New Molecular Tool for a Quick and Easy Detection of Apple Scab in the Field
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Isolates and DNA Extraction
2.2. Loop-Mediated Isothermal Amplification (LAMP) Primer Design and LAMP Reaction
2.3. Real-Time qPCR
2.4. Sensitivity Testing
2.5. Monitoring Over Time of V. inaequalis Infected Leaves
2.6. Validation of the LAMP Assays
2.7. Analytical Specificity and Sensitivity Assays
3. Results
3.1. Validation of the LAMP Assay
3.2. Time Monitoring of V. inaequalis
3.3. Naturally Infected Samples
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- MacHardy, W.E. Apple Scab: Biology, Epidemiology, and Management, 2nd ed.; American Phytopathological Society: St. Paul, MN, USA, 1996; p. 545. [Google Scholar]
- Beck, A.; Ritschel, A.; Schubert, K.; Braun, U.; Triebel, D. Phylogenetic relationships of the anamorphic genus Fusicladium s. lat. as inferred by ITS nrDNA data. Mycol. Prog. 2005, 4, 111–116. [Google Scholar] [CrossRef]
- Bowen, J.K.; Mesarich, C.H.; Bus, V.G.M.; Beresford, R.M.; Plummer, K.M.; Templeton, M.D. Venturia inaequalis: The causal agent of apple scab. Mol. Plant Pathol. 2011, 12, 105–122. [Google Scholar] [CrossRef] [PubMed]
- Padder, B.A.; Sofi, T.A.; Ahmad, M.; Shah, M.U.D.; Hamid, A.; Saleem, S.; Ahanger, F.A. Virulence and Molecular Diversity of Venturia inaequalis in Commercial Apple Growing Regions in Kashmir. J. Phytopathol. 2013, 161, 271–279. [Google Scholar] [CrossRef]
- Chatzidimopoulos, M.; Ganopoulos, I.; Moraitou-Daponta, E.; Lioliopoulou, F.; Ntantali, O.; Panagiotaki, P.; Vellios, E.K. High-Resolution Melting (HRM) Analysis Reveals Genotypic Differentiation of Venturia inaequalis Populations in Greece. Front. Ecol. Evol. 2019, 7, 489. [Google Scholar] [CrossRef] [Green Version]
- Gessler, C.; Patocchi, A.; Sansavini, S.; Tartarini, S.; Gianfranceschi, L. Venturia inaequalis Resistance in Apple. CRC Crit. Rev. Plant Sci. 2006, 25, 473–503. [Google Scholar] [CrossRef]
- Holb, I.J. Classification of apple cultivar reactions to scab in integrated and organic production systems. Can. J. Plant Pathol. 2007, 29, 251–260. [Google Scholar] [CrossRef]
- Dewdney, M.; Charest, J.; Paulitz, T.; Carisse, O. Multivariate analysis of apple cultivar susceptibility to Venturia inaequalis under greenhouse conditions. Can. J. Plant Pathol. 2003, 25, 387–400. [Google Scholar] [CrossRef]
- MacHardy, W.E.; Gadoury, D.M.; Gessler, C. Parasitic and Biological Fitness of Venturia inaequalis: Relationship to Disease Management Strategies. Plant Dis. 2001, 85, 1036–1051. [Google Scholar] [CrossRef] [Green Version]
- Köhl, J.; Scheer, C.; Holb, I.J.; Masny, S.; Molhoek, W. Toward an Integrated Use of Biological Control by Cladosporium cladosporioides H39 in Apple Scab (Venturia inaequalis) Management. Plant Dis. 2015, 99, 535–543. [Google Scholar] [CrossRef] [Green Version]
- Burchill, R.T.; Hutton, K.E.; Crosse, J.E.; Garrett, C.M.E. Inhibition of the perfect stage of Venturia inaequalis (Cooke) Wint., by urea. Nature 1965, 205, 520–521. [Google Scholar] [CrossRef]
- Michalecka, M.; Masny, S.; Leroy, T.; Puławska, J. Population structure of Venturia inaequalis, a causal agent of apple scab, in response to heterogeneous apple tree cultivation. BMC Evol. Biol. 2018, 18, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Köeller, W. Chemical control of apple scab—status quo and future. Norweg. J. Agric. Sci. Suppl. 1994, 17, 149–170. [Google Scholar]
- Holb, I.J. Effect of six sanitation treatments on leaf litter density, ascospore production of Venturia inaequalis and scab incidence in integrated and organic apple orchards. Eur. J. Plant Pathol. 2006, 115, 293–307. [Google Scholar] [CrossRef]
