Growth Response of Cassava to Deficit Irrigation and Potassium Fertigation during the Early Growth Phase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Measurements
2.3. Potassium Analysis
2.4. Statistical Analyses
3. Results
3.1. Physiological Parameters
3.2. Growth Parameters
3.3. Correlation of Physiological and Growth Traits
3.4. Potassium Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Toumi, J.; Er-Raki, S.; Ezzahar, J.; Khabba, S.; Jarlan, L.; Chehbouni, A. Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): application to irrigation management. Agric. Water Manag. 2016, 163, 219–235. [Google Scholar] [CrossRef]
- Cantero-Navarro, E.; Romero-Aranda, R.; Fernández-Muñoz, R.; Martínez-Andújar, C.; Pérez-Alfocea, F.; Albacete, A. Improving agronomic water use efficiency in tomato by rootstock-mediated hormonal regulation of leaf biomass. J. Plant Sci. 2016, 251, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Burns, A.; Gleadow, R.; Cliff, J.; Zacarias, A.; Cavagnaro, T. Cassava: the drought, war and famine crop in a changing world. Sustainability 2010, 2, 3572–3607. [Google Scholar] [CrossRef] [Green Version]
- Wobeto, C.; Corrêa, A.D.; Abreu, C.M.P.; Santos, C.D.; Abreu, J.R. Nutrients in the cassava (Manihot esculenta Crantz) leaf meal at three ages of the plant. Food Sci. Technol. 2006, 26, 865–869. [Google Scholar] [CrossRef] [Green Version]
- Montagnac, J.A.; Davis, C.R.; Tanumihardjo, S.A. Nutritional value of cassava for use as a staple food and recent advances for improvement. Compr. Rev. Food Sci. Food Saf. 2009, 8, 181–194. [Google Scholar] [CrossRef]
- Balagopalan, C. Cassava utilization in food, feed and industry. In Cassava: Biology, Production and Utilization; Hillock, R.J., Thresh, J.M., Bellotti, A.C., Eds.; CABI: Wallingford, Oxfordshire, UK, 2002; pp. 301–318. [Google Scholar]
- Tonukari, N.J.; Ezedom, T.; Enuma, C.C.; Sakpa, S.O.; Avwioroko, O.J.; Eraga, L.; Odiyoma, E. White gold: cassava as an industrial base. Am. J. Plant Sci. 2015, 6, 972–979. [Google Scholar] [CrossRef] [Green Version]
- El-Sharkawy, M.A. Cassava biology and physiology. Plant Mol. Biol. 2004, 56, 481–501. [Google Scholar] [CrossRef]
- Alves, A.A.C.; Setter, T.L. Response of cassava leaf area-expansion to water deficit: Cell proliferation, cell expansion and delayed development. Ann. Bot. 2004, 94, 605–613. [Google Scholar] [CrossRef] [Green Version]
- Oguntunde, P.G. Whole-plant water use and canopy conductance of cassava under limited available soil water and varying evaporative demand. Plant Soil. 2005, 278, 371–383. [Google Scholar] [CrossRef]
- Howeler, R.H. Long-term effect of cassava cultivation on soil productivity. J. Field Crops Res. 1991, 26, 1–18. [Google Scholar] [CrossRef]
- El-Sharkawy, M.A.; De Tafur, S.M. Comparative photosynthesis, growth, productivity, and nutrient use efficiency among tall and short-stemmed rain-fed cassava cultivars. Photosynthetica. 2010, 48, 173–188. [Google Scholar] [CrossRef]
- Ike, I.F.; Thurtell, G.W.; Thurlell, G.W. Osmotic adjustment in indoor grown cassava in response to water stress. Physiol. Plant. 1981, 52, 257–262. [Google Scholar] [CrossRef]
