [CrossRef]
- Kocira, A.; Kornas, R.; Kocira, S. Effect assessment of Kelpak on the bean yield (Phaseolus vulgaris L.). J. Cent. Eur. Agric. 2013, 14, 545–554. [Google Scholar] [CrossRef]
- Rathore, S.S.; Chaudhary, D.R.; Boricha, G.N.; Gosh, A.; Bhatt, B.P.; Zodape, S.T.; Patolia, J.S. Effect of seaweed extract on the growth, yield and nutrient uptake of soybean (Glycine max) under rainfed conditions. S. Afr. J. Bot. 2009, 75, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Karthikeyan, K.; Shanmugam, M. Development of a protocol for the application of commercial bio-stimulant manufactured from Kappaphycus alvarezii in selected vegetable crops. J. Exp. Biol. Agric. Sci. 2016, 4, 92–102. [Google Scholar]
- Tandon, S.; Dubey, A. Effects of Biozyme (Ascophyllum nodosum) biostimulant on growth and development of soybean [Glycine max (L.) Merill]. Commun. Soil Sci. Plant Anal. 2015, 46, 845–858. [Google Scholar] [CrossRef]
- Zewail, R.M.Y. Effect of seaweed extract and amino acids on growth and productivity and some biocostituents of common bean (Phaseolus vulgaris L.) plants. J. Plant. Production Mansoura Univ. 2014, 5, 1441–1453. [Google Scholar] [CrossRef] [Green Version]
- Abo-Sedera, F.A.; Shams, A.S.; Mohamed, M.H.M.; Hamoda, A.H.M. Effect of organic fertilizer and foliar spray with some safety compounds on growth and productivity of snap bean. Ann. Agric. Sci. Moshtohor 2016, 54, 105–118. [Google Scholar]
- Sujatha, K.; Vijayalakshmi, V. Foliar application of Caulerpa racemosa seaweed extract as bio-stimulant for enhancement of growth and yield of blackgram (Vigna mungo L.). IJOART 2013, 2, 216–230. [Google Scholar]
- Jasim, A.H.; Obaid, A.S. Effect of foliar fertilizers spray, boron and their interaction on broad bean (Vicia faba L.) yield. Sci. Pap. B Hortic. 2014, 58, 271–276. [Google Scholar]
- Delchev, G.; Zhelyazkova, T.; Stoyanova, A. Stability valuation of some mixtures between foliar fertilizers and combined herbicides for the grain yield of durum wheat. Turk. J. Agric. Natur. Sci., Special Issue 2014, 1, 1128–1133. [Google Scholar]
- El-Gamal, I.S.; Abd El-Aal, M.M.M.; El-Desouky, S.A.; Khedr, Z.M.; Abo Shady, K.A. Effect of some growth substances on growth, chemical compositions and root yield productivity of sugar beet (Beta vulgaris L.) plant. Middle East. J. Agric. Res. 2016, 5, 171–185. [Google Scholar]
- Abdel-Mawgoud, A.M.R.; El-Bassiouny, A.M.; Ghoname, A.; Abou-Hussein, S.D. Foliar application of amino acids and micronutrients enhance performance of green bean crop under newly reclaimed land conditions. Aust. J. Basic & Appl. Sci. 2011, 5, 51–55. [Google Scholar]
- Shafeek, M.R.; Hafez, M.M.; Mahmoud, A.R.; Ali, A.R. Comparative effect on N-fixing bacterial with foliar application of amino acid mixed on growth and yield of pea plants (Pisum sativum L.). Middle East. J. Appl. Sci. 2014, 4, 755–761. [Google Scholar]