- Porsche, F.M.; Molitor, D.; Beyer, M.; Charton, S.; Andre, C.; Kollar, A. Antifungal Activity of Saponins from the Fruit Pericarp of Sapindus mukorossi against Venturia inaequalis and Botrytis cinerea. Plant Dis. 2018, 102, 991–1000. [Google Scholar] [CrossRef] [Green Version]
- Beckerman, J.; Abbott, C. Comparative Studies on the Effect of Adjuvants with Urea to Reduce the Overwintering Inoculum of Venturia inaequalis. Plant Dis. 2019, 103, 531–537. [Google Scholar] [CrossRef] [Green Version]
- Holb, I.J.; Heijne, B.; Withagen, J.C.M.; Jeger, M.J. Dispersal of Venturia inaequalis ascospores and disease gradients from a defined inoculum source. J. Phytopathol. 2004, 152, 639–646. [Google Scholar] [CrossRef]
- Xu, X.; Harvey, N.; Roberts, A.; Barbara, D. Population variation of apple scab (Venturia inaequalis) within mixed orchards in the UK. Eur. J. Plant Pathol. 2013, 135, 97–104. [Google Scholar] [CrossRef]
- Stensvand, A.; Eikemo, H.; Gadoury, D.M.; Seem, R.C. Use of a Rainfall Frequency Threshold to Adjust a Degree-Day Model of Ascospore Maturity of Venturia inaequalis. Plant Dis. 2005, 89, 198–202. [Google Scholar] [CrossRef] [Green Version]
- Schwabe, W.F.S. Changes in scab susceptibility of apple leaves as influenced by age. Phytophylactica 1979, 11, 53–56. [Google Scholar]
- Mills, W.D.; LaPlante, A.A. Apple scab. In Disease and Insects in the Orchard, 1st ed.; Mills, W.D., LaPlante, A.A., Eds.; New York College of Agriculture: New York, NY, USA, 1954; Volume 1, pp. 20–28. [Google Scholar]
- Xu, X.M.; Butt, D.J.; Van Santen, G. A dynamic model simulating infection of apple leaves by Venturia inaequalis. Plant Pathol. 1995, 44, 865–876. [Google Scholar] [CrossRef]
- Rossi, V.; Giosuè, S.; Bugiani, R. A-scab (Apple-scab), a simulation model for estimating risk of Venturia inaequalis primary infections. EPPO Bull. 2007, 37, 300–308. [Google Scholar] [CrossRef]
- Philion, V.; Joubert, V.; Trapman, M.; Hjerlkrem, A.G.R.; Stensvand, A. Distribution of the Infection Time of Ascospores of Venturia inaequalis. Plant Dis. 2019, 104, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Gadoury, D.M.; Seem, R.C.; MacHardy, W.E.; Wilcox, W.F.; Rosenberger, D.A.; Stensvand, A. A Comparison of Methods Used to Estimate the Maturity and Release of Ascospores of Venturia inaequalis. Plant Dis. 2004, 88, 869–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giosuè, S.; Rossi, V.; Ponti, I.; Bugiani, R. Estimating the dynamics of airborne ascospores of Venturia inaequalis. EPPO Bull. 2000, 30, 137–142. [Google Scholar] [CrossRef]
- Rossi, V.; Ponti, I.; Marinelli, M.; Giosuè, S.; Bugiani, R. Environmental factors influencing the dispersal of Venturia inaequalis ascospores in the orchard air. J. Phytopathol. 2001, 149, 11–19. [Google Scholar] [CrossRef]
- Meitz-Hopkins, J.C.; von Diest, S.G.; Koopman, T.A.; Bahramisharif, A.; Lennox, C.L. A method to monitor airborne Venturia inaequalis ascospores using volumetric spore traps and quantitative PCR. Eur. J. Plant Pathol. 2014, 140, 527–541. [Google Scholar] [CrossRef]
- Torfs, S.; Van Poucke, K.; Van Campenhout, J.; Ceustermans, A.; Croes, S.; Bylemans, D.; Van Hemelrijck, W.; Keulemans, W.; Heungens, K. Venturia inaequalis trapped: Molecular quantification of airborne inoculum using volumetric and rotating arm samplers. Eur. J. Plant Pathol. 2019, 155, 1319–1332. [Google Scholar] [CrossRef]
- Daniëls, B.; De Landtsheer, A.; Dreesen, R.; Davey, M.W.; Keulemans, J. Real-time PCR as a promising tool to monitor growth of Venturia spp. in scab-susceptible and -resistant apple leaves. Eur. J. Plant Pathol. 2012, 134, 821–833. [Google Scholar] [CrossRef]
