The ‘Palo a Pique’ Long-Term Research Platform: First 25 Years of a Crop–Livestock Experiment in Uruguay
Abstract
:1. Introduction
2. Origins and Evolution of the ‘Palo a Pique’ Long-Term Experiment
2.1. Phase I—The Beginning (1995–2005)
2.2. Phase II—Crop Intensification (2005–2019)
2.3. Phase III—Land Expansion and Livestock Intensification (2019 to Present)
3. Outcomes of the ‘Palo a Pique’ Long-Term Experiment
3.1. Some Key Results
3.2. Policy Implications
4. New Challenges of the ‘Palo a Pique’ Long-Term Experiment
4.1. New Hypothesis and Approach
4.2. Sustainability Metrics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sanderson, M.A.; Liebig, M.A.; Hendrickson, J.R.; Kronberg, S.L.; Toledo, D.; Derner, J.D.; Reeves, J.L. A century of grazing: The value of long-term research. J. Soil Water Conserv. 2016, 71, 5A–8A. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.S.; McDonald, G.T. Assessing the sustainability of agriculture at the planning stage. J. Environ. Manag. 1998, 52, 15–37. [Google Scholar] [CrossRef] [Green Version]
- Sayre, N.F.; deBurys, W.; Bestelmeyer, B.T.; Havstad, K.M. “The range problem” after a century of rangeland science: New research themes for altered landscapes. Rangeland Ecol. Manag. 2012, 65, 545–551. [Google Scholar] [CrossRef] [Green Version]
- Poulton, P.R. The Rothamsted long-term experiments: Are they still relevant? Can. J. Plant Sci. 1996, 76, 559–571. [Google Scholar] [CrossRef]
- Mueller, J.P.; Berbercheck, M.F.; Bell, M.; Brownie, C.; Creamer, N.G.; Hitt, A.; Hu, S.; King, L.; Linker, H.M.; Louvus, F.J.; et al. Development and implementation of a long-term agricultural system study: Challenges and opportunities. HortTechnology 2002, 12, 362–368. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, J.M.; Lee, M.R.F. Review: Use of human-edible animal feeds by ruminant livestock. Animal 2018, 12, 1735–1743. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, P.E.; Goulding, K.W.T.; Brown, J.R.; Grace, P.R.; Janzen, H.H.; Korschens, M. Long-term agroecosystem experiments: Assessing agricultural sustainability and global change. Science 1998, 282, 893–896. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, D.L.; Karn, J.F.; Scholljegerdes, E.J. Integrated crop/livestock systems research: Practical research considerations. Renew. Agr. Food Syst. 2008, 23, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Scott, J.M.; Gaden, C.A.; Edwards, C.; Paull, D.R.; Marchant, R.; Hoad, J.; Sutherland, H.; Coventry, T.; Dutton, P. Selection of experimental treatments, methods used and evolution of management guidelines for comparing and measuring three grazed farmlet systems. Anim. Prod. Sci. 2013, 53, 628–642. [Google Scholar] [CrossRef] [Green Version]
- DIEA. Anuario Estadístico Agropecuario. Oficina de Estadísticas Agropecuarias, Ministerio de Ganadería, Agricultura y Pesca, Uruguay, 2018. Available online: http://www.mgap.gub.uy/unidad-organizativa/oficina-de-programacion-y-politicas-agropecuarias/publicaciones/anuarios-diea (accessed on 15 December 2019). (In Spanish).