- El-Ghamry, A.M.; Abd El-Hai, K.M.; Ghoneem, K.M. Amino and humic acids promote growth, yield and disease resistance of faba bean cultivated in clayey soil. Aust. J. Basic Appl. Sci. 2009, 3, 731–739. [Google Scholar]
- Sadak, M.S.H.; Abdelhamid, M.T.; Schmidhalter, U. Effect of foliar application of aminoacids on plant yield and some physiological parameters in bean plants irrigated with seawater. Acta Biol. Colomb. 2015, 20, 141–152. [Google Scholar]
- Khan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M.; Critchley, A.T.; Craigie, J.S.; Norrie, J.; Prithiviraj, B. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Santner, A.; Calderon-Villalobos, L.I.A.; Estelle, M. Plant hormones are versatile chemical regulators of plant growth. Nat. Chem. Biol. 2009, 5, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Depuydt, S.; Hardtke, C.S. Hormone signalling crosstalk in plant growth regulation. Curr. Biol. 2011, 21, 365–373. [Google Scholar] [CrossRef]
- Sakakibara, H. Cytokinins: Activity, biosynthesis, and translocation. Ann. Rev. Plant Biol. 2006, 57, 431–449. [Google Scholar] [CrossRef] [Green Version]
- Aremu, A.O.; Plačková, L.; Grúz, J.; Biba, O.; Novák, O.; Stirk, W.A.; Doležal, K.; Van Staden, J. Seaweed-derived biostimulant (Kelpak) influences endogenous cytokinins and bioactive compounds in hydroponically grown Eucomis autumnalis. J. Plant Growth Regul. 2016, 35, 151–162. [Google Scholar] [CrossRef]
- Masondo, N.A.; Aremu, A.O.; Kulkarni, M.G.; Petřík, I.; Plačková, L.; Šubrtová, M.; Novák, O.; Grúz, J.; Doležal, K.; Strnad, M.; et al. Elucidating the role of Kelpak® on the growth, phytohormone composition, and phenolic acids in macronutrient-stressed Ceratotheca triloba. J. Appl. Phycol. 2019, 31, 2687–2697. [Google Scholar] [CrossRef]
- Kulkarni, M.G.; Rengasamy, K.R.R.; Pendota, S.C.; Grúz, J.; Plačková, L.; Novák, O.; Doležal, K.; Van Staden, J. Bioactive molecules derived from smoke and seaweed Ecklonia maxima showing phytohormone-like activity in Spinacia oleracea L. New Biotechnol. 2019, 48, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Crouch, I.J.; Smith, M.T.; Van Staden, J.; Lewis, M.J.; Hoad, G.V. Identification of auxins in a commercial seaweed concentrate. J. Plant Physiol. 1992, 139, 590–594. [Google Scholar] [CrossRef]
- Jennings, R.C. Gibberellins as endogenous growth regulators in green and brown algae. Planta 1968, 80, 34–42. [Google Scholar] [CrossRef]
- Yamaguchi, S. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 2008, 59, 225–251. [Google Scholar] [CrossRef]
- Tanimoto, E. Gibberellins. In Plant Roots—The Hidden Half; Waisel, Y., Eshel, A., Kafkafi, U., Eds.; Marcel Dekker: New York, NY, USA, 2002; pp. 405–416. [Google Scholar]
- Gopala, R.P. Gibberellin-like behaviour of α-tocopherol in green gram Vigna radiata. Geobios 1984, 11, 21–25. [Google Scholar]
- Jensen, A. Tocopherol content of seaweed and seaweed meal. I. Analytical methods and distribution of tocopherols in benthic algae. J. Sci. Food Agric. 1969, 20, 449–453. [Google Scholar]