- Schnabel, G.; Jones, A.L. The 14α − Demethylase (cyp51A1) Gene is Overexpressed in Venturia inaequalis Strains Resistant to Myclobutanil. Phytopathology 2000, 91, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Stehmann, C.; Pennycook, S.; Plummer, K.M. Molecular identification of a sexual interloper: The pear pathogen, Venturia pirina, has sex on apple. Phytopathology 2001, 91, 633–641. [Google Scholar] [CrossRef] [Green Version]
- Prencipe, S.; Sillo, F.; Garibaldi, A.; Gullino, M.L.; Spadaro, D. Development and validation of a highly sensitive real-time PCR TaqMan® assay for specific detection and quantification of Venturia inaequalis in apple leaves and fruit and in air samples. Plant Dis. 2020. accepted. [Google Scholar]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, E63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagamine, K.; Hase, T.; Notomi, T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol. Cell. Probes 2002, 16, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, J.A.; Dickinson, M.J.; Boonham, N. Rapid Detection of Phytophthora ramorum and P. kernoviae by Two-Minute DNA Extraction Followed by Isothermal Amplification and Amplicon Detection by Generic Lateral Flow Device. Phytopathology 2010, 100, 143–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bekele, B.; Hodgetts, J.; Tomlinson, J.; Boonham, N.; Nikoli, P.; Swarbrick, P.; Dickinson, M. Use of a real-time LAMP isothermal assay for detecting 16SrII and XII phytoplasmas in fruit and weeds of the Ethiopian Rift Valley. Plant Pathol. 2011, 60, 345–355. [Google Scholar] [CrossRef]
- Tomlinson, J.A.; Ostoja-Starzewska, S.; Adams, I.P.; Miano, D.W.; Abidrabo, P.; Kinyua, Z.; Alicai, T.; Dickinson, M.J.; Peters, D.; Boonham, N.; et al. Loop-mediated isothermal amplification for rapid detection of the causal agents of cassava brown streak disease. J. Virol. Methods 2013, 191, 148–154. [Google Scholar] [CrossRef]
- Hodgetts, J.; Hall, J.; Karamura, G.; Grant, M.; Studholme, D.J.; Boonham, N.; Karamura, E.; Smith, J.J. Rapid, specific, simple, in-field detection of Xanthomonas campestris pathovar musacearum by loop-mediated isothermal amplification. J. Appl. Microbiol. 2015, 119, 1651–1658. [Google Scholar] [CrossRef]
- Franco Ortega, S.; Tomlinson, J.; Hodgetts, J.; Spadaro, D.; Gullino, M.L.; Boonham, N. Development of Loop-Mediated Isothermal Amplification Assays for the Detection of Seedborne Fungal Pathogens Fusarium fujikuroi and Magnaporthe oryzae in Rice Seed. Plant Dis. 2018, 102, 1549–1558. [Google Scholar] [CrossRef] [Green Version]
- Mori, Y.; Kitao, M.; Tomita, N.; Notomi, T. Real-time turbidimetry of LAMP reaction for quantifying template DNA. J. Biochem. Biophys. Methods 2004, 59, 145–157. [Google Scholar] [CrossRef]
- Goto, M.; Honda, E.; Ogura, A.; Nomoto, A.; Hanaki, K.I. Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue. Biotechniques 2009, 46, 167–172. [Google Scholar] [CrossRef]
- Li, W.; Lee, S.Y.; Back, C.G.; Ten, L.N.; Jung, H.Y. Loop-Mediated Isothermal Amplification for the Detection of Xanthomonas arboricola pv. pruni in Peaches. Plant Pathol. J. 2019, 35, 635–643. [Google Scholar] [PubMed]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR-Protocols and Applications-A Laboratory Manual, 1st ed.; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; Volume 1, pp. 315–322. [Google Scholar]
- O’Donnell, K.O.; Cigelnik, E.; Nirenberg, H.I. Molecular Systematics and phylogeography of the Gibberella fujikuroi Species Complex. Mycologia 1998, 90, 465–493. [Google Scholar] [CrossRef]
- Franco Ortega, S.; Tomlinson, J.; Gilardi, G.; Spadaro, D.; Gullino, M.L.; Garibaldi, A. Rapid detection of Fusarium oxysporum f.sp. lactucae on soil, lettuce seeds and plants using loop-mediated isothermal amplification. Plant Pathol. 2018, 67, 1462–1473. [Google Scholar] [CrossRef] [Green Version]
