Soil Water-Salt Dynamics and Maize Growth as Affected by Cutting Length of Topsoil Incorporation Straw under Brackish Water Irrigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. Experimental Design
2.3. Sampling and Measurements
2.4. Evaluation Methods
2.5. Statistical Analysis
3. Results and Discussion
3.1. Dynamics of Soil Moisture
3.2. Variations of Soil Salinity
3.3. Effects of Straw Segment Length on Soil Properties
3.3.1. Main Effects of Straw Segment Length on Soil Properties
3.3.2. Interaction Effects of Straw Segment Length and Incorporation Year on Soil Properties
3.3.3. Relationships between Straw Segment Length and Soil Properties
3.4. Effects of Straw Length on Plant Growth and Grain Yield
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Assouline, S.; Russo, D.; Silber, A.; Or, D. Balancing water scarcity and quality for sustainable irrigated agriculture. Water Resour. Res. 2015, 51, 3419–3436. [Google Scholar] [CrossRef]
- Qadir, M.; Sharma, B.R.; Bruggeman, A.; Choukr-Allah, R.; Karajeh, F. Non-Conventional water resources and opportunities for water augmentation to achieve food security in water scarce countries. Agric. Water Manag. 2007, 87, 2–22. [Google Scholar] [CrossRef]
- Kummu, M.; Ward, P.J.; de Moel, H.; Varis, O. Is physical water scarcity a new phenomenon? Global assessment of water shortage over the last two millennia. Environ. Res. Lett. 2010, 5, 34006. [Google Scholar] [CrossRef] [Green Version]
- Rosegrant, M.W.; Cai, X. Global water demand and supply projections: Part 2. Results and prospects to 2025. Water Int. 2002, 27, 170–182. [Google Scholar] [CrossRef]
- Chirgwin, G.A.; Sutton, B. A low-cost, high-precision drip emitter suitable for low-pressure micro-irrigation systems. Irrig. Sci. 2019, 37, 725–735. [Google Scholar] [CrossRef]
- Girsang, S.S.; Quilty, J.R.; Correa, T.Q.; Sanchez, P.B.; Buresh, R.J. Rice yield and relationships to soil properties for production using overhead sprinkler irrigation without soil submergence. Geoderma 2019, 352, 277–288. [Google Scholar] [CrossRef]
- Küçükyumuk, C.; Kaçal, E.; Ertek, A.; Öztürk, G.; Kurttaş, Y.S.K. Pomological and vegetative changes during transition from flood irrigation to drip irrigation: Starkrimson delicious apple variety. Sci. Hortic. 2012, 136, 17–23. [Google Scholar] [CrossRef]
- Huang, M.; Zhang, Z.; Zhai, Y.; Lu, P.; Zhu, C. Effect of straw biochar on soil properties and wheat production under saline water irrigation. Agronomy 2019, 9, 457. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, V.K.; Rajput, T.B.S.; Patel, N.; Nain, L. Impact of municipal wastewater reuse through micro-irrigation system on the incidence of coliforms in selected vegetable crops. J. Environ. Manag. 2019, 251, 109532. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, G. Utilization of gentle salty water resource in China. Geogr. Geogr. Inf. Sci. 2004, 20, 57–60. [Google Scholar]
- Huang, M.; Zhang, Z.; Sheng, Z.; Zhu, C.; Zhai, Y.; Lu, P.; Brinkman, D. Soil salinity and maize growth under cycle irrigation in coastal soils. Agron. J. 2019, 111, 2276. [Google Scholar] [CrossRef]
- Greenlee, L.F.; Lawler, D.F.; Freeman, B.D.; Marrot, B.; Moulin, P. Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Res. 2009, 43, 2317–2348. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, L.; Gu, W.; Xu, Y.; Tao, J. Effects of different leaching water sources and volume on soil salt and chemical properties in a soil mesocosm experiment. Environ. Earth Sci. 2016, 75. [Google Scholar] [CrossRef]