- Bajguz, A.; Hayat, S. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol. Biochem. 2009, 47, 1–8. [Google Scholar] [CrossRef]
- Divi, U.K.; Krishna, P. Overexpression of the brassinosteroid biosynthetic gene AtDWF4 in Arabidopsis seeds overcomes abscisic acid-induced inhibition of germination and increases cold tolerance in transgenic seedlings. J. Plant Growth Regul. 2010, 29, 385–393. [Google Scholar] [CrossRef]
- Cambri, D.; Filippini, L.; Apone, F.; Arciello, S.; Colucci, G.; Portoso, D. Effect of Aminoplant® on expression of selected genes in Arabidopsis thaliana L. plants. In Biostimulators in Modern Agriculture: General Aspects; Gawrońska, H., Ed.; Wieś Jutra: Warszawa, Poland, 2008; pp. 77–82. [Google Scholar]
- Maini, P. The experience of the first biostimulant, based on amino acids and peptides: A short retrospective review on the laboratory researches and the practical results. Fertilitas Agrorum 2000, 1, 29–43. [Google Scholar]
- Garcia, A.L.; Madrid, R.; Gimeno, V.; Rodriguez-Ortega, W.M.; Nicolas, N.; Garcia-Sanchez, F. The effects of amino acids fertilization incorporated to the nutrient solution on mineral composition and growth in tomato seedlings. Span. J. Agric. Res. 2011, 9, 852–861. [Google Scholar] [CrossRef] [Green Version]
- Cerdán, M.; Sánchez-Sánchez, A.; Oliver, M.; Juárez, M.; Sánchez-Andreu, J.J. Effect of foliar and root applications of amino acids on iron uptake by tomato plants. Acta Hortic. 2009, 830, 481–488. [Google Scholar] [CrossRef]
- Ertani, A.; Cavani, L.; Pizzeghello, D.; Brandellero, E.; Altissimo, A.; Ciavatta, C.; Nardi, S. Biostimulant activities of two protein hydrolysates on the growth and nitrogen metabolism in maize seedlings. J. Plant Nutr. Soil Sci. 2009, 172, 237–244. [Google Scholar] [CrossRef]
- García-Martínez, A.M.; Díaz, A.; Tejada, M.; Bautista, J.; Rodríguez, B.; María, C.S.; Revilla, E.; Parrado, J. Enzymatic production of an organic soil biostimulant from wheat condensed distiller solubles: effects on soil biochemistry and biodiversity. Process. Biochem. 2010, 45, 1127–1133. [Google Scholar] [CrossRef]
- Lucini, L.; Rouphael, Y.; Cardarelli, M.; Canaguier, R.; Kumar, P.; Colla, G. The effect of a plant-derived protein hydrolysate on metabolic profiling and crop performance of lettuce grown under saline conditions. Sci. Hortic. 2015, 182, 124–133. [Google Scholar] [CrossRef]
- Matsumiya, Y.; Kubo, M. Soybean peptide: Novel plant growth promoting peptide from soybean. In Soybean and Nutrition; El-Shemy, H., Ed.; InTech, 2011; Available online: http://www.intechopen.com/books/soybean-and-nutrition/soybean-peptide-novel-plant-growth-promoting-peptide-from-soybean (accessed on 1 December 2019).
- Schiavon, M.; Ertani, A.; Nardi, S. Effects of an alfalfa protein hydrolysate on the gene expression and activity of enzymes of TCA cycle and N metabolism in Zea mays L. J. Agric. Food Chem. 2008, 56, 11800–11808. [Google Scholar] [CrossRef]