- Franco Ortega, S.; Bustos Lopez, M.P.; Nari, L.; Boonham, N.; Gullino, M.L.; Spadaro, D. Rapid detection of Monilinia fructicola and Monilinia laxa on peaches and nectarines using loop-mediated isothermal amplification. Plant Dis. 2019, 103, 2305–2314. [Google Scholar] [CrossRef] [PubMed]
- Kibbe, W.A. OligoCalc: An online oligonucleotide properties calculator. Nucleic Acids Res. 2007, 35, W43–W46. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.H.; Plummer, K.M.; Jones, D.A.B.; Mesarich, C.H.; Shiller, J.; Taranto, A.P.; Robinson, A.J.; Kastner, P.; Hall, N.E.; Templeton, M.D.; et al. Comparative analysis of the predicted secretomes of Rosaceae scab pathogens Venturia inaequalis and V. pirina reveals expanded effector families and putative determinants of host range. BMC Genom. 2017, 18, 339. [Google Scholar] [CrossRef]
- Schnabel, G.; Schnabel, E.L.; Jones, A.L. Characterization of Ribosomal DNA from Venturia inaequalis and Its Phylogenetic Relationship to rDNA from Other Tree-Fruit Venturia Species. Phytopathology 1999, 89, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Gladieux, P.; Zhang, X.G.; Róldan-Ruiz, I.; Caffier, V.; Leroy, T.; Devaux, M.; Van Glabeke, S.; Coart, E.; Le Cam, B. Evolution of the population structure of Venturia inaequalis, the apple scab fungus, associated with the domestication of its host. Mol. Ecol. 2010, 19, 658–674. [Google Scholar] [CrossRef]
- Zhao, P.; Kakishima, M.; Uzuhashi, S.; Ishii, H. Multigene phylogenetic analysis of inter- and intraspecific relationships in Venturia nashicola and V. pirina. Eur. J. Plant Pathol. 2012, 132, 245–258. [Google Scholar] [CrossRef]
- Gladieux, P.; Zhang, X.G.; Afoufa-Bastien, D.; Valdebenito Sanhueza, R.M.; Sbaghi, M.; Le Cam, B. On the Origin and Spread of the Scab Disease of Apple: Out of Central Asia. PLoS ONE 2008, 3, e1455. [Google Scholar] [CrossRef] [Green Version]
- Mansoor, S.; Ahmed, N.; Sharma, V.; Jan, S.; Un Nabi, S.; Mir, J.I.; Mir, M.A.; Masoodi, K.Z. Elucidating genetic variability and population structure in Venturia inaequalis associated with apple scab diseaseusing SSR markers. PLoS ONE 2019, 14, e0224300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomlinson, J.A.; Boonham, N.; Dickinson, M. Development and evaluation of a one-hour DNA extraction and loop-mediated isothermal amplification assay for rapid detection of phytoplasmas. Plant Pathol. 2010, 59, 465–471. [Google Scholar] [CrossRef]
- Tomlinson, J.A.; Dickinson, M.; Hobden, E.; Robinson, S.; Giltrap, P.M.; Boonham, N. A five-minute DNA extraction method for expedited detection of Phytophthora ramorum following prescreening using Phytophthora spp. lateral flow devices. J. Microbiol. Methods 2010, 81, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Wilson, I.G. Inhibition and facilitation of nucleic acid amplification. Appl. Environ. Microbiol. 1997, 63, 3741–3751. [Google Scholar] [CrossRef] [Green Version]
- Bilodeau, G.J.; Koike, S.T.; Uribe, P.; Martin, F.N. Development of an assay for rapid detection and quantification of Verticillium dahliae in soil. Phytopathology 2012, 102, 331–343. [Google Scholar] [CrossRef] [Green Version]
- Wilcox, W.F.; Wasson, D.I.; Kovach, J. Development and evaluation of an integrated, reduced-spray program using sterol demethylation inhibitor fungicides for control of primary apple scab. Plant Dis. 1992, 76, 669–677. [Google Scholar] [CrossRef]
Species | Isolate Name | Host | Lamp Assay | |
---|---|---|---|---|
Tp (min:s) | Anneal (°C) | |||
Venturia inaequalis | 2.16 B9 | Malus x domestica var. Ambrosia | 29:28 ± 01:40 | 89.72 ± 0.13 |