- Liu, B.; Wang, S.; Kong, X.; Liu, X.; Sun, H. Modeling and assessing feasibility of long-term brackish water irrigation in vertically homogeneous and heterogeneous cultivated lowland in the North China Plain. Agric. Water Manag. 2019, 211, 98–110. [Google Scholar] [CrossRef]
- Pereira, L.S.; Oweis, T.; Zairi, A. Irrigation management under water scarcity. Agric. Water Manag. 2002, 57, 175–206. [Google Scholar] [CrossRef]
- Maggio, A.; De Pascale, S.; Angelino, G.; Ruggiero, C.; Barbieri, G. Physiological response of tomato to saline irrigation in long-term salinized soils. Eur. J. Agron. 2004, 21, 149–159. [Google Scholar] [CrossRef]
- Rengasamy, P. World salinization with emphasis on Australia. J. Exp. Bot. 2006, 57, 1017–1023. [Google Scholar] [CrossRef] [Green Version]
- Beltrán, J.M. Irrigation with saline water: Benefits and environmental impact. Agric. Water Manag. 1999, 40, 183–194. [Google Scholar] [CrossRef]
- Yang, T.; Šimůnek, J.; Mo, M.; Mccullough-Sanden, B.; Shahrokhnia, H.; Cherchian, S.; Wu, L. Assessing salinity leaching efficiency in three soils by the HYDRUS-1D and-2D simulations. Soil Tillage Res. 2019, 194. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Feike, T.; Chen, S.; Shao, L.; Sun, H.; Zhang, X. Effects of saline irrigation on soil salt accumulation and grain yield in the winter wheat-summer maize double cropping system in the low plain of North China. J. Integr. Agric. 2016, 15, 2886–2898. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [Green Version]
- Caruso, C.; Maucieri, C.; Berruti, A.; Borin, M.; Barbera, A. Responses of different Panicum miliaceum L. genotypes to saline and water stress in a marginal Mediterranean environment. Agronomy 2018, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Elbashier, M.; Xiaohou, S.; Ali, A.; Mohmmed, A. Effect of digestate and biochar amendments on photosynthesis rate, growth parameters, water use efficiency and yield of Chinese melon (Cucumis melo L.) under saline irrigation. Agronomy 2018, 8, 22. [Google Scholar] [CrossRef] [Green Version]
- Stevens, R.; Pech, J.; Grigson, G. A short non-saline sprinkling increases the tuber weights of saline sprinkler irrigated potatoes. Agronomy 2017, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Feng, G.; Zhang, Z.; Wan, C.; Lu, P.; Bakour, A. Effects of saline water irrigation on soil salinity and yield of summer maize (Zea mays L.) in subsurface drainage system. Agric. Water Manag. 2017, 193, 205–213. [Google Scholar] [CrossRef]
- Akhtar, K.; Wang, W.; Ren, G.; Khan, A.; Feng, Y.; Yang, G. Changes in soil enzymes, soil properties, and maize crop productivity under wheat straw mulching in Guanzhong, China. Soil Tillage Res. 2018, 182, 94–102. [Google Scholar] [CrossRef]
- Getahun, G.T.; Kätterer, T.; Munkholm, L.J.; Parvage, M.M.; Keller, T.; Rychel, K.; Kirchmann, H. Short-Term effects of loosening and incorporation of straw slurry into the upper subsoil on soil physical properties and crop yield. Soil Tillage Res. 2018, 184, 62–67. [Google Scholar] [CrossRef]
- Zhang, P.; Wei, T.; Jia, Z.; Han, Q.; Ren, X. Soil aggregate and crop yield changes with different rates of straw incorporation in semiarid areas of northwest China. Geoderma 2014, 230–231, 41–49. [Google Scholar] [CrossRef]
- Singh, B.; Eberbach, P.L.; Humphreys, E.; Kukal, S.S. The effect of rice straw mulch on evapotranspiration, transpiration and soil evaporation of irrigated wheat in Punjab, India. Agric. Water Manag. 2011, 98, 1847–1855. [Google Scholar] [CrossRef]
- Zhao, Y.; Pang, H.; Wang, J.; Huo, L.; Li, Y. Effects of straw mulch and buried straw on soil moisture and salinity in relation to sunflower growth and yield. Field Crop. Res. 2014, 161, 16–25. [Google Scholar] [CrossRef]