- Halpern, M.; Bar-Tal, A.; Ofek, M.; Minz, D.; Muller, T.; Yermiyahu, U. The use of biostimulants for enhancing nutrient uptake. Adv. Agron. 2015, 130, 141–174. [Google Scholar] [CrossRef] [Green Version]
- Nardi, S.; Pizzeghello, D.; Schiavon, M.; Ertani, A. Plant biostimulants: physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Sci. Agric. 2016, 73, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Selvam, G.G.; Sivakumar, K. Micromorphological study of Vigna mungo L. using seaweed liquid fertilizer from Hypnea musciformis (Wulf.) Lamouroux. Indian J. Mar. Sci. 2016, 45, 1199–1207. [Google Scholar]
- John, P.P.J.; Yuvaraj, P. Effect of Seaweed Liquid Fertilizer of Colpomenia sinuosa (Mert. ex Roth) Derbes & Solier (Brown Seaweed) on Vigna radiata (L.) R. Wilczek. in Koothankuzhi, Tirunelveli district, Tamil Nadu, India. Int. J. Pure Appl. Biosci. 2014, 2, 177–184. [Google Scholar]
- Gugała, M.; Sikorska, A.; Zarzecka, K.; Findura, P.; Malaga–Toboła, U. Chemical composition of winter rape seeds depending on the biostimulators used. Agronomy 2019, 9, 716. [Google Scholar] [CrossRef] [Green Version]
- Schubert, S.; Mengel, K. Important factors in nutrient availability: root morphology and physiology. Z. Pflanzenernähr. Bodenkd. 1989, 152, 169–174. [Google Scholar] [CrossRef]
- Czewińska, E.; Szparaga, A. Antibacterial and antifungal activity of plant extracts. Rocz. Ochr. Sr. 2015, 17, 209–229. [Google Scholar]
- Jindo, K.; Martim, S.A.; Navarro, E.C.; Pérez-Alfocea, F.; Hernandez, T.; Garcia, C.; Aguiar, N.O.; Canellas, L.P. Root growth promoting by humic acids from composted and non-composted urban organic wastes. Plant Soil 2012, 353, 209–220. [Google Scholar] [CrossRef]
- Ertani, A.; Schiavon, M.; Muscolo, A.; Nardi, S. Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant. Soil 2013, 364, 145–158. [Google Scholar] [CrossRef]
- Cheynier, V.; Comte, G.; Davies, K.M.; Lattanzio, V.; Martens, S. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant. Physiol. Biochem. 2013, 72, 1–20. [Google Scholar] [CrossRef]
- Aremu, A.O.; Masondo, N.A.; Rengasamy, K.R.R.; Amoo, S.O.; Grúz, J.; Biba, O.; Šubrtová, M.; Pencık, A.; Novák, O.; Doležal, K.; et al. Physiological role of phenolic biostimulants isolated from brown seaweed Ecklonia maxima on plant growth and development. Planta 2015, 241, 1313–1324. [Google Scholar] [CrossRef]
- Świeca, M.; Gawlik-Dziki, U.; Kowalczyk, D.; Złotek, U. Impact of germination time and type of illumination on the antioxidant compounds and antioxidant capacity of Lens culinaris sprouts. Sci. Hortic. 2012, 140, 87–95. [Google Scholar] [CrossRef]
- Fan, D.; Hodges, D.M.; Critchley, A.T.; Prithiviraj, B. A commercial extract of brown macroalga (Ascophyllum nodosum) affects yield and the nutritional quality of spinach in vitro. Commun. Soil Sci. Plant Anal. 2013, 44, 1873–1884. [Google Scholar] [CrossRef]