- El-Sharkawy, M.A.; Cock, J.H. Water use efficiency of cassava. I. Effects of air humidity and water stress on stomatal conductance and gas exchange. Crop Sci. 1984, 24, 497–502. [Google Scholar] [CrossRef]
- El-Sharkawy, M.A. Stress-tolerant cassava: the role of integrative ecophysiology-breeding research in crop improvement. J. Soil Sci. 2012, 2, 162–186. [Google Scholar] [CrossRef] [Green Version]
- Alves, A.A.C.; Setter, T.L. Response of cassava to water deficit: leaf area growth and abscisic acid. J. Crop Sci. 2000, 40, 131–137. [Google Scholar] [CrossRef]
- Calatayud, P.A.; Llovera, E.; Bois, J.F.; Lamaze, T. Photosynthesis in drought-adapted cassava. Photosynthetica 2000, 38, 97–104. [Google Scholar] [CrossRef]
- Bakayoko, S.; Tschannen, A.; Nindjin, C.; Dao, D.; Girardin, O.; Assa, A. Impact of water stress on fresh tuber yield and dry matter content of cassava (Manihot esculenta Crantz) in Côte d’Ivoire. Afr. J. Agric. Res. 2009, 4, 21–27. [Google Scholar]
- Vandegeer, R.; Miller, R.E.; Bain, M.; Gleadow, R.M.; Cavagnaro, T.R. Drought adversely affects tuber development and nutritional quality of the staple crop cassava (Manihot esculenta Crantz). Funct. Plant Biol. 2013, 40, 195–200. [Google Scholar] [CrossRef] [Green Version]
- El-Sharkawy, M.A. Drought-tolerant cassava for Africa, Asia, and Latin America. BioScience 1993, 43, 441–451. [Google Scholar] [CrossRef]
- Alves, A.A.C. Cassava botany and physiology. In Cassava: Biology, Production and Utilization; Hillocks, R.J., Tres, J.M., Bellotti, A.C., Eds.; CABI: Wallingford, Oxfordshire, UK, 2002; pp. 67–89. [Google Scholar]
- Baker, G.R.; Fukai, S.; Wilson, G.L. Response of cassava to water deficits at various stages of growth in the subtropics. Aust. J. Agric. Res. 1989, 40, 517–528. [Google Scholar] [CrossRef]
- Cakmak, I.; Engels, C. Role of mineral nutrients in photosynthesis and yield formation. In Mineral Nutrition of Crops; Rengel, Z., Ed.; Haworth Press: New York, NY, USA, 1999; pp. 141–168. [Google Scholar]
- Ahmad, I.; Maathuis, F.J.M. Cellular and tissue distribution of potassium; physiological relevance, mechanisms and regulation. J. Plant Physiol. 2014, 171, 708–714. [Google Scholar] [CrossRef] [PubMed]
- Cakmak, I. The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J. Plant Nutr. Soil Sci. 2005, 168, 521–530. [Google Scholar] [CrossRef]
- Oosterhuis, D.M.; Loka, D.A.; Kawakami, E.M.; Pettigrew, W.T. The physiology of potassium in crop production. Adv. Agron. 2014, 126, 203–233. [Google Scholar]
- Susan John, K.; Suja, G.; Sheela, M.N.; Ravindran, C.S. Potassium: the key nutrient for cassava production, tuber quality and soil productivity—An overview. J. Root Crops 2010, 36, 132–144. [Google Scholar]
- Zörb, C.; Senbayram, M.; Peiter, E. Potassium in agriculture–Status and perspectives. J. Plant Physiol. 2014, 171, 656–669. [Google Scholar]
- Byju, G.; Nedunchezhiyan, M.; Ravindran, C.S.; Mithra, V.S.S.; Ravi, V.; Naskar, S.K. Modelling the response of cassava to fertilizers: a site-specific nutrient management approach for greater tuberous root yield. Commun. Soil Sci. Plant Anal. 2012, 43, 1149–1162. [Google Scholar] [CrossRef]