V. inaequalis | 2.16 B1 | Malus x domestica var. Ambrosia | 26:67 ± 01:30 | 89.38 ± 0.03 |
V. inaequalis | 2.16 B6 | Malus x domestica var. Ambrosia | 24:04 ± 00:49 | 89.08 ± 0.03 |
V. inaequalis | 2.16 B7 | Malus x domestica var. Ambrosia | 26:37 ± 00:52 | 89.06 ± 0.15 |
V. inaequalis | 2.16 B5 | Malus x domestica var. Ambrosia | 23:48 ± 00:58 | 89.36 ± 0.39 |
V. inaequalis | 2.16 B10 | Malus x domestica var. Ambrosia | 24:43 ± 00:46 | 89.36 ± 0.39 |
V. inaequalis | 4.16 A4 | Malus x domestica var. Golden Delicious | 25:18 ± 04:14 | 89.36 ± 0.15 |
V. inaequalis | 4.16 A6 | Malus x domestica var. Golden Delicious | 27:18 ± 05:56 | 89.60 ± 0.08 |
V. inaequalis | 4.16 A7 | Malus x domestica var. Golden Delicious | 24:18 ± 00:35 | 89.49 ± 0.16 |
V. inaequalis | 4.16 A9 | Malus x domestica var. Golden Delicious | 29:59 ± 09:14 | 89.12 ± 0.41 |
V. inaequalis | 4.16 A10 | Malus x domestica var. Golden Delicious | 22:50 ± 01:50 | 89.19 ± 0.03 |
V. inaequalis | 3.16 B1 | Malus x domestica var. Ambrosia | 29:53 ± 02:51 | 89.64 ± 0.33 |
V. inaequalis | 3.16 B2 | Malus x domestica var. Ambrosia | 30:05 ± 04:07 | 89.11 ± 0.35 |
V. inaequalis | 3.16 B6 | Malus x domestica var. Ambrosia | 27:43 ± 05:28 | 89.76 ± 0.07 |
V. inaequalis | 3.16 B7 | Malus x domestica var. Ambrosia | 27:03 ± 01:37 | 89.65 ± 0.43 |
V. inaequalis | 3.16 B7 | Malus x domestica var. Ambrosia | 28:14 ± 04:52 | 89.69 ± 0.23 |
V. inaequalis | 3.16 B9 | Malus x domestica var. Ambrosia | 28:30 ± 03:23 | 89.49 ± 0.33 |
V. inaequalis | 5.16 1 | Malus x domestica var. Ambrosia | 30:13 ± 00:49 | 89.34 ± 0.15 |
V. inaequalis | 5.16 2 | Malus x domestica var. Ambrosia | 28:09 ± 00:26 | 89.65 ± 0.01 |
V. inaequalis | 5.16 3 | Malus x domestica var. Ambrosia | 31:55 ± 05:43 | 89.26 ± 0.53 |
V. inaequalis | 5.16 4 | Malus x domestica var. Ambrosia | 26:46 ± 03:52 | 89.60 ± 0.07 |
V. inaequalis | 5.16 5 | Malus x domestica var. Ambrosia | 23:20 ± 01:36 | 89.07 ± 0.02 |
V. inaequalis | 5.16 6 | Malus x domestica var. Ambrosia | 26:12 ± 01:05 | 89.64 ± 0.40 |
V. inaequalis | 1BG8 | Malus x domestica var. Ambrosia | 27:37 ± 00:31 | 89.34 ± 0.01 |
V. inaequalis | 1B9 | Malus x domestica var. Ambrosia | 26:20 ± 02:41 | 89.75 ± 0.18 |
V. inaequalis | 1B1 | Malus x domestica var. Ambrosia | 23:36 ± 00:08 | 89.75 ± 0.18 |
V. inaequalis | 1B2 | Malus x domestica var. Ambrosia | 22:06 ± 00:45 | 89.44 ± 0.43 |
V. inaequalis | 1B3 | Malus x domestica var. Ambrosia | 27:35 ± 04:40 | 89.73 ± 0.56 |
V. inaequalis | 1B5 | Malus x domestica var. Ambrosia | 22:37 ± 00:32 | 89.43 ± 0.25 |
V. inaequalis | 3A1 | Malus x domestica var. Mondial Gala | 20:47 ± 00:59 | 89.64 ± 0.25 |
V. inaequalis | 3AC | Malus x domestica var. Mondial Gala | 23:05 ± 00:22 | 89.80 ± 0.01 |
V. inaequalis | 3AF | Malus x domestica var. Mondial Gala | 22:47 ± 00:37 | 89.71 ± 0.10 |
V. inaequalis | 3AH | Malus x domestica var. Mondial Gala | 23:39 ± 01:08 | 89.81 ± 0.01 |
V. asperata | IRHS 2345 | Malus x domestica | Negative | Negative |
V. carpophila | CBS 497.62 | Prunus mirabelle n | Negative | Negative |
V. pirina | CBS120.825 | Pyrus communis | Negative | Negative |
V. nashicola | CBS 793.84 | Pyrus serotina var Culta | Negative | Negative |
Alternaria alternata | CBS 115152 | Psychotria serpens | Negative | Negative |
Alternaria alternata | CBS 116329 | Malus x domestica | Negative | Negative |
Alternaria alternata | ATCC 34509 | Malus x domestica | Negative | Negative |
Alternaria mali | CBS 106.24 | Malus sylvestris | Negative | Negative |
Botrytis cinerea | BC1 | Unknown | Negative | Negative |
Botrytis cinerea | BC2 | Unknown | Negative | Negative |
Botryospheria berengerina | 1544 | Unknown | Negative | Negative |