- Paul, K.; Sorrentino, M.; Lucini, L.; Rouphael, Y.; Cardarelli, M.; Bonini, P.; Reynaud, H.; Canaguier, R.; Trtílek, M.; Panzarová, K.; et al. Understanding the biostimulant action of vegetal-derived protein hydrolysates by high-throughput plant phenotyping and metabolomics: a case study on tomato. Front. Plant Sci. 2019, 10, 47. [Google Scholar] [CrossRef]
- Shalaby, S.; Horwitz, B.A. Plant phenolic compounds and oxidative stress: integrated signals in fungal–plant interactions. Curr. Genet. 2015, 61, 347–357. [Google Scholar] [CrossRef]
- Gurav, R.G.; Jadhav, J.P. A novel source of biofertilizer from feather biomass for banana cultivation. Environ. Sci. Pollut. Res. Int. 2013, 20, 4532–4539. [Google Scholar] [CrossRef] [PubMed]
- Wenda-Piesik, A.; Kazek, M.; Ropińska, P. Impact of amino acid biostimulation and microelements fertilization in foliar application on productivity of winter oilseed rape. Fragm. Agron. 2017, 34, 119–129. [Google Scholar]
Biostimulant | Concentration | Number of Sprays and Plant Developmental Stages (BBCH) | Volume of Working Solution/ Working Pressure | Date | ||
---|---|---|---|---|---|---|
2015 | 2016 | 2017 | ||||
Fylloton (F) | 1% | Single spraying: BBCH 12–13 (SS) Double spraying: BBCH 12–13, BBCH 61 (DS) | 300 L·ha−1/0.30 MPa | June 5 June 5, June 20 | June 7 June 7, June 23 | June 9 June 9, June 26 |
Terra Sorb Complex (TS) | 0.5% | Single spraying: BBCH 12–13 (SS) Double spraying: BBCH 12–13, BBCH 61 (DS) | 300 L·ha−1/0.30 MPa | June 5 June 5, June 20 | June 7 June 7, June 23 | June 9 June 9, June 26 |
Kelpak (K) | 1% | Single spraying: BBCH 12–13 (SS) Double spraying: BBCH 12–13, BBCH 61 (DS) | 300 L·ha−1/0.30 MPa | June 5 June 5, June 20 | June 7 June 7, June 23 | June 9 June 9, June 26 |
Month | Year | Average from 2002–2015 | ||||||
---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2017 | ||||||
T (°C) Average (min/max) | Rainfall (mm) | T (°C) Average (min/max) | Rainfall (mm) | T (°C) Average (min/max) | Rainfall (mm) | T (°C) | Rainfall (mm) | |
IV | 8.2 (−1.7/24.3) | 30.1 | 9.2 (−1.2/22.6) | 68.4 | 7.7 (−1.6/23.3) | 37.2 | 8.6 | 41.9 |
V | 12.7 (1.5/24.9) | 108.6 | 13.8 (2.6/26.7) | 61.3 | 13.7 (−1.4/26.9) | 100.0 | 12.6 | 64.1 |
VI | 17.4 (6.6/30.5) | 14.1 | 18.1 (4.2/31.5) | 97.1 | 18.3 (5.7/30.2) | 38.6 | 17.8 | 68.3 |
VII | 19.6 (8.4/33.4) | 59.2 | 19.5 (8.8/31.2) | 107.6 | 18.5 (5.3/32.9) | 61.1 | 18.8 | 79.4 |
VIII | 21.6 (5.6/35.5) | 23.4 | 18.2 (7.1/30.7) | 95.3 | 19.5 (4.3/34.4) | 25.5 | 19.5 | 71.5 |
IX | 15.1 (4.2/34.5) | 137.6 | 15.2 (1.6/28.7) | 41.2 | 13.2 (−0.3/27.3) | 100.4 | 14.0 | 69.6 |
Average/Total | 15.8 | 373.0 | 17.1 | 470.9 | 15.2 | 362.8 | 15.2 | 394.8 |
Effect | Sum of Squares | Degrees of Freedom | Mean Squares | F Ratio | p-Values |
---|---|---|---|---|---|
Seed yield | |||||
Intercept | 5,439,549 | 1 | 5,439,549 | 23,099.18 | 0.000000 |
Number of applications | 3181 | 1 | 3181 | 13.51 | 0.000697 |
Treatment | 34,486 | 3 | 11,495 | 48.82 | 0.000000 |
Number of applications × treatment | 1510 | 3 | 503 | 2.14 | 0.110568 |
Error | 9419 | 40 | 235 | ||
1000 seed weight | |||||
