Crop Yield, Ferritin and Fe(II) boosted by Azospirillum brasilense (HM053) in Corn
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Growth
2.2. Bacteria Growth
2.3. Plant Growth Measurements
2.4. Chlorophyll and Leaf Thickness Measurements
2.5. Ion Chromatography Measuring Seed Iron
2.6. Size-Exclusion Chromatography used in Seed Ferritin Analysis
2.7. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Fe | Iron |
PGPR | Plant growth-promoting rhizobacteria |
N2 | Nitrogen |
A. brasilense | Azospirillum brasilense rhizobacteria |
IAA | Carbon dioxide |
DAG | Days after germination |
SE | Standard error |
°C | Degrees Celsius |
rpm | Rotations per minute |
CFU | Colony forming unit |
TLC | Thin-layer chromatography |
UV–VIS | Ultraviolet–visible spectroscopy |
HCl | Hydrochloric acid |
M | Moles per liter |
References
- Food and Nutrition Board Institute of Medicine. Iron. In Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academy Press: Washington, DC, USA, 2001; p. 344. [Google Scholar]
- McLean, E.; Cogswell, M.; Egli, I.; Wojdyla, D.; de Benoist, B. Worldwide prevalence of anemia, WHO Vitamin and Mineral Nutrition Information System. 1993–2005. Public Health Nutr. 2009, 12, 444–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Assessing the Iron Status of Populations. 2007. Available online: https://www.who.int/nutrition/publications/micronutrients/anaemia_iron_deficiency/9789241596107/en/ (accessed on 19 August 2019).
- World Health Organization. Iron Deficiency Anaemia Assessment, Prevention and Control; World Health Organization: Geneva, Switzerland, 2001. [Google Scholar]
- Office of Dietary Supplements-NIH. Iron: Fact Sheet for Health Professionals. Strengthening Knowledge and Understanding of Dietary Supplements. NIH. 2019. Available online: https://ods.od.nih.gov/factsheets/Iron-HealthProfessional/ (accessed on 19 August 2019).
- Drakakaki, G.; Marcel, S.; Glahn, R.P.; Lund, E.K.; Pariagh, S.; Fischer, R.; Christou, P.; Stoger, E. Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron. Plant Mol. Biol. 2005, 59, 869–880. [Google Scholar] [CrossRef] [PubMed]
- Haas, J.D.; Beard, J.L.; Murray-Kolb, L.E.; del Mundo, A.M.; Felix, A.; Gregorio, G.B. Iron-biofortified rice improves the iron stores of nonanemic Filipino women. J. Nutr. 2005, 135, 2823–2830. [Google Scholar] [CrossRef] [PubMed]
- Kanobe, M.N.; Rodermel, S.R.; Bailey, T.; Scott, M.P. Changes in endogenous gene transcript and protein levels in maize plants expressing the soybean ferritin transgene. Front Plant Sci. 2013, 4, 196. [Google Scholar] [CrossRef] [Green Version]
- Borg, S.; Brinch-Pedersen, H.; Tauris, B.; Madsen, L.H.; Darbani, B.; Noeparvar, S.; Holm, P.B. Wheat ferritins: Improving the iron content of the wheat grain. J. Cereal Sci. 2012, 56, 204–213. [Google Scholar] [CrossRef]
- Sui, X.; Yan, Z.; Wang, S. Improvement Fe content of wheat (Triticum aestivum) grain by soybean ferritin expression cassette without vector backbone sequence. J. Agric. Biotech. 2012, 20, 766–773. [Google Scholar]
- Zielińska-Dawidziak, M. Plant Ferritin—A source of iron to prevent its deficiency. Nutrients 2015, 7, 1184–1201. [Google Scholar] [CrossRef] [Green Version]
- Sczekan, S.R.; Joshi, J.G. Isolation and characterization of ferritin from soyabeans (Glycine max). J. Biol. Chem. 1987, 262, 13780–13788. [Google Scholar]
- Hsieh, H.M.; Liu, W.K.; Huang, P.C. A novel stress-inducible metallothionein-like protein from rice. Plant Mol. Biol. 1995, 28, 381–389. [Google Scholar] [CrossRef]
- Briat, J.-F.; Ravet, K.; Arnaud, N.; Duc, C.; Boucherez, J.; Touraine, B.; Cellier, F.; Gaymard, F. New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants. Ann. Bot. 2010, 105, 811–822. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Theil, E.C. Ferritins: Dynamic management of biological iron and oxygen chemistry. Acc. Chem. Res. 2005, 38, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Zielińska-Dawidziak, M.; Hertig, I.; Staniek, H.; Piasecka-Kwiatkowska, D.; Nowak, K.W. Effect of Iron Status in Rats on the Absorption of Metal Ions from Plant Ferritin. Plant Foods Hum. Nutr. 2014, 69, 101–107. [Google Scholar] [CrossRef] [Green Version]