Botryosphaeria laricina | 1547 | Unknown | Negative | Negative |
Cladosporium sp. | 405 | Unknown | Negative | Negative |
Colletotrichum acutatum | 256 | Unknown | Negative | Negative |
Colletotrichum acutatum | 2692 | Unknown | Negative | Negative |
Colletotrichum kahawae | colletoSalv | Unknown | Negative | Negative |
Colletotrichum truncatum | 1540 | Unknown | Negative | Negative |
Colletotrichum sp. | Coll_IT | Unknown | Negative | Negative |
Cylindrocarpon | 452 | Unknown | Negative | Negative |
Epicoccum sp. | epic_IT | Unknown | Negative | Negative |
Eutypa lata | 308 | Unknown | Negative | Negative |
Fusarium sp. | Fussp | Unknown | Negative | Negative |
Fusarium equiseti | FEQ_L8 | Unknown | Negative | Negative |
Fusarium equiseti | FEQ_1.14 | Unknown | Negative | Negative |
Fusarium oxysporum | Mya3040 | Unknown | Negative | Negative |
Monilinia laxa | 1402 | Unknown | Negative | Negative |
Monilinia fructicola | 1326 | Unknown | Negative | Negative |
Monilina polystroma | M. polys_1 | Unknown | Negative | Negative |
Phoma sp. | t152 | Unknown | Negative | Negative |
Phoma sp. | t109 | Unknown | Negative | Negative |
Phoma sp. | Phoma1 | Unknown | Negative | Negative |
Phoma betae | Pbet1 | Unknown | Negative | Negative |
Phoma trachiephilium | Ptrach1 | Unknown | Negative | Negative |
Phoma bellidis | Pbellid1 | Unknown | Negative | Negative |
Stemphylium bellidis | IT50 | Unknown | Negative | Negative |
Trichoderma sp. | 268 | Unknown | Negative | Negative |
Verticillium dahlie | VD1 | Unknown | Negative | Negative |
DNA Quantity | Isolate 1B10 from Malus x domesticus var. Ambrosia | Isolate 3AF from Malus x domesticus var. Golden Delicious | Isolate 1B7 from Malus x domesticus var. Ambrosia | ||||||
---|---|---|---|---|---|---|---|---|---|
TP (min:s) | Anneal (°C) | Number of Positives | TP (min:s) | Anneal (°C) | Number of Positives | TP (min:s) | Anneal (°C) | Number of Positives | |
1–10 ng | 35:10 ± 00:42 | 89.52 ± 0.01 | 3 | 31:41 ± 00:24 | 89.42 ± 0.09 | 3 | 29:20 ± 02:53 | 89.47 ± 0.09 | 3 |
999 pg–100 pg | 38:52 ± 01:53 | 89.27 ± 0.09 | 3 | 34:47 ± 02:48 | 89.42 ± 0.08 | 3 | 35:17 ± 00:43 | 89.42 ± 0.09 | 3 |
99 pg–10 pg | 42:31 ± 00:47 | 89.27 ± 0.08 | 3 | 38:58 ± 00:54 | 89.47 ± 0.09 | 3 | 43:13 ± 03:28 | 89.45 ± 0.10 | 2 |
9.9 pg–1 pg | 41:59 ± 00:00 | 89.22 | 1 | 45:50 ± 00:00 | 89.22 ± 0.00 | 1 | 34:03 ± 00:00 | 89.37 ± 0.00 | 1 |
Samples | Crude DNA Extraction | Approximate Number of Cells in 1 mL of PEG Buffer | Commmercial DNA Extraction | Number of Cells in 1 µL of the Commercial DNA Extraction | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Number of Positives | TP (min:s) | Anneal. (°C) | Number of Positives | TP (min:s) | Anneal. (°C) | ||||||
10 µL-mycelia suspension | LEAF 1 | PLUG 1 | 1/3 | 40:37 | 88.92 | 4.8 × 104 | PLUG 3 | 2/3 | 34:00 ± 02:34 | 88.70 ± 0.10 | 1.9 × 103 |
PLUG 2 | 0/3 | Negative | Negative | 2.8 × 104 | PLUG 4 | 3/3 | 39:22 ± 06:53 | 88.92 ± 0.15 | 1.1 × 103 | ||
NEGATIVE CONTROL | 0/3 | Negative | Negative | 0 | NEGATIVE CONTROL | 0/3 | Negative | Negative | 0 | ||
LEAF 2 | PLUG 1 | 0/3 | Negative | Negative | 3.9 × 104 | PLUG 3 | 2/3 | 42:18 ± 10:12 | 88.55 ± 0.10 | 1.5 × 103 | |
PLUG 2 | 0/3 | Negative | Negative | 2.0 × 104 | PLUG 4 | 2/3 | 41:53 ± 05:03 | 88.70 ± 0.10 | 7.9 × 102 | ||
NEGATIVE CONTROL | 0/3 | Negative | Negative | 0 | NEGATIVE CONTROL | 0/3 | Negative | Negative | 0 | ||
20 µL-mycelia suspension | LEAF 1 | PLUG 1 | 0/3 | Negative | Negative | 4.3 × 104 | PLUG 3 | 2/3 | 39:49 ± 07:48 | 88.85 ± 0.10 | 1.7 × 103 |
PLUG 2 | 0/3 | Negative | Negative | 9.7 × 104 | PLUG 4 | 3/3 | 44:46 ± 03:47 | 88.43 ± 0.09 | 3.8 × 103 | ||