- Kuang, E.; Chi, F.; Jeng, A.S.; Su, Q.; Zhang, J. A comparison of different methods of decomposing maize straw in China. Acta Agric. Scand. Sect. B Soil Plant Sci. 2014, 632, 186–194. [Google Scholar] [CrossRef]
- Xu, X.; Pang, D.; Chen, J.; Luo, Y.; Zheng, M.; Yin, Y.; Li, Y.; Li, Y.; Wang, Z. Straw return accompany with low nitrogen moderately promoted deep root. Field Crop. Res. 2018, 221, 71–80. [Google Scholar] [CrossRef]
- Zhu, H.; Wu, J.; Huang, D.; Zhu, Q.; Liu, S.; Su, Y.; Wei, W.; Syers, J.K.; Li, Y. Improving fertility and productivity of a highly-weathered upland soil in subtropical China by incorporating rice straw. Plant Soil 2010, 331, 427–437. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Y.; Kushwaha, R.L. Effect of tillage speed and straw length on soil and straw movement by a sweep. Soil Tillage Res. 2010, 109, 9–17. [Google Scholar] [CrossRef]
- She, D.; Sun, X.; Gamareldawla, A.H.D.; Nazar, E.A.; Hu, W.; Edith, K.; Yu, S.E. Benefits of soil biochar amendments to tomato growth under saline water irrigation. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef]
- Zheng, C.; Zhang, Z.; Wu, Y.; Mwiya, R. Response of vertical migration and leaching of nitrogen in percolation water of Paddy Fields under water-saving irrigation and straw return conditions. Water 2019, 11, 868. [Google Scholar] [CrossRef] [Green Version]
- Shao, G.; Cui, J.; Yu, S.E.; Lu, B.; Brian, B.J.; Ding, J.; She, D. Impacts of controlled irrigation and drainage on the yield and physiological attributes of rice. Agric. Water Manag. 2015, 149, 156–165. [Google Scholar] [CrossRef]
- Nelson, D.W. Total carbon, organic carbon and organic matter. Methods Soil Anal. 1982, 9, 961–1010. [Google Scholar]
- Lu, P.; Zhang, Z.; Sheng, Z.; Huang, M.; Zhang, Z. Effect of surface straw incorporation rate on water-salt balance and maize yield in soil subject to secondary salinization with brackish water irrigation. Agronomy 2019, 9, 341. [Google Scholar] [CrossRef] [Green Version]
- Chari, M.M.; Nemati, F.; Afrasiab, P.; Kahkhamoghaddam, P.; Davari, A. Prediction of evaporation from shallow water table using regression and artificial neural networks. J. Agric. Sci. 2012, 5. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.; Ju, Z.; Zhu, M. A one-dimensional transport model for multi-component solute in saturated soil. Water Sci. Eng. 2018, 11, 236–242. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Z.; Fan, S.; Mwiya, R.; Xie, M. Effects of straw incorporation on desiccation cracking patterns and horizontal flow in cracked clay loam. Soil Tillage Res. 2018, 182, 130–143. [Google Scholar] [CrossRef]
- Yao, S.; Teng, X.; Zhang, B. Effects of rice straw incorporation and tillage depth on soil puddlability and mechanical properties during rice growth period. Soil Tillage Res. 2015, 146, 125–132. [Google Scholar] [CrossRef]
- Huo, L.; Pang, H.; Zhao, Y.; Wang, J.; Lu, C.; Li, Y. Buried straw layer plus plastic mulching improves soil organic carbon fractions in an arid saline soil from Northwest China. Soil Tillage Res. 2017, 165, 286–293. [Google Scholar] [CrossRef]
- Su, Y.; Lv, J.L.; Yu, M.; Ma, Z.H.; Xi, H.; Kou, C.L.; He, Z.C.; Shen, A.L. Long-Term decomposed straw return positively affects the soil microbial community. J. Appl. Microbiol. 2019, 128, 138–150. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.K.; He, B.; Zhang, L.; Zhang, G.; Gao, Y. An approach to improve soil quality: A case study of straw incorporation with a decomposer under full film-mulched ridge-furrow tillage on the Semiarid Loess Plateau, China. J. Soil Sci. Plant Nutr. 2019, 20, 125–138. [Google Scholar] [CrossRef]