- Odubanjo, O.O.; Olufayo, A.A.; Oguntunde, P.G. Water use, growth and yield of drip irrigated cassava in a humid tropical environment. Soil Water Res. 2011, 6, 10–20. [Google Scholar] [CrossRef]
- Santanoo, S.; Vongcharoen, K.; Banterng, P.; Vorasoot, N.; Jogloy, S.; Roytrakul, S.; Theerakulpisut, P. Seasonal variation in diurnal photosynthesis and chlorophyll fluorescence of four genotypes of cassava (Manihot esculenta Crantz) under irrigation conditions in a tropical savanna climate. Agronomy 2019, 9, 206. [Google Scholar] [CrossRef] [Green Version]
- Sopheap, U.; Patanothai, A.; Aye, T.M. Nutrient balances for cassava cultivation in Kampong Cham province in Northeast Cambodia. Int. J. Plant Prod. 2012, 6, 37–58. [Google Scholar]
- Imas, P.; John, S.K. Potassium Nutrition of Cassava; e-ifc No. 34; International Potash Institute: Zug, Switzerland, 2013; Volume 34, pp. 13–18. [Google Scholar]
- Ezui, K.S.; Franke, A.C.; Mando, A.; Ahiabor, B.D.K.; Tetteh, F.M.; Sogbedji, J.; Janssen, B.H.; Giller, K.E. Fertiliser requirements for balanced nutrition of cassava across eight locations in West Africa. J. Field Crops Res. 2016, 185, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Hoagland, D.R.; Arnon, D.I. The water-culture method for growing plants without soil. Calif. Agric. Exp. Stat. 1950, Cir. 347, 1–39. [Google Scholar]
- McCutchan, H.; Shackel, K.A. Stem-water potential as a sensitive indicator of water stress in prune trees (Prunus domestica L. cv. French). J. Am. Soc. Hortic. Res. 1992, 117, 606–611. [Google Scholar] [CrossRef] [Green Version]
- Mäkelä, P.; Munns, R.; Colmer, T.D.; Condon, A.G.; Peltonen-Sainio, P. Effect of foliar applications of glycinebetaine on stomatal conductance, abscisic acid and solute concentrations in leaves of salt- or drought-stressed tomato. Aust. J. Plant Physiol. 1998, 25, 655–663. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Morgan, J.M. Osmoregulation and water stress in higher plants. Ann. Rev. Plant Physiol. 1984, 35, 299–319. [Google Scholar] [CrossRef]
- Radin, J.W. Physiological consequences of cellular water deficits: osmotic adjustment. In Limitations to Efficient Water Use in Crop Production; Taylor, H.M., Jordan, W.R., Sinclair, T.R., Eds.; American Society of Agronomy, Inc, Crop Science Society of America, Inc., Soil Science Society of America, Inc.: Madison, WI, USA, 1983; pp. 267–276. [Google Scholar]
- Blum, A. Drought resistance, water-use efficiency, and yield potential–are they compatible, dissonant, or mutually exclusive? Aust. J. Agric. Res. 2005, 56, 1159–1168. [Google Scholar] [CrossRef]
- Sellin, A. Hydraulic and stomatal adjustment of Norway spruce trees to environmental stress. Tree Physiol. 2001, 21, 879–888. [Google Scholar] [CrossRef] [Green Version]
- Chimenti, C.A.; Marcantonio, M.; Hall, A.J. Divergent selection for osmotic adjustment results in improved drought tolerance in maize (Zea mays L.) in both early growth and flowering phases. Field Crops Res. 2006, 95, 305–315. [Google Scholar] [CrossRef]