Intercept | 10,599,621 | 1 | 10,599,621 | 44,665.77 | 0.000000 |
Number of applications | 314 | 1 | 314 | 1.32 | 0.257138 |
Treatment | 11,114 | 3 | 3705 | 15.61 | 0.000001 |
Number of applications × treatment | 281 | 3 | 94 | 0.40 | 0.757166 |
Error | 9492 | 40 | 237 | ||
Number of pods | |||||
Intercept | 2,570,576 | 1 | 2,570,576 | 10,667.40 | 0.000000 |
Number of applications | 290 | 1 | 290 | 1.20 | 0.279127 |
Treatment | 15,025 | 3 | 5008 | 20.78 | 0.000000 |
Number of applications × treatment | 1506 | 3 | 502 | 2.08 | 0.117750 |
Error | 9639 | 40 | 241 | ||
Number of seeds | |||||
Intercept | 24,743,716 | 1 | 24,743,716 | 33,040.26 | 0.000000 |
Number of applications | 22,838 | 1 | 22,838 | 30.50 | 0.000002 |
Treatment | 209,494 | 3 | 69,831 | 93.25 | 0.000000 |
Number of applications × treatment | 12,377 | 3 | 4126 | 5.51 | 0.002905 |
Error | 29,956 | 40 | 749 | ||
Protein | |||||
Intercept | 20,792.66 | 1 | 20,792.66 | 88,921.99 | 0.000000 |
Number of applications | 0.39 | 1 | 0.39 | 1.65 | 0.206357 |
Treatment | 31.28 | 3 | 10.43 | 44.59 | 0.000000 |
Number of applications × treatment | 2.36 | 3 | 0.79 | 3.37 | 0.027788 |
Error | 9.35 | 40 | 0.23 | ||
Total phenols | |||||
Intercept | 731.7033 | 1 | 731.7033 | 3095.779 | 0.000000 |
Number of applications | 1.3763 | 1 | 1.3763 | 5.823 | 0.020490 |
Treatment | 6.8737 | 3 | 2.2912 | 9.694 | 0.000062 |
Number of applications × treatment | 2.5409 | 3 | 0.8470 | 3.583 | 0.021918 |
Error | 9.4542 | 40 | 0.2364 | ||
Total flavonoids | |||||
Intercept | 0.159506 | 1 | 0.159506 | 7312.597 | 0.000000 |
Number of applications | 0.000001 | 1 | 0.000001 | 0.024 | 0.877973 |
Treatment | 0.006708 | 3 | 0.002236 | 102.506 | 0.000000 |
Number of applications × treatment | 0.000174 | 3 | 0.000058 | 2.663 | 0.060961 |
Error | 0.000873 | 40 | 0.000022 |
Parameters | Biostimulant Treatment | Season | Average 2015–2017 | ||
---|---|---|---|---|---|
2015 | 2016 | 2017 | |||
Number of pods (per m2) | F_1 | 224 ± 7.8 n.s. | 240 ± 8.5 a | 231 ± 11.3 ab | 232 ± 4.0 b |
F_2 | 234 ± 9.9 n.s. | 249 ± 8.5 a | 245 ± 4.9 ab | 243 ± 7.8 ab | |
TS_1 | 223 ± 29.7 n.s. | 207± 7.8 bc | 249 ± 7.8 ab | 226 ± 4.7 b | |
TS_2 | 248 ± 12.0 n.s. | 234 ± 9.9 ab | 254 ± 9.8 ab | 245 ± 2.6 ab | |
K_1 | 257 ± 10.6 n.s. | 254 ± 7.8 a | 258 ± 12.0 a | 256 ± 3.1 a | |
K_2 | 252 ±18.4 n.s. | 225 ± 6.4 ab | 260 ± 6.3 a | 245 ± 6.1 ab | |
C | 203 ±17.7 n.s. | 187 ± 9.2 c | 219 ± 9.2 b | 203 ± 5.9 c | |
Number of seeds (per m2) | F_1 | 776 ± 9.2 a | 649 ± 9.2 d | 686 ± 24.0 bc | 703 ± 1.9 c |
F_2 | 809 ±17.0 a | 774 ± 17.7 b | 799 ± 23.3 a | 794 ± 3.8 a | |
TS_1 | 713 ±19.1 b | 720 ± 4.9 c | 693 ± 21.9 bc | 708 ± 2.6 c | |
TS_2 | 762 ±6.4 ab | 752 ± 6.4 bc | 751 ± 21.8 ab | 755 ± 3.1 b | |
K_1 | 764 ± 22.6 ab | 777 ± 9.9 b | 754 ± 20.5 ab | 765 ± 2.6 b | |
K_2 | 793 ± 15.6 a | 835 ± 5.7 a | 780 ± 25.5 a | 803 ± 5.2 a | |
C | 602 ± 14.8 c | 611 ± 19.1 d | 613 ± 5.7 c | 608 ± 9.4 d |
Parameters | Biostimulant Treatment | Season | Average 2015–2017 | ||