- Ernst, O.; Siri-Prieto, G. La agricultura en Uruguay: Su trayectoria y consecuencias. In Proceedings of the II Simposio Nacional de Agricultura, Paysandú, Uruguay, 29–30 September 2011; pp. 149–163. (In Spanish). [Google Scholar]
- García-Préchac, F.; Ernst, O.; Siri-Prieto, G.; Terra, J.A. Integrating no-till into pasture-crop rotations in Uruguay. Soil Tillage Res. 2004, 77, 1–13. [Google Scholar] [CrossRef]
- Derpsch, R.; Friedrich, T.; Kassam, A.; Hongwen, L. Current status of adoption of no-till farming in the world and some of its main benefits. Int. J. Agr. Biol. Eng. 2010, 3, 1–25. [Google Scholar]
- Terra, J.A.; García-Préchac, F. Siembra Directa y Rotaciones Forrajeras en Fas Lomadas del Este: Síntesis 1995-2000-Serie Técnica 125; INIA Treinta y Tres: Treinta y Tres, Uruguay, 2001. (In Spanish) [Google Scholar]
- Studdert, G.A.; Echeverría, H.E.; Casanovas, E.M. Crop-Pasture Rotation for Sustaining the Quality and Productivity of a Typic Argiudoll. Soil Sci. Soc. Am. J. 1997, 61, 1466–1472. [Google Scholar] [CrossRef]
- Bortolon, E.S.O.; Mielniczuk, J.; Tornquist, C.G.; Lope, F.; Fernandes, F.F. Simulated soil carbon and nitrogen dynamics in an Acrisol of Rio Grande Do Sul state using the Century model. R. Bras. Ci. Solo 2009, 33, 1635–1646. (In Portuguese) [Google Scholar] [CrossRef] [Green Version]
- Quincke, A.; Terra, J.A.; Sawchik, J. From isolated to integrated long-term experiments: The case of Uruguay stepping towards a multi-purpose experimental platform for a higher understanding of terrestrial ecosystems. In Proceedings of the II International Symposium on Integrated Crop-Livestock Systems, Porto Alegre, Brazil, 6–12 October 2012. [Google Scholar]
- Gentile, R.M.; Martino, D.L.; Entz, M.H. Influence of perennial forages on subsoil organic carbon in a long-term rotation study in Uruguay. Agr. Ecosyst. Environ. 2005, 105, 419–423. [Google Scholar] [CrossRef]
- Grahmann, K.; Dellepiane, V.R.; Terra, J.A.; Quincke, J.A. Long-term observations in contrasting crop-pasture rotations over half a century: Statistical analysis of chemical soil properties and implications for soil sampling frequency. Agr. Ecosyst. Environ. 2020, 287, 106710. [Google Scholar] [CrossRef]
- Ernst, O.; Siri-Prieto, G. Impact of perennial pasture and tillage systems on carbon input and soil quality indicators. Soil Till. Res. 2009, 105, 260–268. [Google Scholar] [CrossRef]
- Salvo, L.; Hernández, J.; Ernst, O. Distribution of soil organic carbon in different size fractions, under pasture and crop rotations with conventional tillage and no-till systems. Soil Till. Res. 2010, 109, 116–122. [Google Scholar] [CrossRef]
- Eisler, M.C.; Lee, M.R.F.; Tarlton, J.F.; Martin, G.B.; Beddington, J.; Dungait, J.A.J.; Greathead, H.; Liu, J.; Mathew, S.; Miller, H.; et al. Agriculture: Steps to sustainable livestock. Nature 2012, 507, 32–34. [Google Scholar] [CrossRef] [Green Version]
- Terra, J.A.; García-Préchac, F. Soil organic carbon content of a typic Arguidol in Uruguay under forage crops and pastures for direct grazing: Effect of tillage and rotation system. In Proceedings of the 25th Southern Conservation Tillage Conference for Sustainable Agriculture, Auburn, AL, USA, 24–26 June 2002; pp. 70–74. [Google Scholar]
- Terra, J.; García-Préchac, F.; Salvo, L.; Hernández, J. Soil use intensity impacts on total and particulate soil organic matter in no-till pasture-crop rotations under direct grazing. Adv. Geoecol. 2006, 38, 233–241. [Google Scholar]
- Trostle, R. Fluctuating Food Commodity Prices: A Complex Issue With No Easy Answers, Amber Waves Magazine, 2008, number 122579. Available online: https://www.ers.usda.gov/amber-waves/2008/november/fluctuating-food-commodity-prices-a-complex-issue-with-no-easy-answers (accessed on 15 December 2019).