- Mengel, K.; Arneke, W.W. Effect of potassium on the water potential, the pressure potential, the osmotic potential and cell elongation in leaves of Phaseolus vulgaris. J. Plant Physiol. 1982, 54, 402–408. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, Q.; Shen, Q.; Guo, S. The critical role of potassium in plant stress response. Int. J. Mol. Sci. 2013, 14, 7370–7390. [Google Scholar] [CrossRef] [Green Version]
- Duque, L.O.; Setter, T. Cassava response to water deficit in deep pots: root and shoot growth, ABA, and carbohydrate reserves in stems, leaves and storage roots. Trop. Plant Biol. 2013, 6, 199–209. [Google Scholar] [CrossRef]
- Blum, A. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res. 2009, 112, 119–123. [Google Scholar] [CrossRef]
- Anjum, S.A.; Xie, X.; Wang, L.; Saleem, M.F.; Man, C.; Lei, W. Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res. 2016, 6, 2026–2032. [Google Scholar]
- Tuna, A.L.; Kaya, C.; Muhammad, A. Potassium sulfate improves water deficit tolerance in melon plants grown under glasshouse conditions. J. Plant Nutr. 2010, 33, 1276–1286. [Google Scholar] [CrossRef]
- Spencer, D.; Possinghami, J.V. The effect of nutrient deficiences on the Hill reaction of isolated chloroplasts from tomato. Aust. J. Biol. Sci. 1960, 13, 441–455. [Google Scholar] [CrossRef] [Green Version]
- Terry, N.; Ulrich, A. Effects of Potassium Deficiency on the Photosynthesis and Respiration of Leaves of Sugar Beet. J. Plant Physiol. 1973, 51, 783–786. [Google Scholar] [CrossRef] [Green Version]
- Boyer, J.S. Leaf enlargement and metabolic rates in corn, soybean, and sunflower at various leaf water potentials. J. Plant Physiol. 1970, 46, 233–235. [Google Scholar] [CrossRef] [Green Version]
- Franks, P.J.; Cowan, I.R.; Tyerman, S.D.; Cleary, A.I.; Lloyd, J.; Farquhar, G.D. Guard-cell pressure aperture characteristics measured with the pressure probe. Plant Cell Environ. 1995, 18, 795–800. [Google Scholar] [CrossRef]
- Itani, J.; Oda, T.; Numao, T. Studies on mechanisms of dehydration postponement in cassava leaves under short-term soil water deficits. J. Plant Prod Sci. 1999, 2, 184–189. [Google Scholar] [CrossRef]
- Björkman, O.; Badger, M.R.; Armond, P.A. Response and adaptation of photosynthesis to high temperatures. In Adaptation of Plants to Water and High Temperatures Stress; Turner, N.C., Kramer, P.J., Eds.; Wiley: New York, NY, USA, 1980; pp. 233–249. [Google Scholar]
- El-Sharkawy, M.A. International research on cassava photosynthesis, productivity, eco-physiology and responses to environmental stresses in the tropics. Photosynthetica. 2006, 44, 481–512. [Google Scholar] [CrossRef]
- Crawford, A.J.; McLachlan, D.H.; Hetherington, A.M.; Franklin, K.A. High temperature exposure increases plant cooling capacity. Curr. Biol. 2012, 22, 386–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raza, M.A.S.; Saleem, M.F.; Shah, G.M.; Khan, I.H.; Raza, A. Exogenous application of glycinebetaine and potassium for improving water relations and grain yield of wheat under drought. J. Soil Sci. Plant Nutr. 2014, 14, 348–364. [Google Scholar] [CrossRef] [Green Version]