- James, E.K.; Baldani, J.I. The role of biological nitrogen fixation by non-legumes in the sustainable production of food and biofuels. Plant Soil 2012, 356, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Hurek, T.; Reinhold-Hurek, B.; Van Montagu, M.; Kellenberger, E. Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J. Bacteriol. 1994, 176, 1913–1923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanni, Y.G.; Rizk, R.Y.; Corich, V.; Squartini, K.; Ninke, S.; Philip-Hollingsworth, G.; Orgambide, F.; de Bruijn, F.; Stoltzfus, J.; Buckley, D.; et al. Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 1997, 194, 99–114. [Google Scholar] [CrossRef]
- James, E.K.; Olivares, F.L. Infection and colonization of sugar cane and other Graminaceous plants by endophytic diazotrophs. Crit. Rev. Plant Sci. 1998, 17, 77–119. [Google Scholar] [CrossRef]
- Okon, Y.; Labandera-Gonzalez, C.A. Agronomic applications of Azospirillum: An evaluation of 20 years worldwide field inoculation. Soil Biol. Biochem. 1994, 26, 1591–1601. [Google Scholar] [CrossRef]
- Dobbelaere, S.; Croonenborghs, A.; Thys, A.; Ptacek, D.; Vanderleyden, J.; Dutto, P.; Labandera-Gonzalez, C.; Caballero-Mellado, J.; Aguirre, J.F.; Kapulnik, Y.; et al. Responses of agronomically important crops to inoculation with Azospirillum. Funct. Plant Biol. 2001, 28, 871–879. [Google Scholar] [CrossRef]
- Pedraza, R.O.; Bellone, C.H.; de Bellone, S.C.; Sorte, P.M.; dos Santos Teixeira, K.R. Azospirillum inoculation and nitrogen fertilization effect on grain yield and on the diversity of endophytic bacteria in the phyllosphere of rice rainfed crop. Eur. J. Soil Biol. 2009, 45, 36–43. [Google Scholar] [CrossRef]
- Farrar, K.; Bryan, D.; Cope-Selby, N. Understanding and engineering beneficial plant–microbe interactions: Plant growth promotion in energy crops. Plant Biotech. J. 2014, 12, 1193–1206. [Google Scholar] [CrossRef] [Green Version]
- Pacovsky, R. Development and growth effects in the Sorghum–Azospirillum association. J. Appl. Bacteriol. 1990, 68, 555–563. [Google Scholar] [CrossRef]
- Eckert, B.; Weber, O.B.; Kirchhof, G.; Halbritter, A.; Stoffels, M.; Hartmann, A. Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus. Int. J. Syst. Evol. Microbiol. 2001, 51, 17–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bashan, Y.; Holguin, G.; de-Bashan, L.E. Azospirillum-plant relationships: Physiological, molecular, agricultural, and environmental advances (1997–2003). Can. J. Microbiol. 2004, 50, 521–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christian, D.G.; Riche, A.B.; Yates, N.E. Growth, yield and mineral content of Miscanthus × giganteus grown as a biofuel for 14 successive harvests. Ind. Crops Prod. 2008, 28, 320–327. [Google Scholar] [CrossRef]
- Carroll, A.; Somerville, C. Cellulosic Biofuels. Ann. Rev. Plant Biol. 2009, 60, 165–182. [Google Scholar] [CrossRef] [Green Version]
- Raaijmakers, J.; Paulitz, T.; Steinberg, C.; Alabouvette, C.; Moënne-Loccoz, Y. The rhizosphere: A playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 2009, 321, 341–361. [Google Scholar] [CrossRef] [Green Version]
- Verhagen, B.W.; Glazebrook, J.; Zhu, T.; Chang, H.S.; van Loon, L.C.; Pieterse, C.M. The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol. Plant Microbe Interact. 2004, 17, 895–908. [Google Scholar] [CrossRef] [Green Version]
- Richardson, A.; Barea, J.-M.; McNeill, A.; Prigent-Combaret, C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 2009, 321, 305–339. [Google Scholar] [CrossRef]