- Caon, L. Land management style and soil erosion in the western area of Uruguay: Local farmers vs. foreign investors. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2013. [Google Scholar]
- García-Préchac, F.; Ernst, O.; Siri-Prieto, G.; Salvo, L.; Quincke, A.; Terra, J.A. Long-term effect of different agricultural soil use and management systems on the organic carbon content of Uruguay prairie soils. In Proceedings of the Global Symposium on Soil Organic Carbon, Rome, Italy, 21–23 March 2017; pp. 449–452. [Google Scholar]
- Pereyra, F.; Hume, D.E.; Ayala, W. Steer performance grazing tall fescue with a selected endophyte in a transition environment. In Proceedings of the 10th International Symposium on Fungal Endophytes of Grasses, Salamanca, Spain, 18–21 June 2018. [Google Scholar]
- Pravia, M.V.; Kemanian, A.R.; Terra, J.A.; Shi, Y.; Macedo, I.; Goslee, S. Soil carbon saturation, productivity, and carbon and nitrogen cycling in pasture-crop rotations. Agric. Syst. 2019, 171, 13–22. [Google Scholar] [CrossRef]
- Becoña, G.; Astigarraga, L.; Picasso, V.D. Greenhouse gas emissions of beef cow-calf grazing systems in Uruguay. Sustain. Agric. Res. 2014, 3, 89–105. [Google Scholar] [CrossRef] [Green Version]
- Kanter, D.R.; Schwoob, M.H.; Baethgen, W.E.; Bervejillo, J.E.; Carriquiry, M.; Dobermann, A.; Ferraro, B.; Lanfranco, B.; Mondelli, M.; Penengo, C.; et al. Translating the sustainable development goals into action: A participatory backcasting approach for developing national agricultural transformation pathways. Glob. Food Secur. 2016, 10, 71–79. [Google Scholar] [CrossRef]
- Picasso, V.D.; Modernel, P.D.; Becoña, G.; Salvo, L.; Gutiérrez, L.; Astigarraga, L. Sustainability of meat production beyond carbon footprint: A synthesis of case studies from grazing systems in Uruguay. Meat Sci. 2014, 98, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Terra, J.A.; Macedo, I. Twenty years no-till pasture-crop rotation systems impacts on soil organic carbon. In Proceedings of the 20th International Soil Tillage Research Organization Conference (ISTRO), Nanjing, China, 14–18 September 2015. [Google Scholar]
- García-Préchac, F.; Siri, G.; Ernst, O.; Terra, J. Integrating no-till into livestock pastures and crops rotation in Uruguay. In Proceedings of the 25th Southern Conservation Tillage Conference for Sustainable Agriculture, Auburn, AL, USA, 24–26 June 2002; pp. 74–80. [Google Scholar]
- Moraes, A.; Carvalho, P.C.F.; Anghinoni, I.; Campos Lustosa, S.B.; Andrade Costa, S.E.V.G.; Kunrath, T.B. Integrated crop-livestock systems in the Brazilian subtropics. Eur. J. Agron. 2014, 57, 4–9. [Google Scholar] [CrossRef]
- Carvalho, P.C.F.; Anghinoni, I.; Moraes, A.; Souza, E.D.; Sulc, R.M.; Lang, C.R.; Flores, J.P.C.; Lopes, M.L.T.; Silva, J.L.S.; Conte, O.; et al. Managing grazing animals to achieve nutrient cycling and soil improvement in no-till integrated systems. Nutr. Cycl. Agroecosys. 2010, 88, 259–273. [Google Scholar] [CrossRef]
- Terra, J.A.; Macedo, I.; Cantou, G. Soil intensity effects on soil organic carbon in no-till pastures rotation systems. In Proceedings of the 3rd Inter-Regional CIGR Conference on Land and Water Challenges, Colonia, Uruguay, 28–30 September 2015. [Google Scholar]
- Rovira, P.; Macedo, I.; Ayala, W.; Sawchick, J.; Terra, J. Rotaciones ganadero-agrícolas y manejo de suelos en lomadas del Este. In Visita Junta Directiva INIA; Unidad Experimental Palo a Pique: Treinta y Tres, Uruguay, 2018; pp. 35–41. [Google Scholar]