- Nesreen, A.S.H.; Eisa, S.S.; Amany, A. Morphological and Chemical Studies on Influence of Water Deficit on Cassava. World J. Agric. Res. 2013, 9, 369–376. [Google Scholar]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 2009, 29, 185–212. [Google Scholar] [CrossRef] [Green Version]
- El-Sharkawy, M.A.; Cadavid, L.F. Response of cassava to prolonged water stress imposed at different stages of growth. J. Exp. Agric. 2002, 38, 253–264. [Google Scholar] [CrossRef]
- Vreugdenhil, D. Source-to-sink gradient of potassium in the phloem. Planta 1985, 163, 238–240. [Google Scholar] [CrossRef]
- Nguyen, H.; Schoenau, J.J.; Nguyen, D.; Van Rees, K.; Boehm, M. Effects of long-term nitrogen, phosphorus, and potassium fertilization on cassava yield and plant nutrient composition in North Vietnam. Plant Nutr. 2007, 25, 425–442. [Google Scholar] [CrossRef]
- Grzebisz, W.; Gransee, A.; Szczepaniak, W.; Diatta, J. The effects of potassium fertilization on water-use efficiency in crop plants. J. Plant Nutr. Soil Sci. 2013, 176, 355–374. [Google Scholar] [CrossRef]
- Howeler, R. Sustainable Soil and Crop Management of Cassava in Asia; Centro Internacional de Agricultura Tropical (CIAT): Cali, Colombia, 2014; Volume 389, p. 280. [Google Scholar]
Treatment | Leaf Turgor (MPa) | |||||
---|---|---|---|---|---|---|
30 DAP | 45 DAP | 60 DAP | 75 DAP | 90 DAP | ||
Irrigation | 30% | 0.46 | 0.39 | 0.29 a | 0.18 a | 0.11 a |
60% | 0.48 | 0.43 | 0.37 b | 0.36 b | 0.30 b | |
100% | 0.48 | 0.49 | 0.50 c | 0.51 c | 0.55 c | |
S.E.M (df = 3–15) | 0.017 | 0.036 | 0.039 | 0.034 | 0.038 | |
Potassium | 0.01 mM | 0.47 | 0.4 | 0.29 | 0.25 a | 0.10 a |
1 mM | 0.48 | 0.42 | 0.35 | 0.30 ab | 0.24 b | |
4 mM | 0.46 | 0.43 | 0.38 | 0.34 b | 0.32 c | |
16 mM | 0.48 | 0.46 | 0.45 | 0.43 c | 0.45 d | |
32 mM | 0.48 | 0.48 | 0.47 | 0.46 c | 0.49 d | |
S.E.M (df = 3–15) | 0.022 | 0.046 | 0.05 | 0.044 | 0.05 | |
p-value (<0.05) | I | 0.738 | 0.134 | 0.001 | <0.001 | <0.001 |
K | 0.964 | 0.710 | 0.068 | 0.004 | <0.001 | |
I × K | 0.896 | 0.998 | 1.000 | 0.997 | 0.288 |
Treatment | Plant Leaf Area (m2) | Dry Mass (g) | ||||
---|---|---|---|---|---|---|
Leaves | Shoot | Roots | Whole-Plant | |||
Irrigation | Potassium | |||||
30% | 0.01 mM | 0.37 a | 16.9 a | 13.6 a | 11.0 a | 41.4 a |
1 mM | 0.38 a | 20.0 ab | 24.6 bcd | 13.5 ab | 58.1 b | |
4 mM | 0.44 ab | 20.6 ab | 24.4 bcd | 17.7 bc | 62.7 b | |
16 mM | 0.57 d | 29.7 c | 29.4 cde | 25.5 d | 84.6 c | |
32 mM | 0.48 bc | 20.6 ab | 27.7 bcd | 27.5 d | 75.8 c | |
60% | 0.01 mM | 0.38 a | 23.3 b | 19.0 ab | 22.8 d | 65.0 b |
1 mM | 0.48 b | 33.6 cd | 33.3 de | 26.8 d | 93.6 d | |
4 mM | 0.59 d | 33.7 cd | 33.0 de | 34.7 e | 101.4 de | |
16 mM | 0.63 de | 39.9 e | 37.5 ef | 46.8 gh | 124.2 h | |
32 mM | 0.62 de | 33.6 de | 33.6 de | 41.3 fg | 108.6 ef | |
100% | 0.01 mM | 0.42 ab | 34.8 d | 20.8 abc | 24.7 d | 80.3 c |
1 mM | 0.56 cd | 32.1 cd | 44.5 fg | 38.5 ef | 115.2 fg | |
4 mM | 0.62 de | 35.3 d | 47.2 g | 39.1 ef | 121.6 gh | |
16 mM | 0.68 e | 40.5 d | 44.8 fg | 55.0 i | 140.3 i | |
32 mM | 0.68 e | 40.2 d | 50.9 g | 51.8 hi | 142.9 i | |