NEGATIVE CONTROL | 0/3 | Negative | Negative | 0 | NEGATIVE CONTROL | 0/3 | Negative | Negative | 0 | ||
LEAF 2 | PLUG 1 | 0/3 | Negative | Negative | 1.2 × 104 | PLUG 3 | 0/3 | Negative | Negative | 5.0 × 102 | |
PLUG 2 | 0/3 | Negative | Negative | 7.4 × 103 | PLUG 4 | 1/3 | 36:33 | 88.92 | 2.9 × 102 | ||
NEGATIVE CONTROL | 0/3 | Negative | Negative | 0 | NEGATIVE CONTROL | 0/3 | Negative | Negative | 0 | ||
30 µL-mycelia suspension | LEAF 1 | PLUG 1 | 1/3 | 30:14 | 89.37 | 7.2 × 104 | PLUG 3 | 1/3 | 35:32 | 87.73 | 2.9 × 103 |
PLUG 2 | 0/3 | Negative | Negative | 9.5 × 104 | PLUG 4 | 1/3 | 34:02 | 88.02 | 3.8 × 103 | ||
NEGATIVE CONTROL | 0/3 | Negative | Negative | 0 | NEGATIVE CONTROL | 0/3 | Negative | Negative | 0 | ||
LEAF 2 | PLUG 1 | 0/3 | Negative | Negative | 2.5 × 104 | PLUG 3 | 0/3 | Negative | Negative | 1.0 × 103 | |
PLUG 2 | 0/3 | Negative | Negative | 3.0 × 104 | PLUG 4 | 0/3 | Negative | Negative | 1.2 × 103 | ||
NEGATIVE CONTROL | 0/3 | Negative | Negative | 0 | NEGATIVE CONTROL | 0/3 | Negative | Negative | 0 | ||
40 µL-mycelia suspension | LEAF 1 | PLUG 1 | 1/3 | 41:48 | 88.77 | 4.3 × 104 | PLUG 3 | 0/3 | Negative | Negative | 1.7 × 103 |
PLUG 2 | 0/3 | Negative | Negative | 9.0 × 104 | PLUG 4 | 1/3 | 34:41 | 88.17 | 3.6 × 103 | ||
NEGATIVE CONTROL | 0/3 | Negative | Negative | 0 | NEGATIVE CONTROL | 0/3 | Negative | Negative | 0 | ||
LEAF 2 | PLUG 1 | 0/3 | Negative | Negative | 4.7 × 104 | PLUG 3 | 0/3 | Negative | Negative | 1.9 × 103 | |
PLUG 2 | 2/3 | 39:41 ± 03:29 | 88.85 ± 0.31 | 8.4 × 104 | PLUG 4 | 0/3 | Negative | Negative | 3.3 × 103 | ||
NEGATIVE CONTROL | 0/3 | Negative | Negative | 0 | NEGATIVE CONTROL | 0/3 | Negative | Negative | 0 |
Time | Repetition | Crude DNA Extraction | N° Cells/mL PEG Buffer | Commercial DNA Extraction | N° Cells/µL | ||||
---|---|---|---|---|---|---|---|---|---|
Number of Positives | TP (min:s) | Anneal. (°C) | Number of Positives | TP (min:s) | Anneal. (°C) | ||||
3 HPI | Repetition 1 | 0/9 | Negative | Negative | 5.4 × 104 | 8–9 | 34:03 ± 02:26 | 89.20 ± 0.22 | 2.4 × 103 |
24 HPI | Repetition 1 | 1/9 | 43:41 | 89.07 | 5.8 × 104 | 8–9 | 35:45 ± 03:31 | 89.07 ± 0.33 | 2.5 × 103 |
48 HPI | Repetition 1 | 3/9 | 37:05 ± 05:24 | 88.88 ± 0.34 | 4.4 × 104 | 9–9 | 30:40 ± 02:01 | 89.11 ± 0.07 | 2.0 × 103 |
5 DAYS | Repetition 1 | 7/9 | 34:50 ± 06:00 | 88.30 ± 2:33 | 3.7 × 104 | 9–9 | 30:57 ± 03:36 | 89.22 ± 0.13 | 1.6 × 103 |
7 DAYS | Repetition 1 | 5/9 | 32:48 ± 05:14 | 89.18 ± 0.25 | 6.7 × 104 | 9–9 | 33:01 ± 03:38 | 89.12 ± 0.25 | 2.9 × 103 |
9 DAYS | Repetition 1 | 7/9 | 30:26 ± 03:41 | 89.34 ± 0.18 | 7.6 × 103 | 9–9 | 32:33 ± 02:10 | 89.02 ± 0.15 | 3.3 × 102 |
3 HPI | Repetition 2 | 0/9 | Negative | Negative | 2.5 × 104 | 5–9 | 36:28 ± 03:41 | 89.16 ± 0.17 | 1.1 × 103 |
24 HPI | Repetition 2 | 3/9 | 31:06 ± 03:02 | 89.47 ± 0.09 | 5.7 × 104 | 6–9 | 31:06 ± 03:02 | 89.47 ± 0.09 | 2.5 × 103 |
48 HPI | Repetition 2 | 2/9 | 34:03 ± 06:30 | 89.37 ± 0.42 | 8.7 × 104 | 9–9 | 29:39 ± 01:39 | 89.34 ± 0.14 | 3.8 × 103 |
5 DAYS | Repetition 2 | 2/9 | 35:47 ± 03:35 | 88:99 ± 0.10 | 5.4 × 104 | 9–9 | 29:22 ± 02:55 | 89.27 ± 0.10 | 2.3 × 103 |
7 DAYS | Repetition 2 | 3/9 | 37:17 ± 0:3:12 | 89.17 ± 0.17 | 4.8 × 104 | 9–9 | 31:08 ± 01:47 | 89.10 ± 0.13 | 2.1 × 103 |
9 DAYS | Repetition 2 | 7/9 | 35:50 ± 03:24 | 89.21 ± 0.06 | 2.0 × 104 | 9–9 | 32:56 ± 02:02 | 89.07 ± 0.19 | 8.7 × 102 |
Samples | Crude DNA Extraction | Approximate Number of Cells in 1 mL of PEG Buffer | Commercial DNA Extraction | Number of Cells in 1 µL of Commercial DNA Extraction | ||||
---|---|---|---|---|---|---|---|---|
Number of Positives | TP (min:s) | Anneal. (°C) | Number of Positives | TP (min:s) | Anneal. (°C) | |||