- Choudhary, O.P.; Ghuman, B.S.; Singh, B.; Thuy, N.; Buresh, R.J. Effects of long-term use of sodic water irrigation, amendments and crop residues on soil properties and crop yields in rice-wheat cropping system in a calcareous soil. Field Crop. Res. 2011, 121, 363–372. [Google Scholar] [CrossRef]
- Yan, N.; Marschner, P. Response of microbial activity and biomass to increasing salinity depends on the final salinity, not the original salinity. Soil Biol. Biochem. 2012, 53, 50–55. [Google Scholar] [CrossRef]
- Zhou, W.; Han, X.; Lu, X.; Chen, X.; Hao, X.; Yan, J.; You, M. Responses of soil organic matter and nutrients contents to corn stalk incorporated into different soil depths. Soils Crop. 2018, 7, 139–147. [Google Scholar]
- Singh, P.; Heikkinen, J.; Ketoja, E.; Nuutinen, V.; Palojärvi, A.; Sheehy, J.; Esala, M.; Mitra, S.; Alakukku, L.; Regina, K. Tillage and crop residue management methods had minor effects on the stock and stabilization of topsoil carbon in a 30-year field experiment. Sci. Total Environ. 2015, 518–519, 337–344. [Google Scholar] [CrossRef]
- Zhang, C.; MU, P.; Shang, J. Effects of continuous returning corn straw on soil chemical properties, enzyme activities and yield trait. Res. Soil Water Conserv. 2018, 25, 92–98. [Google Scholar]
- Jordan, C.J.; Kulendra, E.; Perry, K.L.; Halfacree, Z.J. Management of peristomal tissue necrosis following prepubic urethrostomy in a cat. Vet. Comp. Orthop. Traumatol. 2012, 25, 433–437. [Google Scholar] [PubMed]
- Mahmood, I.A.; Ali, A. Response of direct seeded rice and wheat crops to phosphorus application with crop residue incorporation in saline-sodic soil. Int. J. Agric. Biol. 2015, 17, 1219–1224. [Google Scholar] [CrossRef]
- Mishra, A.; Sharma, S.D. Leguminous trees for the restoration of degraded sodic wasteland in eastern Uttar Pradesh, India. Land Degrad. Dev. 2003, 14, 245–261. [Google Scholar] [CrossRef]
- Dahri, I.A.; Tagar, A.A.; Adamowski, J.; Leghari, N.; Shah, A.R.; Soomro, S.A. Influence of straw incorporation-to-planting interval on soil physical properties and maize performance. Int. Agrophysics 2018, 32, 341–347. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Jordán, A.; Tarolli, P.; Keesstra, S.; Novara, A.; Cerdà, A. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Sci. Total Environ. 2016, 547, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Ma, Q.; Zhou, H.; Jiang, C.; Yu, W. Effects of straw returning and deep loosening on soil physical and chemical properties and maize yields. Chin. J. Soil Sci. 2015, 46, 428–432. [Google Scholar]
Soil Depth | Soil Texture | Soil Particles/% | Bulk Density | Field Capacity | Willing Point | EC1:5 | ||
---|---|---|---|---|---|---|---|---|
cm | Sand | Silt | Clay | g cm−3 | cm3 cm−3 | cm3 cm−3 | dS m−1 | |
0–20 | Clay loam | 31.93 | 37.88 | 30.19 | 1.37 | 0.39 | 0.15 | 0.074 |
20–40 | Clay loam | 28.49 | 39.05 | 32.46 | 1.48 | 0.36 | 0.14 | 0.084 |
40–60 | Clay loam | 26.39 | 38.42 | 35.19 | 1.53 | 0.34 | 0.11 | 0.085 |
60–80 | Clay loam | 24.93 | 37.18 | 37.89 | 1.57 | 0.34 | 0.11 | 0.098 |
Year | Sowing Stage | Seeding Stage | Jointing Stage | Tasseling Stage | Flowering Stage | Filling Stage | Yellow Maturity Stage | Full Ripe Stage | Total Amount | |
---|---|---|---|---|---|---|---|---|---|---|
2017 | Date | 24 June | 10 July | 20 July | 30 July | 9 August | 19 August | 29 August | 15 September | 350 |
Amount | 30 | 40 | 40 | 40 | 40 | 40 | 60 | 60 | ||
2018 | Date | 27 June | 7 July | 17 July | 27 July | 6 August | 16 August | 26 August | 12 September | 350 |
Amount | 30 | 40 | 40 | 40 | 40 | 40 | 60 | 60 |