- Reinhold, B.; Hurek, T.; Niemann, E.-G.; Fendrik, I. Close association of Azospirillum and diazotrophic rods with different root zones of Kallar grass. Appl. Environ. Microbiol. 1986, 52, 520–526. [Google Scholar] [CrossRef] [Green Version]
- Hurek, T.; Reinhold-Hurek, B.; Turner, G.L.; Bergersen, F.J. Augmented rates of respiration and efficient nitrogen fixation at nanomolar concentrations of dissolved O2 in hyperinduced Azoarcus sp. strain BH72. J. Bacteriol. 1994, 176, 4726–4733. [Google Scholar] [CrossRef] [Green Version]
- James, E.K.; Olivares, F.L.; Baldani, J.I.; Döbereiner, J. Herbaspirillum, an endophytic diazotroph colonizing vascular tissue in leaves of Sorghum bicolor L. Moench. J. Exp. Bot. 1997, 48, 785–797. [Google Scholar] [CrossRef] [Green Version]
- James, E.K.; Reis, V.M.; Olivares, F.L.; Baldani, J.I.; Dobereiner, J. Infection of sugar cane by the nitrogen-fixing bacterium Acetobacter diazotrophicus. J. Exp. Bot. 1994, 45, 757–766. [Google Scholar] [CrossRef] [Green Version]
- Hungria, M.; Campo, R.; de Souza, E.M.; Pedrosa, F. Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil 2010, 331, 413–425. [Google Scholar] [CrossRef]
- Zeffa, D.M.; Perini, L., Jr.; Silva, M.B.; de Sousa, N.V.; Scapim, C.A.; Martinez de Oliveira, A.L.; Teixeira do Amaral, A., Jr.; Goncalves, L.S.A. Azospirillum brasilense promotes increases in growth and nitrogen use efficiency of maize genotypes. PLoS ONE 2019, 14, e0215332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reinhold-Hurek, B.; Hurek, T. Life in grasses: Diazotrophic endophytes. Trends Microbiol. 1998, 6, 139–144. [Google Scholar] [CrossRef]
- Pankievicz, V.C.S.; Amaral, F.P.; Santos, K.F.D.N.; Agtuca, B.; Xu, Y.; Schueller, M.J.; Arisi, A.C.M.; Steffens, M.B.R.; de Souza, E.M.; Pedrosa, F.O.; et al. Robust biological nitrogen fixation in a C4 model grass, Setaria viridis. Plant J. 2015, 81, 907–919. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Jian, Y.L.; Chiu, K.H.; Yak, H.K. Simultaneous speciation of iron (II) and iron (III) by ion chromatography with chemiluminescence detection. Anal. Sci. 2012, 28, 795–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takatera, K.; Watanabe, T. High-performance liquid chromatographic determination of iron-containing proteins with on-line inductively coupled plasma mass spectrometric detection. Anal. Sci. 1991, 7, 695–698. [Google Scholar] [CrossRef] [Green Version]
- Morella, N.M.; Weng, F.C.-H.; Joubert, P.M.; Metcalf, C.J.E.S.; Lindow, S.; Koskella, B. Successive passaging of a plant-associated microbiome reveals robust habitat and host genotype-dependent selection. Proc. Natl. Acad. Sci. USA 2020, 117, 1148–1159. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scott, S.; Housh, A.; Powell, G.; Anstaett, A.; Gerheart, A.; Benoit, M.; Wilder, S.; Schueller, M.; Ferrieri, R. Crop Yield, Ferritin and Fe(II) boosted by Azospirillum brasilense (HM053) in Corn. Agronomy 2020, 10, 394. https://doi.org/10.3390/agronomy10030394
Scott S, Housh A, Powell G, Anstaett A, Gerheart A, Benoit M, Wilder S, Schueller M, Ferrieri R. Crop Yield, Ferritin and Fe(II) boosted by Azospirillum brasilense (HM053) in Corn. Agronomy. 2020; 10(3):394. https://doi.org/10.3390/agronomy10030394
Chicago/Turabian StyleScott, Stephanie, Alexandra Housh, Garren Powell, Ashley Anstaett, Amber Gerheart, Mary Benoit, Stacy Wilder, Michael Schueller, and Richard Ferrieri. 2020. "Crop Yield, Ferritin and Fe(II) boosted by Azospirillum brasilense (HM053) in Corn" Agronomy 10, no. 3: 394. https://doi.org/10.3390/agronomy10030394
APA StyleScott, S., Housh, A., Powell, G., Anstaett, A., Gerheart, A., Benoit, M., Wilder, S., Schueller, M., & Ferrieri, R. (2020). Crop Yield, Ferritin and Fe(II) boosted by Azospirillum brasilense (HM053) in Corn. Agronomy, 10(3), 394. https://doi.org/10.3390/agronomy10030394