---|---|---|---|---|---|
2015 | 2016 | 2017 | |||
Protein (% DM) | F_1 | 21.19 ± 0.23 bc | 20.59 ± 0.29 bc | 21.30 ± 0.14 ab | 21.03 ± 0.38 a |
F_2 | 20.82 ± 0.10 c | 20.19 ± 0.14 c | 21.01 ± 0.10 ab | 20.67 ± 0.60 ab | |
TS_1 | 21.81 ± 0.02 a | 21.20 ± 0.05 ab | 22.04 ± 0.02 a | 21.68 ± 0.43 a | |
TS_2 | 21.99 ± 0.04 a | 21.38 ± 0.10 a | 22.27 ± 0.18 a | 21.88 ± 0.46 a | |
K_1 | 20.74 ± 0.27 c | 20.05 ± 0.27 c | 21.14 ± 0.43 ab | 20.64 ± 0.55 ab | |
K_2 | 21.79 ± 0.08 ab | 21.15 ± 0.16 ab | 21.61 ± 0.59 ab | 21.52 ± 0.33 a | |
C | 19.53 ± 0.15 d | 18.94 ± 0.17 d | 20.18 ± 0.58 b | 19.55 ± 0.62 b | |
Total phenols (mg∙g−1 DM) | F_1 | 3.76 ± 0.0 b | 4.02 ± 0.02 c | 4.13 ± 0.03 c | 3.97 ± 0.19 n.s. |
F_2 | 5.96 ± 0.05 a | 3.56 ± 0.01 d | 4.11 ± 0.02 c | 4.54 ± 1.29 n.s. | |
TS_1 | 4.01 ±0.01 b | 4.43 ± 0.01 b | 4.36 ± 0.03 b | 4.26 ± 0.22 n.s. | |
TS_2 | 4.01 ± 0.03 b | 4.48 ± 0.12 ab | 3.74 ± 0.06 d | 4.07 ± 0.37 n.s. | |
K_1 | 2.82 ± 0.22 d | 3.89 ± 0.09 c | 3.54 ±0.08 e | 3.42 ± 0.54 n.s. | |
K_2 | 3.83 ± 0.01 b | 4.70 ± 0.04 a | 4.63 ± 0.04 a | 4.39 ± 0.48 n.s. | |
C | 3.27 ± 0.08 c | 3.30 ± 0.05 e | 3.29 ± 0.01 f | 3.29 ± 0.02 n.s. | |
Total flavonoids (mg∙g−1 DM) | F_1 | 0.061± 0.001 bc | 0.075 ± 0.001 a | 0.078 ± 0.001 a | 0.071 ± 0.009 a |
F_2 | 0.058 ± 0.001 c | 0.066 ± 0.001 ab | 0.068 ± 0.001 b | 0.064 ± 0.005 a | |
TS_1 | 0.059 ± 0.001 c | 0.060 ± 0.008 b | 0.069 ± 0.001 b | 0.063 ± 0.006 a | |
TS_2 | 0.063 ± 0.001 ab | 0.061 ± 0.001 ab | 0.065 ± 0.001 b | 0.063 ± 0.002 a | |
K_1 | 0.064 ± 0.002 ab | 0.062 ± 0.003 ab | 0.066 ± 0.001 b | 0.064 ± 0.002 a | |
K_2 | 0.067 ± 0.001 a | 0.073 ± 0.001 ab | 0.075 ± 0.001 a | 0.072 ± 0.004 a | |
C | 0.036 ± 0.001 d | 0.038 ± 0.001 c | 0.041 ± 0.001 c | 0.038 ± 0.003 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kocira, A.; Lamorska, J.; Kornas, R.; Nowosad, N.; Tomaszewska, M.; Leszczyńska, D.; Kozłowicz, K.; Tabor, S. Changes in Biochemistry and Yield in Response to Biostimulants Applied in Bean (Phaseolus vulgaris L.). Agronomy 2020, 10, 189. https://doi.org/10.3390/agronomy10020189
Kocira A, Lamorska J, Kornas R, Nowosad N, Tomaszewska M, Leszczyńska D, Kozłowicz K, Tabor S. Changes in Biochemistry and Yield in Response to Biostimulants Applied in Bean (Phaseolus vulgaris L.). Agronomy. 2020; 10(2):189. https://doi.org/10.3390/agronomy10020189
Chicago/Turabian StyleKocira, Anna, Joanna Lamorska, Rafał Kornas, Natalia Nowosad, Marzena Tomaszewska, Danuta Leszczyńska, Katarzyna Kozłowicz, and Sylwester Tabor. 2020. "Changes in Biochemistry and Yield in Response to Biostimulants Applied in Bean (Phaseolus vulgaris L.)" Agronomy 10, no. 2: 189. https://doi.org/10.3390/agronomy10020189
APA StyleKocira, A., Lamorska, J., Kornas, R., Nowosad, N., Tomaszewska, M., Leszczyńska, D., Kozłowicz, K., & Tabor, S. (2020). Changes in Biochemistry and Yield in Response to Biostimulants Applied in Bean (Phaseolus vulgaris L.). Agronomy, 10(2), 189. https://doi.org/10.3390/agronomy10020189