Year | Soil Depth (cm) | Treatment | Seeding Stage | Jointing Stage | Tasseling Stage | Filling Stage | Full Ripe Stage | Soil Salt Accumulation Rate |
---|---|---|---|---|---|---|---|---|
2017 | 0–20 | L1 | 10.3 a | 52.4 d | 62.0 d | 74.5 d | 103.6 d | 9.06 c |
L2 | 11.3 a | 68.4 c | 78.5 c | 91.6 c | 115.7 c | 9.24 c | ||
L3 | 10.4 a | 72.6 b | 84.1 b | 99.9 b | 120.3 b | 10.57 b | ||
CK | 10.3 a | 78.9 a | 91.3 a | 108.3 a | 128.4 a | 11.47 a | ||
20–40 | L1 | 14.6 a | 21.7 c | 28.9 d | 36.9 d | 49.4 d | 2.38 c | |
L2 | 14.5 a | 23.7 c | 35.9 c | 40.9 c | 57.6 c | 2.97 b | ||
L3 | 16.1 a | 31.5 b | 49.5 b | 54.9 b | 65.6 b | 3.07 b | ||
CK | 16.7 a | 47.8 a | 63.3 a | 73.4 a | 76.8 a | 3.60 a | ||
2018 | 0–20 | L1 | 19.3 a | 49.8 d | 70.9 d | 101.1 d | 130.6 d | 5.77 d |
L2 | 18.6 a | 54.2 c | 84.2 c | 118.0 c | 149.6 c | 7.04 c | ||
L3 | 19.5 a | 63.3 b | 94.1 b | 139.1 b | 197.9 b | 9.15 b | ||
CK | 18.5 a | 92.3 a | 123.4 a | 170.2 a | 211.4 a | 10.43 a | ||
20–40 | L1 | 20.7 a | 41.0 d | 44.3 d | 50.6 d | 64.6 d | 2.12 d | |
L2 | 18.3 a | 49.8 c | 54.0 c | 61.4 c | 72.6 c | 2.96 c | ||
L3 | 20.8 a | 57.5 b | 62.2 b | 67.7 b | 89.8 b | 3.31 b | ||
CK | 19.6 a | 67.7 a | 71.7 a | 76.7 a | 96.7 a | 3.93 a |
Variation | Bulk Density (g cm−3) | Soil Porosity (%) | Soil Organic Matter Content (g kg−1) | |||
---|---|---|---|---|---|---|
Soil depth (cm) | 0–20 | 20–40 | 0–20 | 20–40 | 0–20 | 20–40 |
Year | ||||||
2017 | 1.48 a | 1.69 a | 44.25 a | 36.42 a | 6.85 a | 5.53 a |
2018 | 1.47 a | 1.67 a | 44.53 a | 36.98 a | 6.98 b | 5.48 a |
Treatment | ||||||
L1 | 1.42 a | 1.61 a | 46.42 a | 39.25 a | 8.85 a | 6.45 a |
L2 | 1.46 b | 1.66 b | 45.09 b | 37.55 b | 7.50 b | 5.95 b |
L3 | 1.49 c | 1.71 c | 43.96 c | 35.47 c | 6.95 c | 5.55 c |
CK | 1.54 d | 1.74 c | 42.08 d | 34.53 c | 4.35 d | 4.05 d |
ANOVA | ||||||
Year | 0.51 | 0.18 | 0.51 | 0.18 | ** | 0.07 |
Treatment | ** | ** | ** | ** | ** | ** |
Year × Treatment | 0.21 | 0.59 | 0.21 | 0.59 | ** | ** |
Variation | Plant Height (m) | Stem Diameter (cm) | DAGB (kg ha−1) | 100-Grain Weight (g) | Grain Yield (kg ha−1) |
---|---|---|---|---|---|
Year | |||||
2017 | 2.29 a | 2.51 a | 13,570 a | 31.76 a | 6392 a |
2018 | 2.27 a | 2.48 b | 13,283 a | 31.32 a | 6070 b |
Treatment | |||||
L1 | 2.34 a | 2.59 a | 14,447 a | 34.52 a | 7251 a |
L2 | 2.28 b | 2.54 b | 13,789 b | 32.27 b | 6541 b |
L3 | 2.27 b c | 2.47 c | 12,967 c | 30.36 c | 6014 c |
CK | 2.24 c | 2.38 d | 12,503 c | 29.01 d | 5120 d |
ANOVA | |||||
Year | 0.37 | ** | 0.25 | 0.21 | ** |
Treatment | ** | ** | ** | ** | ** |
Year×Treatment | 0.89 | 0.10 | 0.31 | 0.69 | 0.61 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Zhang, Z.; Lu, P.; Feng, G.; Qi, W. Soil Water-Salt Dynamics and Maize Growth as Affected by Cutting Length of Topsoil Incorporation Straw under Brackish Water Irrigation. Agronomy 2020, 10, 246. https://doi.org/10.3390/agronomy10020246
Zhang Z, Zhang Z, Lu P, Feng G, Qi W. Soil Water-Salt Dynamics and Maize Growth as Affected by Cutting Length of Topsoil Incorporation Straw under Brackish Water Irrigation. Agronomy. 2020; 10(2):246. https://doi.org/10.3390/agronomy10020246
Chicago/Turabian StyleZhang, Zemin, Zhanyu Zhang, Peirong Lu, Genxiang Feng, and Wei Qi. 2020. "Soil Water-Salt Dynamics and Maize Growth as Affected by Cutting Length of Topsoil Incorporation Straw under Brackish Water Irrigation" Agronomy 10, no. 2: 246. https://doi.org/10.3390/agronomy10020246
APA StyleZhang, Z., Zhang, Z., Lu, P., Feng, G., & Qi, W. (2020). Soil Water-Salt Dynamics and Maize Growth as Affected by Cutting Length of Topsoil Incorporation Straw under Brackish Water Irrigation. Agronomy, 10(2), 246. https://doi.org/10.3390/agronomy10020246