- Knapp, A.K.; Smith, M.D.; Hobbie, S.E.; Collins, S.L.; Fahey, T.J.; Hansen, G.J.A.; Landis, D.A.; La Pierre, K.J.; Melillo, J.M.; Seastedt, T.R.; et al. Past, present, and future roles of long-term experiments in the LTER network. BioSci. 2012, 62, 277–389. [Google Scholar] [CrossRef] [Green Version]
- García-Préchac, F.; Terra, J.; Sawchik, J.; Pérez Bidegain, M. Mejora de las estimaciones con USLE/RUSLE empleando resultados de parcelas de escurrimiento para considerar el efecto del agua del suelo. Agrociencia Uruguay 2017, 21, 100–104. (In Spanish) [Google Scholar]
- Pérez Bidegain, M.; Hill, M.; Clérici, C.; Terra, J.; Sawchik, J.; García-Préchac, F. Regulatory utilization of USLE/RUSLE erosion rate estimates in Uruguay: A policy coincident with UN Sustainable Development Goals. In Soil and Sustainable Development Goals, 1st ed.; Lal, R., Horn, R., Kosaki, T., Eds.; Catena Soil Sciences: Stuttgart, Germany, 2018; pp. 82–91. [Google Scholar]
- RENARE. Recursos Naturales Renovables: Plan de Uso y Manejo de Suelos, Ministry of Livestock, Agriculture and Fisheries, Montevideo, Uruguay. 2012. Available online: http://www.mgap.gub.uy/unidad-organizativa/direccion-general-de-recursos-naturales/suelos/planes-de-uso-y-manejo-de-suelos (accessed on 15 October 2019). (In Spanish)
- Ran, Y.; Deutsch, L.; Lannerstad, M.; Heinke, J. Rapidly intensified beef production in Uruguay: Impacts on water-related ecosystem services. Aquat. Proc. 2013, 1, 77–87. [Google Scholar] [CrossRef]
- Takahashi, T.; McAuliffe, G.A.; Lee, M.R.F. Assessing the environmental impact of ruminant production systems. In Assessing the Environmental Impact of Agriculture, 1st ed.; Weidema, B., Ed.; Cambridge Burleigh Dodds: Cambridge, UK, 2019; pp. 121–138. [Google Scholar]
- USDA. Uruguay. Gain Report, Global Agricultural Information Network, USDA Foreign Agricultural Service, 2019. Available online: https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Oilseeds%20and%20Products%20Annual_Buenos%20Aires_Uruguay_3-21-2019.pdf (accessed on 19 November 2019).
- Ayala, W.; Terra, J.; Barrios, E.; Macedo, I. Cover crops alternatives for sustainable agriculture systems in Uruguay. In Proceedings of the XXIII International Grassland Congress, New Delhi, India, 20–24 November 2015. [Google Scholar]
- Pittaluga, L.; Zurbriggen, C. Less Developed Countries’ Policy Space in the Emerging Governance Regime to Food Safety: Uruguayan Trade Negotiations to Access High Quality Meat Markets, 1st ed.; Instituto de Economía, Facultad de Ciencias Económicas y de Administración, Universidad de la República: Montevideo, Uruguay, 2015. [Google Scholar]
- Gill, M.; Lee, M.R.F.; Gibson, J. Livestock production evolving to contribute to sustainable societies. Animal 2018, 12, 1696–1698. [Google Scholar] [CrossRef] [Green Version]
- Alves, F.V.; de Almeida, R.G.; Laura, V.A. Carbon Neutral Brazilian Beef: A New Concept for Sustainable Beef Production in The Tropics, 1st ed.; Empresa Brasileira de Pesquisa Agropecuaria (EMBRAPA): Brasilia, Brazil, 2017. [Google Scholar]
- Mayberry, D.; Bartlett, H.; Moss, J.; Davison, T.; Herrero, M. Pathways to carbon-neutrality for the Australian red meat sector. Agric. Syst. 2019, 175, 13–21. [Google Scholar] [CrossRef]