S.E.M (df = 3–15) | 0.016 | 0.86 | 1.92 | 1.12 | 1.82 | |
p-value (<0.05) | I | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
K | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
I × K | <0.001 | <0.001 | 0.001 | <0.001 | <0.001 |
LDM | RDM | WPD | TBN | LA | PLH | Chl | LT | PN | gs | Ψw | Ψs | Ψp | WUS | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LDM | 1 | |||||||||||||
RDM | 0.826 ** | 1 | ||||||||||||
WPD | 0.875 ** | 0.951 ** | 1 | |||||||||||
TBN | 0.719 ** | 0.825 ** | 0.834 ** | 1 | ||||||||||
LA | 0.736 ** | 0.832 ** | 0.887 ** | 0.743 ** | 1 | |||||||||
PLH | 0.792 ** | 0.897 ** | 0.911 ** | 0.812 ** | 0.823 ** | 1 | ||||||||
Chl | 0.857 ** | 0.928 ** | 0.936 ** | 0.777 ** | 0.832 ** | 0.930 ** | 1 | |||||||
LT | −0.807 ** | −0.870 ** | −0.894 ** | −0.809 ** | −0.772 ** | −0.869 ** | -0.889 ** | 1 | ||||||
PN | 0.838 ** | 0.915 ** | 0.933 ** | 0.823 ** | 0.835 ** | 0.928 ** | 0.939 ** | −0.912 ** | 1 | |||||
gs | 0.881 ** | 0.906 ** | 0.940 ** | 0.781 ** | 0.786 ** | 0.892 ** | 0.951 ** | −0.923 ** | 0.939 ** | 1 | ||||
Ψw | 0.825 ** | 0.896 ** | 0.915 ** | 0.759 ** | 0.819 ** | 0.890 ** | 0.953 ** | −0.898 ** | 0.941 ** | 0.956 ** | 1 | |||
Ψs | 0.802 ** | 0.869 ** | 0.886 ** | 0.725 ** | 0.792 ** | 0.865 ** | 0.929 ** | −0.880 ** | 0.921 ** | 0.936 ** | 0.975 ** | 1 | ||
Ψp | 0.682 ** | 0.746 ** | 0.763 ** | 0.662 ** | 0.690 ** | 0.737 ** | 0.781 ** | −0.725 ** | 0.763 ** | 0.773 ** | 0.820 ** | 0.671 ** | 1 | |
WUS | 0.831 ** | 0.935 ** | 0.933 ** | 0.775 ** | 0.864 ** | 0.931 ** | 0.964 ** | −0.868 ** | 0.931 ** | 0.923 ** | 0.946 ** | 0.928 ** | 0.761 ** | 1 |
Treatment | K Content (g kg−1 Dry Matter) | ||
---|---|---|---|
Leaves | Roots | ||
Irrigation | 30% | 12.6 a | 9.9 |
60% | 14.6 b | 10.5 | |
100% | 14.7 b | 11.5 | |
S.E.M (df = 3–15) | 0.89 | 0.73 | |
p–value (<0.05) | 0.01 | 0.061 | |
Potassium | 0.01 mM | 11.1 a | 3.6 a |
1 mM | 12.2 a | 10.0 b | |
4 mM | 14.5 ab | 11.3 b | |
16 mM | 14.8 ab | 13.7 c | |
32 mM | 17.4 b | 14.7 c | |
S.E.M (df = 3–15) | 1.08 | 0.49 | |
p–value (<0.05) | <0.001 | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wasonga, D.O.; Kleemola, J.; Alakukku, L.; Mäkelä, P.S.A. Growth Response of Cassava to Deficit Irrigation and Potassium Fertigation during the Early Growth Phase. Agronomy 2020, 10, 321. https://doi.org/10.3390/agronomy10030321
Wasonga DO, Kleemola J, Alakukku L, Mäkelä PSA. Growth Response of Cassava to Deficit Irrigation and Potassium Fertigation during the Early Growth Phase. Agronomy. 2020; 10(3):321. https://doi.org/10.3390/agronomy10030321
Chicago/Turabian StyleWasonga, Daniel O., Jouko Kleemola, Laura Alakukku, and Pirjo S.A. Mäkelä. 2020. "Growth Response of Cassava to Deficit Irrigation and Potassium Fertigation during the Early Growth Phase" Agronomy 10, no. 3: 321. https://doi.org/10.3390/agronomy10030321
APA StyleWasonga, D. O., Kleemola, J., Alakukku, L., & Mäkelä, P. S. A. (2020). Growth Response of Cassava to Deficit Irrigation and Potassium Fertigation during the Early Growth Phase. Agronomy, 10(3), 321. https://doi.org/10.3390/agronomy10030321