Leaf 1 | 0/3 | Negative | Negative | 0 | 0/3 | Negative | Negative | 0 |
Leaf 2 | 0/3 | Negative | Negative | 0 | 0/3 | Negative | Negative | 0 |
Leaf 3 | 0/3 | Negative | Negative | 0 | 0/3 | Negative | Negative | 0 |
Leaf 4 | 0/3 | Negative | Negative | 0 | 0/3 | Negative | Negative | 0 |
Leaf 5 | 0/3 | Negative | Negative | 30 | 0/3 | Negative | Negative | 1 |
Leaf 6 | 0/3 | Negative | Negative | 37 | 0/3 | Negative | Negative | 2 |
Leaf 7 | 0/3 | Negative | Negative | 80 | 0/3 | Negative | Negative | 3 |
Leaf 8 | 0/3 | Negative | Negative | 95 | 0/3 | Negative | Negative | 4 |
Leaf 9 | 0/3 | Negative | Negative | 1.6 × 102 | 0/3 | Negative | Negative | 7 |
Leaf 10 | 0/3 | Negative | Negative | 2.1 × 102 | 0/3 | Negative | Negative | 9 |
Leaf 11 | 0/3 | Negative | Negative | 2.7 × 102 | 0/3 | Negative | Negative | 12 |
Leaf 12 | 0/3 | Negative | Negative | 6.2 × 2102 | 0/3 | Negative | Negative | 27 |
Leaf 13 | 0/3 | Negative | Negative | 2.3 × 103 | 0/3 | Negative | Negative | 92 |
Leaf 14 | 1/3 | 29:14 | 89.35 | 3.4 × 105 | 0/3 | Negative | Negative | 1.5 × 102 |
Leaf 15 | 1/3 | 29:47 | 89.36 | 3.6 × 105 | 2/3 | 35:16 ± 00:09 | 88.92 ± 0.01 | 1.6 × 102 |
Leaf 16 | 1/3 | 28:32 | 89.52 | 4.4 × 105 | 2/3 | 36:10 ± 02:30 | 88.99 ± 0.10 | 1.9 × 102 |
Leaf 17 | 0/3 | Negative | Negative | 4.9 × 105 | 2/3 | 35:26 ± 06:41 | 88.76 ± 021 | 2.1 × 102 |
Leaf 18 | 0/3 | Negative | Negative | 6.7 × 105 | 2/3 | 31:51 ± 09:19 | 89.14 ± 0.32 | 3.0 × 102 |
Leaf 19 | 0/3 | Negative | Negative | 1.0 × 105 | 3/3 | 33:41 ± 01:50 | 89.01 ± 0.09 | 3.3 × 102 |
Leaf 20 | 0/3 | Negative | Negative | 8.2 × 105 | 1/3 | 40:25 | 88.92 | 3.6 × 102 |
Leaf 21 | 3/3 | 32:29 ± 08:08 | 89.29 ± 0.31 | 1.0 × 104 | 1/3 | 38:02 | 88.62 | 4.4 × 102 |
Leaf 22 | 2/3 | 32:57 ± 03:27 | 89.66 ± 0.21 | 1.0 × 104 | 3/3 | 42:02 ± 00:45 | 88.33 ± 0.25 | 4.6 × 102 |
Leaf 23 | 1/3 | 42:40 | 88.92 | 1.1 × 104 | 1/3 | 27:31 | 89.37 | 4.9 × 102 |
Leaf 24 | 2/3 | 36:11 ± 06:00 | 89.14 ± 0.31 | 1.5 × 104 | 3/3 | 37:02 ± 03:12 | 89.07 ± 0.21 | 6.6 × 102 |
Leaf 25 | 0/3 | Negative | Negative | 2.5 × 104 | 2/3 | 36:19 ± 02:05 | 89.12 ± 0.31 | 1.1 × 103 |
Leaf 26 | 0/3 | Negative | Negative | 3.1 × 104 | 2/3 | 37:49 ± 03:21 | 89.07 ± 0.20 | 1.4 × 103 |
Leaf 27 | 1/3 | 40:40 | 89.51 | 7.8 × 104 | 3/3 | 36:46 ± 05:33 | 89.22 ± 017 | 3.4 × 103 |
Leaf 28 | 2/3 | 34:13 ± 00:01 | 89.29 ± 0.10 | 1.0 × 105 | 3/3 | 29:49 ± 00:53 | 89.06 ± 0.15 | 4.5 × 103 |
Leaf 29 | 1/3 | 36:00 | 89.51 | 1.4 × 105 | 2/3 | 36:30 ± 02:59 | 89.37 ± 0.11 | 6.0 × 103 |
Leaf 30 | 1/3 | 36.21603 | 89.37 | 1.4 × 105 | 3/3 | 32:19 ± 02:09 | 89.29 ± 0.09 | 6.1 × 103 |
Leaf 31 | 1/3 | 30:10 | 89.67 | 1.5 × 105 | 3/3 | 28:13 ± 01:25 | 89.36 ± 0.01 | 6.7 × 103 |
Leaf 32 | 1/3 | 30:58 | 89.66 | 6.2 × 105 | 3/3 | 32:08 ± 01:04 | 89.38 ± 0.09 | 2.7 × 104 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franco Ortega, S.; Prencipe, S.; Gullino, M.L.; Spadaro, D. New Molecular Tool for a Quick and Easy Detection of Apple Scab in the Field. Agronomy 2020, 10, 581. https://doi.org/10.3390/agronomy10040581
Franco Ortega S, Prencipe S, Gullino ML, Spadaro D. New Molecular Tool for a Quick and Easy Detection of Apple Scab in the Field. Agronomy. 2020; 10(4):581. https://doi.org/10.3390/agronomy10040581
Chicago/Turabian StyleFranco Ortega, Sara, Simona Prencipe, Maria Lodovica Gullino, and Davide Spadaro. 2020. "New Molecular Tool for a Quick and Easy Detection of Apple Scab in the Field" Agronomy 10, no. 4: 581. https://doi.org/10.3390/agronomy10040581
APA StyleFranco Ortega, S., Prencipe, S., Gullino, M. L., & Spadaro, D. (2020). New Molecular Tool for a Quick and Easy Detection of Apple Scab in the Field. Agronomy, 10(4), 581. https://doi.org/10.3390/agronomy10040581