- Johnston, A.E.; Poulton, P.R. The importance of long-term experiments in agriculture: Their management to ensure continued crop production and soil fertility; the Rothamsted experience. Eur. J. Soil Sci. 2018, 69, 113–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulc, R.M.; Tracy, B.F. Integrated crop-livestock systems in the U.S. corn belt. Agron. J. 2007, 99, 335–345. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, T.; Harris, P.; Blackwell, M.S.A.; Cardenas, L.M.; Collins, A.L.; Dungait, J.A.J.; Hawkins, J.M.B.; Misselbrook, T.H.; McAuliffe, G.A.; McFadzean, J.N.; et al. Roles of instrumented farm-scale trials in trade-off assessments of pasture-based ruminant production systems. Animal 2018, 12, 1766–1776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vries, M.; de Boer, I.J.M. Comparing environmental impacts for livestock products: A review of life cycle assessments. Livest. Sci. 2010, 128, 1–11. [Google Scholar] [CrossRef]
- McAuliffe, G.A.; Takahashi, T.; Lee, M.R.F. Framework for life cycle assessment of livestock production systems to account for the nutritional quality of final products. Food Energy Secur. 2018, 7, e00143. [Google Scholar] [CrossRef]
- McAuliffe, G.A.; Takahashi, T.; Lee, M.R.F. Current utilisation of nutritional composition in commodity-level life cycle assessment (LCA) of agri-food systems. Int. J. Life Cycle Assess 2020, 25, 208–221. [Google Scholar] [CrossRef] [Green Version]
- Russelle, M.P.; Entz, M.H.; Franzluebbers, A.J. Reconsidering integrated crop-livestock systems in North America. Agron. J. 2007, 99, 325–334. [Google Scholar] [CrossRef] [Green Version]
- Sulc, R.M.; Franzluebbers, A.J. Exploring integrated crop-livestock systems in different ecoregions of the United States. Eur. J. Agron. 2014, 57, 21–30. [Google Scholar] [CrossRef]
- Ward, S.M.; Holden, N.M.; White, E.P.; Oldfield, T.L. The ‘circular economy’ applied to agriculture (livestock production) sector: Discussion paper. In Proceedings of the Workshop on the Sustainability of the EU’s Livestock Production Systems, European Commission, DG Agriculture and Rural Development, Brussels, Belgium, 14–15 September 2016. [Google Scholar]
Pasture–Crop Rotation | |||||
---|---|---|---|---|---|
Issue | Metrics | LR | SR | CC | PP |
Animal production | Kg LW/ha/year | ++++ | ++++ | ++++ | ++++ |
Carbon footprint | % pastures | +++ | ++ | + | ++++ |
Nitrogen | % legume-based pastures | +++ | ++ | + | + |
Biodiversity | N° of species (richness) | ++++ | +++ | ++ | + |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rovira, P.; Ayala, W.; Terra, J.; García-Préchac, F.; Harris, P.; Lee, M.R.F.; Rivero, M.J. The ‘Palo a Pique’ Long-Term Research Platform: First 25 Years of a Crop–Livestock Experiment in Uruguay. Agronomy 2020, 10, 441. https://doi.org/10.3390/agronomy10030441
Rovira P, Ayala W, Terra J, García-Préchac F, Harris P, Lee MRF, Rivero MJ. The ‘Palo a Pique’ Long-Term Research Platform: First 25 Years of a Crop–Livestock Experiment in Uruguay. Agronomy. 2020; 10(3):441. https://doi.org/10.3390/agronomy10030441
Chicago/Turabian StyleRovira, Pablo, Walter Ayala, José Terra, Fernando García-Préchac, Paul Harris, Michael R.F. Lee, and M. Jordana Rivero. 2020. "The ‘Palo a Pique’ Long-Term Research Platform: First 25 Years of a Crop–Livestock Experiment in Uruguay" Agronomy 10, no. 3: 441. https://doi.org/10.3390/agronomy10030441
APA StyleRovira, P., Ayala, W., Terra, J., García-Préchac, F., Harris, P., Lee, M. R. F., & Rivero, M. J. (2020). The ‘Palo a Pique’ Long-Term Research Platform: First 25 Years of a Crop–Livestock Experiment in Uruguay. Agronomy, 10(3), 441. https://doi.org/10.3390/agronomy10030441